Soil Erosion and Sediment Load Management Strategies for Sustainable Irrigation in Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data and Methods
2.2.1. Annual Sediment Yield in Gomal River
2.2.2. Assessment of Erosion Rates
Rainfall-Runoff Erosivity Factor R
Soil Erodibility Factor K
Topographic Factor (LS)
Crop Management Factor C and Conservation Support Practice Factor P
2.3. Sediment Transport Modeling
3. Results and Discussion
3.1. Annual Sediment Yield
3.2. Erosion Rate Estimation
3.3. Scenario Testing in Revised Universal Soil Loss Equation (RUSLE)
3.4. Sediment Transport in a Settling Reservoir
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Notation
a | organic matter content (%) |
A | average annual soil loss |
b | code related to soil structure |
c | code related to soil permeability |
C | crop management factor |
K | soil erodibility factor |
LS | topographic factor |
M | percent silt and very fine sand contents |
MFI | modified frontier index |
NDVI | normalized difference vegetation index |
NIR | near infra-red |
p | annual rainfall |
P | conservation support practice factor |
pi | monthly rainfall |
R | rainfall-runoff erosivity factor |
U | upslope contributing area per unit width |
l | constant in Equation (6) |
m | exponent in Equation (5) representing sheet erosion |
mclay | clay fraction content (<0.002 mm); |
msilt | silt fraction content (0.002–0.05 mm); |
mvfs | very fine sand fraction content (0.05–0.1 mm) |
n | exponent in Equation (5) representing rill erosion |
r | constant in Equation (6) |
β | slope |
L0 | length of the unit plot |
S0 | slope of unit plot |
References
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Government Printing: Washington, DC, USA, 1997.
- Boardman, J.; Poesen, J. Soil Erosion in Europe: Major Processes, Causes and Consequences. In Soil Erosion in Europe; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 477–487. ISBN 978-0-470-85920-9. [Google Scholar]
- Zokaib, S.; Naser, G. Impacts of Land Uses on Runoff and Soil Erosion A Case Study in Hilkot Watershed Pakistan. Int. J. Sediment Res. 2011, 26, 343–352. [Google Scholar] [CrossRef]
- National Research Council. Soil and Water Quality: An Agenda for Agriculture; National Academies Press: Washington, DC, USA, 1993; p. 2132. ISBN 978-0-309-04933-7. [Google Scholar]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Munir, S. Role of Sediment Transport in Operation and Maintenance of Supply and Demand Based Irrigation Canals: Application to Machai Maira Branch Canals. Ph.D. Thesis, UNESCO-IHE Institute for Water Education, Delft, The Netherlands, January 2011. [Google Scholar]
- Sarwar, M.K.; Anjum, M.N.; Mahmood, S. Impact of Silt Excluder on Sediment Management of an Irrigation Canal: A Case Study of D.G. Khan Canal, Pakistan. Arab. J. Sci. Eng. 2013, 38, 3301–3307. [Google Scholar] [CrossRef]
- Allahyonesi, H.; Omid, M.H.; Haghiabi, A.H. A Study of the Effects of the Longitudinal Arrangement Sediment Behavior near Intake Structures. J. Hydraul. Res. 2008, 46, 814–819. [Google Scholar] [CrossRef]
- Atkinson, E. Vortex-Tube Sediment Extractors. I: Trapping Efficiency. J. Hydraul. Eng. 1994, 120, 1110–1125. [Google Scholar] [CrossRef]
- Melone, A.M. Canals and Waterways, Sediment Control. In General Geology; Springer: Boston, MA, USA, 1988; pp. 55–63. ISBN 978-0-387-30844-9. [Google Scholar]
- Jones, K.R.; Berney, O.; Carr, D.P.; Barrett, E.C. Arid Zone Hydrology for Agricultural Development; FAO Irrigation and Drainage Paper 37; Food and Agriculture Organization of the United Nations: Rome, Italy, 1981; ISBN 92-5-101079-X. [Google Scholar]
- Chang, T.J.; Zhou, H.; Guan, Y. Applications of Erosion Hotspots for Watershed Investigation in the Appalachian Hills of the United States. J. Irrig. Drain Eng. 2016, 142, 4015057. [Google Scholar] [CrossRef]
- Pham, T.G.; Degener, J.; Kappas, M. Integrated Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Erosion Estimation in A Sap Basin: Central Vietnam. Int. Soil Water Conserv. Res. 2018, 6, 99–110. [Google Scholar] [CrossRef]
- Hussain, F.; Nabi, G.; Wu, R.-S.; Hussain, B.; Abbas, T. Parameter Evaluation for Soil Erosion Estimation on Small Watersheds Using SWAT Model. Int. J. Agric. Biol. Eng. 2019, 12, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Chuenchum, P.; Xu, M.; Tang, W. Estimation of Soil Erosion and Sediment Yield in the Lancang–Mekong River Using the Modified Revised Universal Soil Loss Equation and GIS Techniques. Water 2019, 12, 135. [Google Scholar] [CrossRef] [Green Version]
- HALCROW. Gomal Zam Irrigation Project-Siltation Rapid Assessment Overview; Halcrow Pakistan (Pvt) Limited: Islamabad, Pakistan, 2017. [Google Scholar]
- Pakistani and, U.S. Experts Conserve Water in Gomal Zam Dam Area. Available online: https://pk.usembassy.gov/pakistani-and-u-s-experts-conserve-water-in-gomal-zam-dam-area/ (accessed on 12 July 2020).
