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Abstract: Anthropogenic land-use change is one of the main drivers of global environmental change.
China has been on a fast track of land-use change since the Reform and Opening-up policy in 1978. In
view of the situation, this study aims to optimize land use and provide a way to effectively coordinate
the development and ecological protection in China. We took East Guangdong (EGD), an underde-
veloped but populous region, as a case study. We used land-use changes indexes to demonstrate the
land-use dynamics in EGD from 2000 to 2020, then identified the hot spots for fast-growing areas of
built-up land and simulated land use in 2030 using the future land-use simulation (FLUS) model.
The results indicated that the cropland and the built-up land changed in a large proportion during
the study period. Then we established the ecological security pattern (ESP) according to the minimal
cumulative resistance model (MCRM) based on the natural and socioeconomic factors. Corridors,
buffer zones, and the key nodes were extracted by the MCRM to maintain landscape connectivity
and key ecological processes of the study area. Moreover, the study showed the way to identify the
conflict zones between future built-up land expansion with the corridors and buffer zones, which
will be critical areas of consideration for future land-use management. Finally, some relevant policy
recommendations are proposed based on the research result.

Keywords: land use and land cover change; future land-use simulation model; minimal cumulative
resistance model; ecological security pattern; land-use optimization; Shantou; Chaozhou

1. Introduction

Humans are simultaneously confronting environmental problems on multiple fronts,
such as climate change, loss of biodiversity, soil degradation, water pollution, and loss of
ecosystem services, and each of these is caused either directly or indirectly by land-use
changes [1–7]. It is estimated that ~60% of global land-use changes are directly associated
with human land-use activities and 40% with indirect drivers, such as climate change [4].
The expansion of built-up land in urban and rural areas, agricultural intensification, energy,
and material consumption are the primary drivers of land-use change.

Land-use and land cover change (LULC) is a global subject of study. Most studies
have focused on metropolitan areas [8–10], and other environmental targets of interest,
such as the tropics [11,12], karsts [13], coastal zones [14], ecosystem services [5,15], climate
change [16–18], etc. As a developing country, China has been on a fast track of land-use
change since the Reform, and Opening-up Policy was established in 1978, an essential part
of China becoming one of the fastest global economies [19–23]. In particular, rapid urban
and rural expansion plays an important role in China’s land-use change over the past
40 years. Although built-up land expansion is considered a sign of prosperity; however,
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it also has created severe environmental problems. Land erosion, cropland reduction, air
pollution, loss of wetlands have been documented across the most ecologically sensitive
regions of China [20,24–28], yet only recently attracted federal attention. China is now
in the transformation period of a “new normal/New Era” [29], and the former exten-
sive, inefficient land-use practices will not satisfy China’s demand for a more sustainable
economic development.

With the reformation of various ministries of the central government, the Ministry
of Natural Resources (MNR) is in charge of the new territorial spatial planning strategies.
Instead of the former general land use and city planning, the territorial spatial planning
policies will guide the framework for future land use until 2030. Land-use simulation
models are commonly adapted to support planning and management [30–34]. A cellular
automata (CA)-based future land-use simulation (FLUS) model was developed by GeoSOS-
FLUS (http://www.geosimulation.cn/flus.html (28 September 2020)). An integrated model
for multitype land-use scenario simulations by coupling human and natural effects [35–40],
it is capable of simulating future land use based on past patterning.

Guangdong Province has maintained the highest gross domestic product (GDP) in
China since the National Bureau of Statistics of China released started recording GDP
by region in 1999. It also has been the most populous province in China since 2007 [41].
East Guangdong Province (EGD) includes two municipal cities, Chaozhou and Shantou.
Historically, EGD has had intense population-land conflicts [42]. Previous studies have
shown that EGD had the highest population density in Guangdong 450 years ago during
the Ming Dynasty and the amount of cropland per person in Guangdong decreased to
its lowest value during this period [43,44]. Over 8.32 million people live in EGD, with
an average population density in 2019 of 1446 people·km−2, more than double that of all
Guangdong Province, 640 people, ·km−2 [45]. According to the statistics from the local
governments in Chaozhou and Shantou, the two cities’ private economy was responsible for
>70% of each city’s GDP in 2019. Chaozhou City is famous for the pottery manufacture, and
the small business for food manufacturers is also thriving in Chaozhou City. Shantou City
focuses on toy manufacture, the clothing and printing industry. Because of the spontaneity
of the private economy, it is crucial to regulate the economic growth of EGD by the built-up
land expansion.

The 2019 GDP of EGD is ~37.75 billion Yuan, 3% of Guangdong Province, an indicator
that EGD is a less developed region of the province. Development of the local economy
and prosperity via industrialization and urbanization is a shared goal by both the EGD
local government and residents alike. Simultaneously, ecological civilization, which means
an important component of the millennial plan for China’s sustainable development [46],
should be the foundation of all territorial spatial planning; thus, it is necessary to identify
the most important areas of ecological significance.

The ecological security pattern (ESP), which refers to the elements of the landscape,
such as the ecological sources and corridors, is critical to the security and health of the
ecological process [47,48]. ESP is the basic spatial guarantee of regional ecological security,
and it provides the means to effectively coordinate regional development and ecological
protection [47]. The minimum cumulative resistance model (MCRM) is commonly used to
identify the ESP [49–51]. Hence, MCRM was applied in our study to establish the ESP by
extracting the key nodes and corridors. Combining FLUS and MCRM, useful insights were
gained for the optimization of land-use change in 2030 of EGD.

