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Abstract: This study improves an approach for Markov chain-based photovoltaic-coupled energy
storage model in order to serve a more reliable and sustainable power supply system. In this
paper, two Markov chain models are proposed: Embedded Markov and Absorbing Markov chain.
The equilibrium probabilities of the Embedded Markov chain completely characterize the system
behavior at a certain point in time. Thus, the model can be used to calculate important measurements
to evaluate the system such as the average availability or the probability when the battery is fully
discharged. Also, Absorbing Markov chain is employed to calculate the expected duration until the
system fails to serve the load demand, as well as the failure probability once a new battery is installed
in the system. The results show that the optimal condition for satisfying the availability of 3 nines
(0.999), with an average load usage of 1209.94 kWh, is the energy storage system capacity of 25 MW,
and the number of photovoltaic modules is 67,510, which is considered for installation and operation
cost. Also, when the initial state of charge is set to 80% or higher, the available time is stable for more
than 20,000 h.

Keywords: energy storage system; Markov chain; renewable energy; stochastic optimization; power
system reliability

1. Introduction

Global efforts are being made to reduce greenhouse gas emissions due to rising
energy demand and climate change issues. Correspondingly, the new paradigm of power
generation utilizing renewable resources has emerged from existing fossil-fueled power
generation. Out of all renewable energy resources, photovoltaic (PV) generation seems to
be the most promising alternative to conventional fossil fuels as installation cost continues
to decrease [1]. In [2], the photovoltaic power generation capacity of countries belonging to
the International Energy Agency (IEA) has increased significantly from 0.3 to 35 GW over
the past decade. These recent global trends are described in [3], and various studies have
been conducted to maximize the output of PV sources. Please refer to [4,5]. However, one of
the important issues of PV generation is that the output characteristics of PV sources result
in random behavior due to weather conditions such as the intermittent solar irradiance.

In order to ensure reliable operation and economic dispatch of the system, energy stor-
age systems (ESSs) have been utilized [6]. In [7], it is essential to combine renewable energy
sources with energy storage systems to maintain or improve the power supply stability and
quality. ESSs play an important role, especially when they are coupled with PV generation,
which is a desirable method to store surplus energy for securing future power supply and
releasing it during power shortages. On that account, many studies have been conducted
on ESS. In [8], multiple types of irrigation scheduled programs that minimize the number
of PV resources to be installed were studied and the effects of the variable costs linked
to energy are presented. Ref. [9] reviewed the battery models used in PV systems and
verified the models with experimental data. Ref. [10] conducted a series of economic
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efficiency studies comparing various PV systems combined with ESS. In the study, the
rate of efficiency decrease over time was evaluated and the solar potential in Poland was
estimated based on the metrological data. In [11], to decide the most efficient alternative
for a real urban Water Pressurized Network (WPN), the energy production in the PV panel
and the energy required to supply water to the population were considered. The method
introduced in the study can provide useful information to make decisions on whether
it is better to employ batteries or water tanks for energy storage. For more information,
please refer to the review papers [12–14]. Despite the rich body of work addressing the
capacity of an appropriate ESS with various criteria and operating strategies, few studies
have considered the stochastic behavior of demand and power generation within a given
day. Our research is motivated by the lack of results.

The analysis of the variability and uncertainty caused by the day and night cycle in
solar photovoltaic generation is essential because they impact on the various performance
measures, including the availability of the system. The system may fail to supply power to
loads due to variabilities even though its average capacity is sufficient. Thus, the goal of
this research is to develop stochastic models that resolve these issues. For this purpose, the
Markov chain models will be introduced.