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; USDA Agriculture Handbooks; Agricultural Research Service, U.S. Department of Agriculture in Cooperation with Purdue Agricultural Experiment Station: Washington, DC, USA, 1965; p. 47.
- Lee, G.-S.; Lee, K.-H. Scaling Effect for Estimating Soil Loss in the RUSLE Model Using Remotely Sensed Geospatial Data in Korea. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 135–157. [Google Scholar] [CrossRef]
- Panditharathne, D.L.D.; Abeysingha, N.S.; Nirmanee, K.G.S.; Mallawatantri, A. Application of Revised Universal Soil Loss Equation (RUSLE) Model to Assess Soil Erosion in “Kalu Ganga” River Basin in Sri Lanka. Available online: https://www.hindawi.com/journals/aess/2019/4037379/ (accessed on 6 January 2020).
- Ganasri, B.P.; Ramesh, H. Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS—A Case Study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P. Soil Erosion Risk Scenarios in the Mediterranean Environment Using RUSLE and GIS: An Application Model for Calabria (Southern Italy). Geomorphology 2009, 112, 228–245. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Trimble, S.W.; Crosson, P.U.S. Soil Erosion Rates—Myth and Reality. Science 2000, 289, 248–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A Review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a View to Increasing Its Global Applicability and Improving Soil Loss Estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.P.C. Soil Erosion and Conservation, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 978-1-4051-4467-4. [Google Scholar]
- Roose, E.J. Erosion et Ruissellement En Afrique de l’Ouest: Vingt Années de Mesures En Petites Parcelles Expérimentales; Laboratoire de Pédologie de l’ORSTOM: Abidjan, Ivory Coast, 1975. [Google Scholar]
- Arnoldus, H.M.J. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation; John Wiley and Sons Ltd: Hoboken, NJ, USA, 1980. [Google Scholar]
- Fernandez, C.; Wu, J.Q.; McCool, D.K.; Stockle, C.O. Estimating Water Erosion and Sediment Yield with GIs, RUSLE, and SEDD. J. Soil Water Conserv. 2003, 58, 128–136. [Google Scholar]
- İrvem, A.; Topaloğlu, F.; Uygur, V. Estimating Spatial Distribution of Soil Loss over Seyhan River Basin in Turkey. J. Hydrol. 2007, 336, 30–37. [Google Scholar] [CrossRef]
- Nakil, M. Analysis of Parameters Causing Water Induced Soil Erosion; Fifth Annual Progress Seminar; Indian Institute of Technology: Bombay, India, 2014; unpublished. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil Erodibility in Europe: A High-Resolution Dataset Based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Ali, A.; Iqbal, M.; Javid, M.; Imran, M. Geospatial Assessment of Soil Erosion Intensity and Sediment Yield: A Case Study of Potohar Region, Pakistan. Environ. Earth Sci. 2018, 77, 705. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Moore, I.D.; Burch, G.J. Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation 1. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. (Eds.) Terrain Analysis: Principles and Applications; Wiley: New York, NY, USA, 2000; ISBN 978-0-471-32188-0. [Google Scholar]
- Kinnell, P.I.A. Event Soil Loss, Runoff and the Universal Soil Loss Equation Family of Models: A Review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Lanorte, A.; Cillis, G.; Calamita, G.; Nolè, G.; Pilogallo, A.; Tucci, B.; De Santis, F. Integrated Approach of RUSLE, GIS and ESA Sentinel-2 Satellite Data for Post-Fire Soil Erosion Assessment in Basilicata Region (Southern Italy). Geomat. Nat. Hazards Risk 2019, 10, 1563–1595. [Google Scholar] [CrossRef]
- Borrelli, P.; Märker, M.; Panagos, P.; Schütt, B. Modeling Soil Erosion and River Sediment Yield for an Intermountain Drainage Basin of the Central Apennines, Italy. CATENA 2014, 114, 45–58. [Google Scholar] [CrossRef]