The land-use dynamics studies in China have usually focused on areas like the Pearl
River Delta [27,52,53], Beijing–Tianjian–Hebei region [54–58], the Yangtze River Delta [18,59],
or other major cities, provincial capitals, or special economic zones [60]. The land-use simu-
lation model usually focused on the mechanism to improve the precision of prediction, and
few of them considered the landscape-related factors. To the best of the authors’ knowledge,
few scholars have studied city-groups like those observed in EGD, high population density
and relatively less developed. On the other hand, studies about the dynamics of land use
and ESP usually focused on the methods to build the ESP [61–65] or concerning the main
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factors that affect the land use or the ESP [47,64,66–69]. Few studies focus on the spatial
conflict between the ESP and the future built-up land expansion. Therefore, it is crucial to
study the land-use dynamics of EGD to optimize future sustainable development, with the
potential to also inform regions facing similar problems. In this study, we: (1) analyzed the
land-use dynamics of EGD and summarized the land-use problems encountered over the
past two decades; (2) simulated land use in 2030 using the FLUS model; (3) establishing
the ESP through the MCRM; and (4) distinguish the spatial conflicts areas between the ESP
and the future built-up land expansion, optimized the land use according to the MCRM.

2. Materials and Methods
2.1. Study Area

Chaozhou and Shantou are located in the east of the Guangdong Province (23◦21′ N–
24◦14′ N, 116◦14′ E–117◦16′ E), where the coastline is facing the South China Sea (Figure 1).
This region encompasses the unique, local Chao-Shan culture; people in this region share a
similar lifestyle, the same cuisine, and the same Chao-Shan dialect. The total combined
area of these two cities is 6632 km2 (including the sea territory), with a population of
8.32 million. Chaozhou is in the northeast of the EGD, while Shantou lays in the southwest.
Chaozhou has three administrative regions at the county-level: Raoping County, Chao’an,
and Xiangqiao Districts, while Shantou city has seven county-level regions, which are the
districts of Jinping, Longhu, Haojiang, Chenghai, Chaoyang, Chaonan, and Nan’ao County.
Even though the EGD is one of the most populous regions of the Guangdong Province, and
many counties and towns are considered to be peri-urban areas, when comparing GDPs
with the Pearl River Delta, it is apparent that EGD is the lesser developed area [70,71].

The terrain of the montane north and northwest regions in EGD is >1000 m and
slopes gently down towards the southeast. There are three important rivers in the EGD—
the Huanggang, Hanjiang, and Lianjiang—and the croplands and primary settlements
concentrate along the Huanggang River valley, Hanjiang River plain, and Liangjiang
River valley.

2.2. Data Sources

The land-use land cover data for 2000, 2010, and 2020 were obtained from the GLO-
BELAND30 platform (http://www.globallandcover.com (28 September 2020)), at a 30 m
resolution [72]. In the GLOBELAND30 platform, the classification system is as follows:
cropland, forest, grassland, shrubland, wetland, water bodies, tundra (subclass are shrub
tundra, grass tundra, wetland tundra and bare land tundra), artificial surfaces (built-
up land), bare land, permanent snow and ice. The following classifications were found
for EGD: cropland, forest, grassland, shrubland, wetland, waterbody, artificial surfaces
(built-up land), bare land, and seawater. A 30 m digital elevation model (DEM) was
acquired from the 91Weitu website (www.91weitu.com (25 September 2020)). Vectors
of the EGD administrative region were drawn by the authors according to the regional
maps of the Department of the Natural Resources of Guangdong Province’s website
(http://nr.gd.gov.cn/gdlr_public/map/3/index.html (25 September 2020)).

Normalized difference vegetation index (NDVI) data were composed [73,74] using
Landsat 8 data (the images downloaded from www.earthexplorer.usgs.gov (30 September
2020), image date: October 2019, images resolution: 30 m, path/row: 120/43 and 120/44,
respectively, product level: L1T). The correlations were processed by the software ENVI
5.2, and the correlation parameters were obtained from the MTL file in the product [75,76].

http://www.globallandcover.com
www.91weitu.com
http://nr.gd.gov.cn/gdlr_public/map/3/index.html
www.earthexplorer.usgs.gov
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Figure 1. Study area in China, Administrative division of East Guangdong (EGD) within the
Guangdong Province and the topography of EGD.

Vectors of regional railways, roads, highways, town centers, and ecologically sensitive
areas were obtained by the master city planning of Chaozhou and Shantou. Socioeconomic
statistics were derived from provincial and municipal level data. All raster data were
rescaled to 30 m.

2.3. Methods

First, we used four indexes to analyze the land-use dynamics in EGD. Second, the
methods of the land-use simulation process were demonstrated. The Markov chain model,
which predicted the quantity of land-use types in 2030, was introduced. Then the detail
of the FLUS model and the validation process were presented. Third, the concept and
the process of establishing the MCR model were also presented. Finally, the ESP can be
synthesized.

The schematic methodology is shown in Figure 2.
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2.3.1. Land Use Dynamics Analysis

With the characteristic of land-use change [42], two indices, the annual increase (AI,
km2·y−1, Equation (1)), and annual growth rate of croplands and built-up land (AGR, %,
Equation (2)) were introduced to reveal the dynamics of these four typical and signature
land-use types of EGD [77–80]:

AI = (Aend − Astart)/d (1)

AGR = 100%×
[(

Aend
Astart

)1/d
− 1

]
(2)

DEN = Abuilt/A (3)

IR = (DEN 2020 − DEN 2010)/DEN 2010 (4)

where Astart (Abuilt) and Aend are the areas of crop- (built-up) land at the initial and end
times, respectively, and d is the analysis period in years (one decade). DEN stands for the
proportion of built-up land in the study area. In Equation (3), Abuilt denotes an artificial
surface area, and A denoted the total area. The warning threshold for identification of
“overdevelopment” according to international criteria are areas where DEN is >30%. Then
we analyzed the increase in DEN increased rate (IR) where DEN 2010 and DEN 2020 are the
DEN values in 2010 and 2020, respectively.