The most commonly used stochastic (probabilistic) model that addresses the capacity
sizing problem of ESS is the Markov chain model [15]. The advantage of the Markov chain
model is addressed in [16] as follows. “Compared to other existing battery models, stochas-
tic models, particularly Markov chain processes, can model battery-powered systems as
a whole. Moreover, the stochastic model can model burst aging processes and consider
operational profiles and management, unlike in the case of other conventional models
that can only illustrate battery behavior.” Thus, this model has been used as a statistical
model to analyze the steady-state behavior of the ESS and has been the basis for simulation
represented by the Markov chain Monte Carlo method. In [17], a two-state Markov chain
model is proposed to determine the storage size of a photovoltaic power generation system.
The study focused on determining the storage level considering the variability in daily
solar radiation and suggested that one or two days of storage would be adequate to meet
an acceptable service level. In [18,19], one-dimensional Markov chain models were con-
structed to model energy states in the ESS. The performance measurements of both studies
were the power supply availability. Calculating transition probabilities by using load data
and supply data based on solar radiation, the analytical results were obtained and verified
from Monte Carlo simulation. A similar approach is employed in [15]. In this paper,
discrete-time Markov chain model is proposed for the storage battery state of charge (SOC).
The model is used to analyze the storage battery’s remaining capacity. The probability
that the combination of solar power generation system and battery storage meets the load
demand can be calculated.

Despite various studies using these models, few consider the diurnal and the seasonal
variation of solar power and load. In [20–22], the diurnal nature of solar power generation
and load variations were studied. It is stated that the solar radiation power is daily
modulated between zero and a maximum that depends on the latitude on earth and the
season. Also, the daily energy demand during nighttime is lower than that of daytime.
That is, the load demand and power supply of the systems behave randomly and vary
over time. However, such variation is not reflected in the existing Markov chain models.
In [17–19], the state of Markov chains is defined to represent the level of the energy
storage system (battery) and the transition probabilities are derived from the load demand
and the power generation data. To calculate the transition probabilities, the probability
distribution of the difference between power generation and load is derived. However, the
existing models employ a single and time-independent distribution, so the diurnal and
the seasonal variation is not considered in the models. All those variations are averaged
to obtain the distribution; thus, they are intermingled in a single distribution. While the
equilibrium probabilities of the Markov chains provide useful insight to understand the
steady-state behavior of the battery level, it has limitations since some important measures,
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such as the probability that the system fails to meet the load demand, are caused by the
abovementioned variations. The PV generation and load demand are fluctuating within a
day, power supply availability of ESS per day does not represent availability at a specific
time of day. Our research is motivated by such lack of results.

In this paper, two Markov chain models are developed to address the optimal allo-
cation problem of ESS: Embedded Markov chain and Absorbing Markov chain models.
The proposed Embedded Markov chain-based ESS model can calculate ESS SOC over time
by considering diurnal variation and further calculate optimal PV-coupled ESS capacity.
Note that the existing models has limitation to incorporate the fluctuation of load and PV
generation within a day. To resolve this issue, two-dimensional Markov chain is proposed.
Moreover, with the proposed Absorbing Markov chain model, the time duration until the
PV-coupled ESS system fails to supply power to loads can be estimated. While there are
various Markov chain models for dealing with ESS problems, no Absorbing Markov chain
model has been employed. The model can be used to calculate the average time duration
until the newly installed battery state becomes lower than a certain level. We applied our
model to power consumption data of a university in Pohang, South Korea, from May 2018
to Feb 2020.

The contributions of our work are as follows. We:

• Identified a Markovian property for battery state in a PV-coupled energy storage
system.

• By discretizing the load and power supply, obtained a two-dimensional discrete-time,
time-homogeneous Markov chain with a single communicating class considering
the diurnal variations of supply and demand. The distribution of battery SOC over
time can be derived and optimal PV-coupled ESS capacity can be obtained from the
equilibrium probabilities.

• Developed a stochastic model to estimate the average length of time until the SOC
of the ESS becomes lower than a certain level. The Absorbing Markov chain-based
model is proposed.

The remainder of this paper is organized as follows. Parametric models are presented
in Section 2. In Section 3, Embedded Markov chain and Absorbing Markov chain models
are demonstrated. Finally, the discussion of this paper is concluded in Section 4.

2. Mathematical Models

In this section, we describe our model. Then, we investigate the Markovian property
and the recursive structure of the status of energy storage system to obtain the Markov
chain model.