- Karydas, C.G.; Sekuloska, T.; Silleos, G.N. Quantification and Site-Specification of the Support Practice Factor When Mapping Soil Erosion Risk Associated with Olive Plantations in the Mediterranean Island of Crete. Environ. Monit. Assess. 2009, 149, 19–28. [Google Scholar] [CrossRef]
- Lazzari, M.; Gioia, D.; Piccarreta, M.; Danese, M.; Lanorte, A. Sediment Yield and Erosion Rate Estimation in the Mountain Catchments of the Camastra Artificial Reservoir (Southern Italy): A Comparison between Different Empirical Methods. CATENA 2015, 127, 323–339. [Google Scholar] [CrossRef]
- Vatandaşlar, C.; Yavuz, M. Modeling Cover Management Factor of RUSLE Using Very High-Resolution Satellite Imagery in a Semiarid Watershed. Environ. Earth Sci. 2017, 76, 65. [Google Scholar] [CrossRef]
- Durigon, V.L.; Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.S.; Fernandes, M.M. NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed. Int. J. Remote Sens. 2014, 35, 441–453. [Google Scholar] [CrossRef]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Ma, H.L.; Wang, Z.L.; Zhou, X. Estimation of Soil Loss Based on RUSLE in Zengcheng, Guangdong Province. Yangtze River 2010, 41, 90–93. [Google Scholar]
- Olsen, N.R.B. SSIIM User’s Manual; The Norwegian University of Science and Technology: Trondheim, Norway, 2018. [Google Scholar]
- Ali, K.F.; De Boer, D.H. Spatial Patterns and Variation of Suspended Sediment Yield in the Upper Indus River Basin, Northern Pakistan. J. Hydrol. 2007, 334, 368–387. [Google Scholar] [CrossRef]
- Ashraf, M.; Bhatti, M.T.; Shakir, A.S.; Tahir, A.A.; Ahmad, A. Sediment Control Interventions and River Flow Dynamics: Impact on Sediment Entry into the Large Canals. Environ. Earth Sci. 2015, 74, 5465–5474. [Google Scholar] [CrossRef]
- Sinha, D.; Joshi, V.U. Application of Universal Soil Loss Equation (USLE) to Recently Reclaimed Badlands along the Adula and Mahalungi Rivers, Pravara Basin, Maharashtra. J. Geol. Soc. India 2012, 80, 341–350. [Google Scholar] [CrossRef]
- Sholagberu, A.T.; Mustafa, M.R.U.; Yusof, K.W.; Ahmad, M.H. Evaluation of rainfall-runoff erosivity factor for Cameron highland, Pahang, Malaysia. J. Ecol. Eng. 2016, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; Jae Lim, K.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; et al. Global Rainfall Erosivity Assessment Based on High-Temporal Resolution Rainfall Records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouli, M.; Soupios, P.; Vallianatos, F. Soil Erosion Prediction Using the Revised Universal Soil Loss Equation (RUSLE) in a GIS Framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2009, 57, 483–497. [Google Scholar] [CrossRef]
- Patriche, C.V.; Pirnau, R.; Grozavu, A.; Rosca, B. A Comparative Analysis of Binary Logistic Regression and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Dobrov River Basin, Romania. Pedosphere 2016, 26, 335–350. [Google Scholar] [CrossRef]
- Marques, V.S.; Ceddia, M.B.; Antunes, M.A.H.; Carvalho, D.F.; Anache, J.A.A.; Rodrigues, D.B.B.; Oliveira, P.T.S. USLE K-Factor Method Selection for a Tropical Catchment. Sustainability 2019, 11, 1840. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, G.; Debebe, Y.; Fikirie, K. Soil Erosion Risk Assessment Using GIS Based USLE Model for Soil and Water Conservation Planning in Somodo Watershed, South West Ethiopia. IJOEAR 2018, 4, 9. [Google Scholar]
- Sujatha, E.R.; Sridhar, V. Spatial Prediction of Erosion Risk of a Small Mountainous Watershed Using RUSLE: A Case-Study of the Palar Sub-Watershed in Kodaikanal, South India. Water 2018, 10, 1608. [Google Scholar] [CrossRef] [Green Version]
- Abuzar, M.K.; Shakir, U.; Ashraf, M.A.; Khan, S.; Shaista, S.; Pasha, A.R. GIS Based Risk Modeling of Soil Erosion under Different Scenarios of Land Use Change in Simly Watershed of Pakistan. J. Himal. Earth Sci. 2018, 51, 132–143. [Google Scholar]