2.3.2. Markov Chain Model

To predict the quantity of each land-use type, a Markov chain model was introduced.
Commonly used to predict geographical characteristics lacking after-effect events [81–83],
this model has become an important prediction method in geographical research [84]. In
this study, the Markov chain model calculated the probability matrix of land conversion
and then analyzed the mutual transformation relationship of the different land-use types.
By using a module integrated within FLUS software, the total amount of future land-use
types in 2030 were predicted with a decade-long step of the transformation matrix.
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2.3.3. FLUS Model

The FLUS model is software that combines the “top to bottom” system dynamics (SD)
model and “bottom to top” CA model [36] and provided a multiple CA allocation model
for simulating land-use change and scenario analysis. The “top to bottom” represents
macroscale demands, such as political planning and background climate influences, while
the “bottom to top” determines the system’s evolution from a local perspective [36]. By
considering various socioeconomic and natural environmental factors, the SD model was
used to project the land-use scenario demands, while the CA model processed complex
interactions among the different land-use types [36,37]. FLUS has shown to have a higher
simulation accuracy than the CA and CLUE-S models [36]. The model and further informa-
tion can be found online (http://www.geosimulation.cn/flus.html (28 October 2020)).

In this study, nine classes of land-use were used (Section 2.2), and for an ANN-based
suitability probability estimation module, a random sampling of 1‰ of the land-use raster
was selected with 10 hidden layers. The driving factors included environmental and
socioeconomic factors: DEM, NDVI, ecologically sensitive areas, town centers, railways,
and main roads. Moreover, the factors were trained by the model and land-use data
to obtain a probability distribution map. Then self-adaptive inertia and competition
mechanism CA module were used to simulate the land-use change in 2030 based on the
starting year of 2020.

Simulation results were validated using both Cohen’s Kappa coefficient and figures of
merit (FoM) provided in the FLUS model. Some studies have shown that FoM is superior
to the Kappa coefficient in assessing the accuracy of simulated changes [85–87]. The FoM
is the ratio of the intersection of the observed change and predicted change to the union of
the observed change and predicted change [86,88]. Equation (5) of FoM is as follows:

FoM =
B

A + B + C + D
(5)

where B is the area of correct due to observed change predicted as change, A is the area of
error from observed change predicted as persistence, C is the area of error from predicted
change to an incorrect category, and D is the area of error from observed persistence
predicted as change. Our study focused on the validation by the FoM method, while the
kappa coefficient was still demonstrated for references.

2.3.4. MCR Landscape Analysis

In MCR landscape analysis, we used three steps: defining the ecological source,
building the ecological resistance surface and identifying key ecological corridors. In the
second step, the ecological resistance surface was established according to the MCRM.

Source Identification

Ecological source originally identified the habitat that species most relied upon [48,89],
and recently this definition has been expanded to include those patches, which plays a
crucial role in overall ecosystem health and are important for urban/regional ecological
security [49]. In the present study, sources represent the main core areas for a particular
ecological or artificial process. Two kinds of processes were acknowledged: natural or
ecological processes and the expansion of human activity, categorized into the ecological
sources (sources mode) and built-up modes, respectively. Ecological sources were obtained
from the Chaozhou and Shantou master planning data, which identified the ecologically
important and sensitive regions. Ecological sources included: forests of protected regions,
protected drinking water reservoirs, and some important habitats for certain species. For
sources of the built-up mode, we chose the built-up land from the 2020 land-use map
>10 hm2.

http://www.geosimulation.cn/flus.html
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MCRM Surface

Resistance means the difficulty for the species or ecological flows the move or travel to
other places [89,90]. In the MCRM, the space of the study area was considered as a surface
with different resistance values, and the resistance values were calculated in different
evaluation systems. The MCRM is a mainstream assessment method, and it was widely
applied to landscape design, which aims to protect natural ecosystems within specific
secure borders [47], biodiversity conservation, and urban planning [62,90,91].

The MCRM calculates the required cost of species’ moving from the source to the
destination. It reflects the potential possibility and tendency of species’ movement [48]. The
MCRM can also be used to simulate different ecological flows across different landscape
surfaces by establishing a minimum cumulative resistance path [49,92,93].

In our study, the MCRM surface was evaluated, and the evaluation contained two
primary factors: natural and anthropogenic conditions. The natural factors included: DEM,
NDVI, land-use types, geological hazards, risk (i.e., landslide or debris flow) and distance
from water (rivers, ponds, reservoirs). Anthropogenic influences included: distance from
built-up land, distance from roads (main city roads and highways). Elevation and NDVI
data were standardized as the following equation [94]:

x∗ =
x−min

max−min
× 100 (6)

where x∗ represents the standardized value, x represents the original pixel value, max and
min represent the maximum and minimum pixel value, respectively.

Geological hazard data were obtained from Chaozhou and Shantou geological plan-
ning, which defined risk into four levels: comparatively safe, low, medium, and high-risk.
Using previous studies [48,49,91,94,95] and the conditions of the EGD, all factors were
assigned scores from 0 to 100, where a higher score indicates a higher resistance. The
weight of each factor was calculated using the analytic hierarchy process (AHP) method.

The equation of the MCRM is as follows (Equation (7)):

MCR = fmin

i=m

∑
j=n

(
Dij × Ri

)
(7)

where f represents the relative function to the minimal resistance; Dij represents the spatial
distance of a target unit from the source point j to the land-use type i; and Ri represents the
ecological resistance of the spatial unit i to a target’s migration.

The MCRM contains two parts described as follows (Equation (8)) [94]:

MCR = MCRsource −MCRbuilt−up (8)

where the MCR represents the total MCR, MCRsource represents the MCRM based on the
ecological sources, and MCRbuilt−up represents the MCRM based on the built-up land
expansion. MCRsource and MCRbuilt−up represent the difficulty for the land-use type to
expand or develop from the center of the source to the surrounding areas. The higher the
MCR, the more difficult the expansion, and details of the factors and scores with the weight
can be seen in Table 1.
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Table 1. Evaluation index system of ecological resistance.