It is assumed that there are V PV sources consisting of the energy system. Let W(t)
and L(t) denote the power rate generated by PV sources at time t and the load (demand)
rate served by the energy system at time t, respectively. When W(t) ≥ L(t), the power
generation of the energy system exceeds demand (load). In this case, it is assumed that
the remaining power to meet the demand at time t, W(t)− L(t), is stored in the storage
system. In the case of W(t) < L(t), the demand is greater than power generation at t, the
shortage, L(t)−W(t), is met from the energy stored in the storage system. If the stored
energy is insufficient, we assume that the system fails to meet the demand. Let C and X(t)
denote the capacity of ESS and the amount of energy stored in the ESS at t, respectively.
Note that C is a constant. Then, the battery status satisfies the following equations.

X(t + dt) = min{C, max{0, X(t) + W(t)dt− L(t)dt}}, (1)

dX(t)
dt

=
dW(t)

dt
− dL(t)

dt
. (2)

While the above differential equations represent the relationships between X(t), W(t)
and L(t), there are two difficulties in deriving the solution of the equations. First, it is
difficult to obtain closed-form expressions for Equations (1) and (2). In some previous



Sustainability 2021, 13, 3837 4 of 16

research such as [23,24], the differential equations with min–max operations were studied,
but the scope of the study was limited. Generally, it has been known that it is difficult to
obtain the analytic solution for the differential equation with min–max operations. Also,
the function X(t) is not differentiable at some point. Second, to obtain the solution for the
battery state over time, W(t) and L(t) are required. However, it is difficult to express W(t)
and L(t) in the form of continuous functions. The reason is related to the data collection
process. Data on the load and power are collected at regular intervals through sensors
installed in the system and stored in the database. Thus, the actual data obtained is not in
the form of a continuous function, but a list of values measured at specific time intervals.
While we can employ the regression analysis such as curve fitting to specify the continuous
function that provides the best fit to the dataset, it is elusive to find the appropriate
function considering differentiability, day and night cycle and insolation. Thus, it is more
appropriate to employ the discrete time stochastic process to analyze the system.

Let T denote the time interval between two successive data measurements. For ex-
ample, if T equals one hour, it means that the data on battery status are acquired and
investigated every hour. Then, let ti be defined as the epochs at which the state of energy
storage system is examined (t0 = 0, t1, t2, . . .). Note that ti+1 = ti + T. Then, battery state
at the k-th measurement time point is defined as Xk : X(tk + 0+). Then, the battery state at
the time of measurement can be demonstrated as follows:

Xk+1 = min{C, max{0, Xk + Wk+1 − Lk+1}} (3)

where Wk and Lk are power generated by the PV sources and load during [tk−1, tk], respec-
tively. Note that Xk+1 only depends on Xk, Wk and Lk. Thus, {Xk, k ≥ 1} is a discrete-time
Markov process with stationary transition probabilities. While the system behavior can
be described by Equation (3), the values of Wk and Lk are obtained in the form of con-
tinuous numbers, which leads to the loss of analytical tractability. It is difficult to obtain
the equilibrium probabilities for a continuous-state Markov process. Thus, for analyt-
ical tractability, the continuous data are discretized to obtain the Markov chain model.
We treat any number in

⌈
N∆−

(
∆
2

)
, N∆ +

(
∆
2

)⌉
as N∆. In other words, ∆ is the energy

difference between two adjacent states in the Markov chain model, and Wk and Lk are
assumed to be discrete probability distributions and the values of both distributions will
be {0, ∆, 2∆, . . .} hereafter. Then,{Xk, k ≥ 1} becomes a discrete-time Markov chain hav-
ing states {0, ∆, 2∆, . . . , (B− 1)∆, C} where B is a maximum integer value satisfying
(B− 1)∆ < C.

Next, the transition probabilities are considered to derive the equilibrium probabilities.
Let Dk denote the random variable calculated by Wk − Lk. Note that the set of possible
values of Dk is {i∆|i is integer values}. Then, Equation (3) is simplified as follows.