- Bashir, S.; Baig, M.A.; Ashraf, M.; Anwar, M.M.; Bhalli, M.N.; Munawar, S. Risk Assessment of Soil Erosion in Rawal Watershed Using Geoinformatics Techniques. Sci.Int. 2013, 25, 583–588. [Google Scholar]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Lencha, B.K.; Moges, A. Identification of Soil Erosion Hotspots in Jimma Zone (Ethiopia) Using GIS Based Approach. Ethiop. J. Environ. Stud. Manag. 2016, 8, 926. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the Soil Erosion Cover-Management Factor at the European Scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Butt, M.J.; Mahmood, R.; Waqas, A. Sediments Deposition Due to Soil Erosion in the Watershed Region of Mangla Dam. Environ. Monit. Assess. 2011, 181, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Boix-Fayos, C.; de Vente, J.; Martínez-Mena, M.; Barberá, G.G.; Castillo, V. The Impact of Land Use Change and Check-Dams on Catchment Sediment Yield. Hydrol. Process. 2008, 22, 4922–4935. [Google Scholar] [CrossRef]
- Xiang-Zhou, X.; Hong-Wu, Z.; Ouyang, Z. Development of Check-Dam Systems in Gullies on the Loess Plateau, China. Environ. Sci. Policy 2004, 7, 79–86. [Google Scholar] [CrossRef]
- Castillo, V.M.; Mosch, W.M.; García, C.C.; Barberá, G.G.; Cano, J.A.N.; López-Bermúdez, F. Effectiveness and Geomorphological Impacts of Check Dams for Soil Erosion Control in a Semiarid Mediterranean Catchment: El Cárcavo (Murcia, Spain). CATENA 2007, 70, 416–427. [Google Scholar] [CrossRef]
Serial Number | Equation | Geographic Location | Author(s) |
---|---|---|---|
1 | Morocco and other locations West Africa | Arnoldus (1980) [28] | |
2 | |||
3 | |||
4 | Africa | Roose (1975) [27] | |
5 | USA | Fernandez et al. (2003) [29] originally developed by the USDA-ARS | |
6 | Turkey | İrvem et al. (2007) [30] | |
7 | India | Nakil (2014) [31] |
Annual Data | Average | |||
---|---|---|---|---|
2014 | 2015 | 2016 | ||
Rainfall at Tank station (mm) | 226 | 212 | 134 | 191 |
Rainfall-runoff erosivity factor R (MJ mm ha −1 h −1 yr −1) | ||||
Arnoldus (1980) [28], West Africa | 38 | 59 | 8 | 35 |
Arnoldus (1980) [28], Western USA | 37 | 58 | 7 | 34 |
Arnoldus (1980) [28], Northwest USA | 22 | 25 | 18 | 22 |
Roose (1975) [27], Africa | 113 | 106 | 67 | 95 |
Fernandez (2003) [29], USA | 356 | 281 | −128 | 170 |
İrvem (2007) [30], Turkey | 412 | 531 | 272 | 405 |
Nakil (2014) [31], India | 1006 | 994 | 934 | 978 |
The European Soil Data Centre (ESDAC), Global dataset | 538–1300 | 919 |
Erosion Rate (t/ha) | Category 1 | RUSLE | RUSLE with Improved C Factor | Change in the Area with Improved C Factor | |||
---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Area (%) | km2 | Percent | ||
<2 | Very slight | 133.3 | 29.3 | 135.1 | 29.6 | 1.8 | 1.3 |
2–5 | Slight | 0.4 | 0.1 | 5.3 | 1.2 | 4.9 | 1247.8 |
5–10 | Moderate | 1.0 | 0.2 | 9.7 | 2.1 | 8.7 | 848.2 |
10–50 | High | 15.4 | 3.4 | 111.9 | 24.6 | 96.5 | 625.6 |
50–100 | Severe | 21.8 | 4.8 | 114.6 | 25.1 | 92.8 | 425.6 |
100–500 | Very severe | 209.6 | 46.1 | 76.0 | 16.7 | −133.6 | −63.7 |
>500 | Catastrophic | 73.4 | 16.1 | 3.1 | 0.7 | −70.3 | −95.8 |
Total | 454.9 | 100.0 | 455.6 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatti, M.T.; Ashraf, M.; Anwar, A.A. Soil Erosion and Sediment Load Management Strategies for Sustainable Irrigation in Arid Regions. Sustainability 2021, 13, 3547. https://doi.org/10.3390/su13063547
Bhatti MT, Ashraf M, Anwar AA. Soil Erosion and Sediment Load Management Strategies for Sustainable Irrigation in Arid Regions. Sustainability. 2021; 13(6):3547. https://doi.org/10.3390/su13063547
Chicago/Turabian StyleBhatti, Muhammad Tousif, Muhammad Ashraf, and Arif A. Anwar. 2021. "Soil Erosion and Sediment Load Management Strategies for Sustainable Irrigation in Arid Regions" Sustainability 13, no. 6: 3547. https://doi.org/10.3390/su13063547
APA StyleBhatti, M. T., Ashraf, M., & Anwar, A. A. (2021). Soil Erosion and Sediment Load Management Strategies for Sustainable Irrigation in Arid Regions. Sustainability, 13(6), 3547. https://doi.org/10.3390/su13063547