Factors
Score Assignment

Weight
0 10 20 30 40 50 60 70 80 90 100

Source
mode

Land-use type Forest Wetland Waterbody Shrubland Grassland Cropland - Bare
land Built-up land 0.35

DEM Standardized results 0.15
NDVI Standardized results 0.1

Geological hazard risk Relatively
safe Low Medium High 0.05

Distance from roads (km) ≥10 (5, 10) (2, 5) (1, 2) (0.5, 1) <0.5 0.1
Distance from built-up land (km) >1 (0.5, 1) (0.2, 0.5) (0.1, 0.2) <0.1 0.15
Distance from water body (km) <0.1 (0.1, 0.2) (0.2, 0.5) (0.5, 1) ≥1 0.1

Built-up
mode

Distance from water body (km) <0.1 (0.1, 0.2) (0.2, 0.5) (0.5, 1) ≥1 0.1
Land-use type 0 0 0 - - 0 0 <0.1 0 0.35

Geological hazard risk Relatively
safe Low Medium High 0.05

Distance from built-up land (km) <0.1 (0.1, 0.2) (0.2,0.5) (0.5, 1) >1 0.4
Distance from roads (km) >0.5 (0.5, 1) (1, 2) (2, 5) (5, 10) ≥10 0.1
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Determining Ecological Corridors, Key Nodes, Buffer Zones, and Conflict Zones

After identifying the ecological sources and setting up the resistance surface, it was
necessary to connect them based on the MCRM surface analysis. The least-cost path
method was applied to establish the corridors, and the corridors connect the ecological
sources. In our study, the least cost path was calculated by the tool of linkagemapper
(https://circuitscape.org/linkagemapper/ (14 January 2021)) in ESRI ArcGIS (v.10.2), and
the linkagemapper is a commonly used tool in ecological and habitat studies [96,97]. A 40 km
threshold was used to truncate corridors between sources, with a maximum number of
connected nearest neighbors set to four after tested. Key nodes, which represent the place
that had equal resistance values between every two ecological sources, were considered to
be crucial to the process of maintenance and migration of species [48]. Moreover, the key
nodes were identified through the watershed method toolbox in ArcGIS. Buffer zones of
600 m were set up around the center of each corridor. Conflict zones are the most sensitive
and fragile regions in need of future protection. We simulated the increase in built-up land
for 2030 using the FLUS model and labeled the intersection of areas where new built-up
land occurred and buffer zones as conflict zones. The conflict zones are the concern for
future land-use management.

Synthesize the ESP

Apart from the built-up land (artificial surface) of 2020, the MCRM surface result was
classified into four classes with natural breaks (Jenks) using ArcGIS, each representing the
relative ecological importance: disturbed class, where the most frequent human activities
occur; low resistance class, the most important areas, which may require protection any
time; medium resistance class, average importance of the EGD; and high-resistance class,
areas that need the least protection.

With the ecological sources, corridors, buffer zones, and key nodes ad the resistance
classes, an ecological security pattern (ESP) was established. By analyzing the ESP, the
corridors, key nodes and the spatial conflict between the land-use simulation results in
2030 of the FLUS model with these patterns, ecologically sensitive and fragile regions were
identified, presenting the optimized land use.

3. Results
3.1. Land Use Dynamics in EGD
3.1.1. Spatial and Temporal Changes in EGD

Table 2 shows the areas and proportion of land use for the three time periods. As
shown in Figure 3, forests are the most distributed land-use type in EGD, located primarily
in the north and southwest. Cropland is the second most distributed land-use type, mainly
found in the north, east, central, and southeast of EGD.

Table 2. Land-use types, areas, and proportion of EGD.

Land Use Type
Year 2000 Year 2010 Year 2020

Area (hm2) Prop. (%) Area (hm2) Prop. (%) Area (hm2) Prop. (%)

Cropland 169,019.28 25.58 171,416.16 25.94 132,851.79 20.10
Forest 202,320.45 30.62 202,237.11 30.61 198,063.9 29.97

Grassland 39,315.69 5.95 39,174.57 5.93 38,088.27 5.76
Shrubland 5589.36 0.85 5431.05 0.82 5168.97 0.78
Wetland 3193.47 0.48 371.97 0.06 1166.04 0.18

Water body 47,956.86 7.26 50,925.78 7.71 53,746.74 8.13
Seawater 133,566.48 20.21 133,917.12 20.27 130,500.09 19.75

Built-up land 59,511.78 9.01 57,320.55 8.67 101,188.71 15.31
Bare land 320.94 0.05 0 0 19.8 0

https://circuitscape.org/linkagemapper/
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Croplands and built-up land received the most attention from previous studies of EGD
land-use [42,98]. Although the quantity increased, the proportion of cropland remained
nearly the same in the first decade (Table 2). Cropland AI and AGR were 239.67 hm2·y−1

and 0.14%, respectively, from 2000 to 2010, while its quantity dropped down by ~5%
from 2010 to 2020, where AI was −3856.44 hm2·y−1, and AGR was −2.52%. Built-up
land was stable from 2000 to 2010, with an AI and AGR of −219.12 hm2·y−1 and −0.37%,
respectively, but it increased from 8.67% to 15.31% from 2010 to 2020, with an AI and AGR
of 4386.82 hm2·y−1 and 5.85%, respectively (Table 3). Since EGD is located along the South
China Sea, the study here also focused on the coastline and the sea. Seawater area dropped
to 19.75%, indicating that EGD acquired land from the sea during 2010–2020 (Table 2).

Table 3. Land-use dynamics of croplands and built-up land.

Land Use Type
2000–2010 2010–2020

Average (hm2·y−1)
AI (hm2·y−1) AGR (%) AI (hm2·y−1) AGR (%)

Cropland 239.688 0.14% −3856.44 −2.52% −1808.37
Built-up land −219.123 −0.37% 4386.82 5.85% 2083.85

3.1.2. Land Use Transition Matrix Analyses

In the first analysis period (2000–2010), the most significant transformation was from
built-up land to cropland, accounting for 5400 hm2 (Table 4). The transformation from crop-
land to a water body (4821 hm2), and the reverse (4360 hm2), were also high. The amount
of area converted from grassland to forest was also nearly equal to the opposite conversion.

Table 5 shows the transformation areas from 2010 to 2020, where the strongest pattern
was cropland becoming built-up land (36,050 hm2). Croplands were also being encroached
upon by water bodies (>4500 hm2). Over the same period, the sea area was also diminished
by built-up land, at a scale of 1242 hm2.
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Table 4. Land-use transformation matrix between 2000 to 2010 (hm2).

Land Use Cropland Forest Grassland Shrub-Land Wetland Water Body Sea Built-Up Land Bare Land

Cropland 158,712.16 1075.59 530.55 35.28 12.15 4821.67 129.78 3702.09 0
Forest 1350.91 196,224.20 3287.15 528.21 0.99 728.73 11.34 188.73 0

Grassland 739.35 3213.00 34,357.32 210.33 8.19 537.84 83.43 166.23 0
Shrubland 53.64 577.89 163.08 4448.61 0.18 317.70 14.40 13.86 0
Wetland 358.56 161.82 230.76 26.01 172.71 2052.27 164.34 27.00 0

Water body 4360.15 634.95 358.92 144.99 152.91 41,560.10 339.21 405.63 0
Sea 277.47 6.75 27.27 6.39 5.31 149.49 133,079.76 14.04 0

Built-up land 5498.13 342.72 213.30 31.14 10.62 607.77 17.19 52,790.91 0
Bare land 65.79 0.18 6.21 0.09 8.91 150.12 77.58 12.06 0

Table 5. Land-use transformation matrix between 2010 to 2020 (hm2).

Land Use Cropland Forest Grassland Shrub-Land Wetland Water Body Sea Built-Up Land Bare Land

Cropland 130,716.94 44 47.95 0.04 1.71 4532.82 2.95 36,050.64 19.08
Forest 608.52 197,875.05 157.93 0.80 3.60 436.05 0.01 3154.28 0.45

Grassland 41.74 78.61 36,998.46 0.26 0.36 342.43 8.77 1703.64 0.27
Shrubland 43.50 4.03 24.98 5167.81 1.08 89.89 0.01 99.73 0
Wetland 6.93 1.26 0.00 0.00 179.08 179.56 0 5.13 0

Water body 1001.83 29.57 39.84 0.04 173.43 47,465.62 0.02 2215.40 0
Sea 60.25 14.23 818.68 0.01 806.77 486.91 130,488.20 1242.01 0

Built-up land 372.03 16.80 0.40 0.01 0 213.43 0 56,717.87 0
Bare land 0 0 0 0 0 0 0 0 0

Tables 2–5 show that during the two decades of analysis, croplands in EGD decreased
from built-up land expansion and conversion to water bodies, where the latter can be
explained by local farmers changing focus from traditional agriculture to aquaculture. Built-
up land gains were derived primarily from croplands, and the sea and total conversion into
built-up land took up a large proportion of all the land-use transformations. The tradeoff
between cropland and built-up land was the most significant problem of the EGD over the
past two decades, and it will likely continue to be a central priority of territorial planning
for the future.

3.1.3. Land Use Change Characteristic Analysis

Two typical land-use types—built-up land and cropland—were chosen to analyze
their changing spatial characteristics.

Over the previous two decades, transitioning into built-up land was the most signifi-
cant land-use change of the EGD. From 2000 to 2010, built-up land expansion was scattered
throughout EGD, and the relatively small-scale expansions were located in the central and
southern Chao’an District, south of the Chenghai District, along the Lianjiang River valley
in the southeast of EGD, and road construction in the south of Raoping County. In the
second decade of analysis, built-up land expansion was at a significantly larger scale and
distributed more broadly. The largest expansion during this period was located along the
sea, in a reclamation area from Shantou. The south and middle of Chao’an County, the
north and west of Chenghai District, and expansion along the Lianjiang River valley were
also quite high.

The amount of cropland decreased during these two decades. From 2000 to 2010,
the decrease in cropland was relatively small and mainly occurred around the Chaoyang
and south of Chao’an Districts. For the second period, the decrease in cropland was
broadly located throughout the entire study area, and these spatial distributions were
highly consistent with the expansion of built-up land in the south and central Chao’an
District, west and south of the Chenghai District, the center of Shantou, and along the
Lianjiang valley. In the southwest of Raoping County, the decrease in cropland derived
from conversion into water boded for the aquaculture.

3.1.4. Development Intensity

It was found that built-up land expanded significantly from 2010 to 2020. According
to E (3), the DEN of the entire EGD in 2010 and 2020 were 10.73% and 18.92%, respectively.
The DEN of all county levels was from 2.15% to 33.19% in 2010, with the highest intensities
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occurring mainly in the center of Shantou, particularly in the Longhu and Jinping Districts
(Table 6). At the same time, the Chaoyang and Chaonan Districts were also in a relatively
high-intensity location. In 2020, it was apparent that the DEN increased at a rapid pace,
where Longhu and Jinping Districts still maintained the largest two DEN values, and five
other district/counties were also >20%. Haojiang District and Nan’ao County increased by
>200%, indicating that these two administrative regions developed at a significant pace.

Table 6. Development intensity (DEN) of EGD from 2000 to 2010 and 2010 to 2020.

District/County 2010 2020 Increased Rate (IR)

Chao’an District 11.75% 20.59% 75.21%
Chaonan District 14.67% 26.07% 77.75%

Chaoyang District 14.64% 24.19% 65.21%
Chenghai District 16.61% 27.50% 65.55%
Haojiang District 8.64% 26.52% 206.75%
Jinping District 28.35% 39.52% 39.39%
Longhu District 33.19% 63.18% 90.35%
Nan’ao County 2.15% 6.80% 216.07%

Raoping County 3.11% 6.24% 100.63%
Xiangqiao District 13.52% 21.22% 56.97%

DEN at the township-level was also analyzed (Figure 4). In 2010, 37 of the 122 towns in
EGD exceeded 30%. These towns are mainly distributed in the center of Shantou, south of
the Chenghai District, the center of Chao’an District, and north of Chao’an District. In 2020,
57 of the 122 towns exceeded the international criteria, distributed from the central Chao’an
District to the southeast of Shantou and along the Lianjiang River valley. Meanwhile, there
were 16 additional towns > 20%, together indicating that the built-up land expansion was
intensive over the previous decade. Table 6 demonstrates the DEN of each district/county
in 2000 to 2010 and 2010 to 2020 periods.
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3.2. Land Use Prediction and Simulation Results

Based on the land-use data of 2000 and 2010, a Markov chain prediction module in the
FLUS software was used to predict land use in 2030. For validation, the kappa coefficient
and FoM were calculated as 0.86 and 0.35, respectively, which were the precision validation
parameters of 2020 [35,36,87]. The parameters indicated that 2030 predictions were reliable,
and the simulation results can be seen in Table 7.

Table 7. Markov chain prediction and future land-use simulation (FLUS) simulation of land-use results for 2030 (hm2).

Cropland Forest Grassland Shrub-Land Wetland Water Body Sea Built-Up Land Bare Land Description

103,794.66 193,991.76 37,030.14 4919.67 1536.93 55,869.93 127,173.33 136,477.98 0 Prediction
106,887.24 195,290.82 37,306.44 4919.67 1122.66 55,869.93 127,173.33 132,219.81 4.41 Simulation

The simulated results shown in Figure 5 indicated that the expansion of built-up land
continued to take over cropland s of the EGD, particularly in the Lianjiang River valley,
south and central Chao’an District, south Raoping County, and east of Shantou, all of
which are presently occupied by tremendous croplands. Furthermore, the built-up land
encroached upon the sea for all districts and counties along the South China Sea. Far fewer
land-use changed were predicted in the north and central EGD.
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3.3. MCRM Results and Ecological Security Pattern (ESP) Establishment
3.3.1. Source Distribution and MCRM Results

As mentioned above, the ecological sources were obtained from the Chaozhou and
Shantou city master plans. According to the land-use types, the primary ecological sources
were forests and water bodies (i.e., rivers and reservoirs) scattered throughout EGD. Spa-
tially, both were concentrated in the north and southeast, such as the northern Chao’an Dis-
trict, northern and central Raoping County, southern Chaonan District, central Chaoyang
District, and two-thirds of Nan’ao County. These resources are currently protected by law
and cannot be destroyed or encroached upon by any authorities or persons. Built-up mode
sources were readily recognized in Figure 6, showing the MCRM calculation results of the
two modes.
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Figure 6. Minimal cumulative resistance model (MCRM) results of the source and the built-up modes, based on (a) sources
of ecological surfaces, (b) built-up land, and (c) the results of (a,b).

The disturbing layer accounted for ~21.13% of the total study area (1401.34 km2),
located mainly around the Lianjiang River valley, the center of Shantou, southern and
central Chao’an and Xiangqiao Districts, and a belt along the coastal sea (Figure 7). The low
class accounted for ~10.67% of the study area (707.63 km2) and was mainly concentrated
in the north and southwest, corresponding to the montane and pelagic regions of EGD.
The medium class proportion was 28.82% (1911.34 km2), and located adjacent to the low
class south of Chaonan District, central Chaoyang and Chao’an Districts, and northern
Raoping County. The high class accounted for the greatest proportion of the EGD, 39.37%
(2611.02 km2), and surrounded the disturbing layer. This phenomenon showed that the
high class had a strong correlation with human activities, and any further expansion of
built-up land would encroach the high-resistance areas first.

3.3.2. Ecological Corridors, Key Nodes, and Buffer Zones

One hundred seventeen corridors were established by the linkagemapper based on the
MCRM surface analysis, and the lengths of the corridors were between 30 and 22,245 m
(Figure 8). The mountainous regions of the north, the southeast, and the southwest were
concentrated with a greater number of corridors, which were also more curved than in the
plain regions; whereas the plains, like the center of Raoping County, the south and center
of Chao’an District, and the center of Shantou, maintained fewer corridors with a more
direct morphology. The key nodes were mainly distributed in the middle and the north
of Raoping County, the border between Chao’an District and Raoping County, north of
Chao’an District, the center of Shantou, the south of Chaonan District and the Lianjiang
River valley. Using the corridors as the center, 600 m buffer zones were also created and
can be seen in Figure 8.
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3.4. Optimization of Future Land Use
3.4.1. Conflict and Fragile Zone Identification

After obtaining the buffer zones, we analyzed the spatial relationship between the ESPs
and the buffer zones and found that the low-resilience, medium resilience, high-resistance
and disturbing classes accounted for 6.16%, 35.20%, 48.22%, and 10.42%, respectively. The
buffer zones in conflict with the low-class ESPs were mainly distributed in the north of
Raoping County and connected to Na’nao County. The medium class conflict zones were
mainly located in the north of Chao’an District, the northeast of Raoping County, the areas
between Raoping and Na’nao Counties, and the middle of Chaoyang District.

To optimize future ecological land use, it is important to identify conflicts between
the buffer zones and human interface; to this end, we extracted the increase in built-up
land from 2020 to 2030 based on the simulated results of the FLUS model and analyzed
the spatial fragility and conflict areas. The buffer zones with increasing built-up land
were mainly distributed in the areas around the Lianjiang River valley in the Chaoyang
and Chaonan Districts (Figure 9). The statistics indicated that the Chaoyang-Chaonan
areas represented > 80% of the conflict zones in the whole study area (35.32% and 45.21%,
respectively). For the remainder of the conflict zones, the Jinping, Xiangqiao, and Chenghai
Districts maintained > 8.61%, 5.38%, and 3.75%, respectively. The Longhu District and
Raoping County maintained 1.53% of the conflict zones of the whole study area. 89.97% of
the increased built-up land were within the disturbed ESP zones, while 9.04% and 0.99%
were within the high and medium ESP classes, respectively.
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3.4.2. Land Use Optimization in EGD

Conflict and fragile zones of the corridors, as well as built-up land (including 2020
measurements and 2030 simulated results), which encroached upon the low class of the ESP,
should be reclaimed or remain in their original land-use type to best preserve ecological
resources. There were 24.4 hm2 of built-up land in the low class observed in 2020 scattered
in the northern Chao’an District and central Raoping County. There were 369.70 hm2

and 94.32 hm2 of built-up land in the medium class of 2020 and 2030, respectively. The
transitional nature of the medium class implies that they are also important to protect.
Thus, the areas mentioned above should be the focus of land conservation plans in all
future efforts.

The simulated results showed built-up land expansion into the water along the coastal
South China Sea (Figure 8), with the greatest changes located on coastlines of Chaoyang,
Haojiang, Longhu Districts, and Raoping County; however, in 2015, the MNR enacted a
policy to ban reclamation from the sea to protect the pelagic and coastal ecology. Thus, the
simulated results are not plausible, and all planned reclamation of the sea in the predicted
territorial planning can be ignored if the present conditions are upheld.
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We also analyzed the spatial relationship between the ecological sources and the
built-up land. No simulated built-up land was found to occupy the ecological sources in
2030, while 129.01 hm2 were recorded in 2020. Although the patch scales were relatively
small (average area, 1.6 hm2), they were scattered nearly throughout the entire study
area: 44.83% located in the Chaonan District, primarily in the south and montane regions;
15.66% in Chaoyang District, which were also confined to the mountains; patches of
the Chao’an District, Nan’ao, Raoping Counties, and Haojiang District were also in the
mountainous areas, with proportions of 10.17%, 7.38%, 6.69%, and 4.81%, respectively;
and in Chenghai and Longhu Districts, the patches occupied the protected drinking water
reservoirs, comprising 3.16% and 5.19% of all patches observed. The results indicated that
all of these patched areas should be reclaimed to their non-artificial surface conditions in
future territorial plans to best preserve the region’s ecological resources (Figure 8).

4. Discussion
4.1. EGD Built-Up Land Expansion and Management

As shown in the previous section and from Figure 9, many areas in EGD underwent
intensive built-up land expansion over the past decade. Many towns exceeded develop-
ment intensity by 30%, some located in the city centers, but many others in rural areas. For
example, some of the towns in Chao’an and Chaonan Districts were close to exceeding 60%
development. By combining the development intensity of built-up land and the land-use
map of EGD, we revealed three hotspots of built-up land: (1) the spread and sprawl belt of
built-up land from the middle of the Chao’an District to the southeast towards Shantou’s
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city center; (2) the intensive development along the Lianjiang River valley, located north
of Chaonan and Chaoyang Districts, starting from the west of the Chaonan District and
spreading east to the South China Sea coastline; and (3) starting from the south of Shantou
Bay, and traveling along the coastline until reaching the northeast of Raoping County.
These vibrant belts are the focus of EGD’s manufacturing industry, most of which belong
to small businesses or private companies. The primary industry of Chaozhou City and the
surrounding suburbs is pottery. The south of Chao’an District, to the west of Shantou, is
dominated by food industries, package printing, and machine manufacturing. The north
of Shantou, like the Chenghai District, is a center of toy manufacture and assembly. To the
south of Shantou, such as the Chaonan and Chaoyang Districts, the main industries are
textiles and printing.

After analyzing the development intensity of the EGD over the past decade, we
concluded that built-up land expansion was mainly concentrated in the suburban areas
around the cities of Shantou and Chaozhou (Figure 9). It is widely acknowledged that
the greater the intensity of built-up land expansion, the greater the correlated ecological
and social problems [10,99,100]. Empirical studies have indicated that the scale of built-up
land in these areas should be constrained [52,53,101,102] and restored to natural land cover
types whenever possible for a more sustainable level of development.

The rapid expansion of built-up land allowed the economy to thrive in these areas over
the past decade; however, it came at the sacrifice of the cropland area, as revealed by the
land-use transition matrix. These plains areas made a significant contribution to the local
agricultural industry and essential to China’s policy of protecting croplands, especially
those of high productivity. Thus, it is essential to prevent the further spread of built-up
land encroaching on the high-quality croplands of the EGD.

Built-up lands also encroached upon on the South China Sea, and during 2010–2020,
the conversion from sea to built-up land was > 1242 hm2, with an additional > 800 hm2 of
grassland converted from the sea as well. According to the master city plans of Chaozhou
and Shantou, conversion from the sea was one of the major paths to increase built-up
land. The conversion of the sea in Shantou occurred in three areas: Chaoyang-Chaonan,
Haojiang, and the Longhu-Chenghai. For Chaozhou, sea conversion occurred exclusively
in Raoping County. Reclamation in Chaoyang-Chaonan and Raoping County was mainly
for the manufacturing industry, whereas conversion in Longhu, Haojiang, and Chenghai
were for the construction of the new Shantou city center.

Studies showed that the sea reclamation had a negative impact on the coastline. First,
it slows down the flow of the sea, and the self-purification capability of the sea would
also go down. Second, the sea reclamation destroys the natural coastline, and it lowers
the capability facing the tides and storm [103]. Historical, Shantou City lost over 500 hm2

from 1950s to 1980s due to the sea reclamation, and it affected the biodiversity around the
coast [104,105]. All planned reclamation projects from the sea before 2020 were carried out;
however, the simulated results from 2030 showed that sea reclamation was still a hotspot
for the increase of built-up land, despite the Chinese federal government, the MNR, and the
Guangdong provincial government announced that reclamation from the sea is prohibited
except in special circumstances. Moving forward, it will be nearly impossible for the EGD
to reclaim any further area from the sea.

New policies regarding the renewal of old and low-efficiency neighborhoods will be
necessary for future, sustainable spatial planning. It is recommended that the governments
conduct full investigations to find these low-efficiency, dated, and built-up areas, which
lack necessary facilities and are in need of increased residences. The specific policy for
renewal and land consolidation should be formulated so as to meet the needs of the local
residential demand. Old and inefficient areas usually are located within the city center,
county, or towns, such as the southwest center of Shantou, south of Chao’an District, the
center of Chaozhou, and the south of Raoping County.
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4.2. EPS Optimization and Ecological Conservation

Environmental problems, such as water, soil, and air pollution, have had negative
impacts on the EGD due to unsustainable developmental practices [106–109], and some of
their negative impacts may be irreversible. In the background of the New Era, ecological
civilization, and rapid expansion of the built-up land in EGD, it is crucial to protect
the environment and preserve the ecological resources. The ESP, which was established
according to the MCRM, demonstrated the spatial distribution of different ecological
security levels. It provides basic regional protection for the necessary ecological areas and
also guides the future built-up land expansion. The spatial management rules and the
optimization in the study area should be categorized according to the resistance classes
and the elements of the ESP (i.e., the corridors, the buffer zones or the areas around them).

The MCRM, which combined the natural conditions and anthropogenic factors,
showed that the highest resistance areas are focused on the cluster of built-up lands.
After establishing the ESP of the region, the low and medium resistance classes were
identified that require prioritized protection and preservation. Low resistance areas, such
as the north and middle of Chao’an District and Raoping County, the coastline around
Na’nao County should be prioritized. This will present certain challenges based on the
disturbances caused by human activities. We suggest that these areas should be strictly
protected from any future land-use change or disturbance, and regulations should be set
up to protect these areas. The present built-up land in the low resistance areas and the
conflict zones should be identified in the consolidation plan. The medium resistance areas,
especially the mountainous areas in Chaoyang District and Chaonan District, and the
middle of Chao’an District should also be monitored by the local government. In addition,
construction or potentially harmful activities should be constrained, as the preservation of
these areas with low-resistance is vital. Negative impacts on high-resistance areas should
also be regulated, although less strictly. Due to the critical importance of the corridors and
buffer zones, they should be treated as low-resistance areas of the ESP.

The corridors play an important role in maintaining the landscape. In our study, the
buffer zones were also identified. These two elements improve landscape connectivity, and
landscape connectivity is a key factor in protecting regional ecosystem stability [110].

Conflict zones should be restricted from conversion to built-up land, thus preserving
their original land-use type. This optimization can prevent anthropogenic interference and
maintain landscape connectivity to promote ecological management. Local governments
should strictly monitor and enforce any illegal encroachment into these areas because
these areas are hotspots for built-up land expansion, and the likelihood of encroachment is
greatest in these areas.

We should emphasize that the low-resistance class of the ESP, corridors, and the
conflict zones should be considered as the ecological baselines in territorial planning. This
does not mean, however, that these should be the only areas that are protected. All future
built-up land expansion should be considered carefully to avoid negative ecological effects.

The built-up and low-resistance lands in 2020 should be categorized into the land
consolidation and spatial territorial plans. Initially, the local governments should conduct
ownership investigations and establish the ownership timeline of these areas, to distinguish
any illegal claims under the current laws. Then, all applicable areas should be reclaimed to
their pre-built-up status to preserve the ecological importance while fining the owners for
illegal operations and encouraging the legal owners to move to less ecologically sensitive
areas. Finally, the governments can also install specific reclamation plans according to the
specific characteristics of these areas.

4.3. Study Limitations and Future Prospects

Our study used the MCRM to classify the ESP, combining natural and socioeconomic
factors. Although we had eight factors included in the MCRM, due to the limitation of
the data, additional environmental parameters, such as pollution and meteorological data,
would likely increase the accuracy of the model.
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The restricted area of the FLUS model provides users an option to restrict land-use
changes in certain areas with additional spatial data input. In this study, the ecological
resources were used as this restriction, implying they cannot be changed to other land-use
types. Permanent basic farmlands are included in the cropland area, and they are relatively
high-quality cropland. These croplands are protected by law and should not be encroached
on under any circumstances. The permanent basic farmlands should also be considered as
restricted areas in the FLUS model. If we can obtain this data, the simulation of cropland
dynamics would be more accurate.

In this study, the quantity of built-up land in 2030 was predicted by the Markov chain
model based on the land-use dynamics pattern in the past. However, the predicted result
neglected other factors, such as the built-up land per person in the region, which was an
important index in territorial spatial planning, the spatial unbalance of development and
so on. In the future, further studies should focus on multiobjective decision prediction in
the quantity of land-use types, which can be applied in spatial territorial planning.

5. Conclusions

Using the land-use land cover products from GlobeLand30, we analyzed the land-use
dynamics of the EGD, including the cities of Chaozhou and Shantou, from 2000 to 2020.
The conversion matrix showed that from 2000 to 2010, the quantity of cropland and built-up
land was stable, whereas from 2010 to 2020, cropland dropped dramatically, and built-up
land increased by 5.85%. The coastlines were also encroached upon by built-up land during
the same period. We simulated land use in 2030 using a FLUS, and based on an MCRM,
revealed the following distributions of ESPs in EGD: the disturbed class, 21.13%; low
resistance class, 10.67%; middle-resistance class, 28.82%; and high-resistance class, 39.37%.
The ecological resource locations were obtained from the master city plans for both urban
areas, and a least-cost path to establishing the corridors and the buffer zones was proposed
to improve landscape connectivity. By comparing the increased built-up land of 2030, the
corridors, and the buffer zones, we have outlined an optimization plan by focusing on
the hotspots for future built-up land expansion for the EGD; this can be applied in the
spatial territorial planning. Additional measures and policies, such as preservation of the
ecological sources, protection of cropland and coastlines, and consolidation of built-up
land with low-resistance, were proposed for this and other similar areas in China with
comparable development levels.
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