Xk+1 = min{C, max{0, Xk + Dk+1}} (4)

Because of day and night cycles and solar radiation quantity, Dk have a different
distribution over time. For example, it is possible to assume an appropriate amount of
insolation during the daytime, but Wk = 0 should be assumed because there is no insolation
at night. In order to include such variations in the model, it is assumed that the probabilities
of Dk vary with time. Thus, we assume e distributions (defined as D1, D2, . . . , De)
according to the time zone, and the distribution of Dk in a specific time zone follows
one of the distributions. f (i) = j denote a function that maps time k to the distribution
(i = 1, . . . and j = 1, . . . , e). For example, suppose that Dk follows two distributions
depending on whether it is night or day. We use D1 for the distribution of daytime and
D2 for the distribution of nighttime. Suppose that we start our investigation at 1:00 a.m.
(k = 1) with T = 1 h, and sunrise and sunset will be at 6:00 a.m. and 7:00 p.m., respectively.
Then, for all k which satisfies 6 ≤ (k mod 24) ≤ 19, f (k) = 1 where a mod b is the remainder
of the Euclidean division of a by b. Otherwise, f (k) = 2. It means that the distribution of the
difference between the power generation and load can be described by D1 between 6:00
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and 19:00, and the distribution of nighttime can be described by D2 after sunset. Let the
probability of the distribution Di be defined as follows.

P
[

Di = j∆
]
= ai(j) (5)

Then, stationary transition probabilities of the Markov chain can be considered by
including the time index in the model. Let M be the time length of a cycle and gk is the
remainder of the division of k by the cycle length (M) of our interest, except when the
remainder is equal to 0. If the remainder is 0, we define that gk equals M. G represents the
set consisting of all gk’s, G: = {1, . . . , M}. For example, if we are interested in the behavior of
the battery state in a daily cycle with T = 1 h, the length of a cycle is 24 (M = 24), and the all-
time indices for 1:00 a.m. are mapped to gk = 1. Then, the process Y(k), Y(k) : {gk, Xk}∞

k = 1,
is a discrete-time, time-homogeneous Markov chain with a single communicating class.
The state space, S, is as follows.

S = min{(x, y)|x ∈ G, y ∈ {0, ∆, 2∆, . . . , (B− 1)∆, C} (6)

The transition probabilities are as follows.

P[Y(k + 1) = (m + 1, 0)|Y(k) = (m, i∆)] =
−i

∑
j=−∞

a f (m)(j), (7)

P[Y(k + 1) = (m + 1, j∆)|Y(k) = (m, i∆)] = a f (m)(j− i), for 1 ≤ j < B, (8)

P[Y(k + 1) = (m + 1, C)|Y(k) = (m, i∆)] =
∞

∑
j=B−i

a f (m)(j) (9)

where m ∈ {1, . . . , M− 1}. For m = M,

P[Y(k + 1) = (1, 0)|Y(k) = (M, i∆)] =
−i

∑
j=−∞

a f (M)(j), (10)

P[Y(k + 1) = (1, j∆)|Y(k) = (M, i∆)] = a f (M)(j− i), for 1 ≤ j < B, (11)

P[Y(k + 1) = (1, C)|Y(k) = (M, i∆)] =
∞

∑
j=B−i

a f (M)(j) (12)

Other transition probabilities are equal to 0.
If we arrange the states of our Markov chain in lexicographical order (i.e., {(1,0), (1,∆),

. . . , (1,C), (2,0), (2,∆), . . . , (M,C)}), we can write the transition matrix, Q, of the Markov
chain as follows:

Q =



OB+1,B+1 A1 OB+1,B+1 OB+1,B+1 OB+1,B+1 · · · OB+1,B+1
OB+1,B+1 OB+1,B+1 A2 OB+1,B+1 OB+1,B+1 · · · OB+1,B+1
OB+1,B+1 OB+1,B+1 OB+1,B+1 A3 OB+1,B+1 · · · OB+1,B+1

...
...

...
...

...
...

...
OB+1,B+1 OB+1,B+1 OB+1,B+1 OB+1,B+1 · · · OB+1,B+1 AM−1

AM−1 OB+1,B+1 OB+1,B+1 OB+1,B+1 · · · OB+1,B+1 OB+1,B+1


(13)

where Om,n is a matrix of m rows and n columns, and all elements are zero, and

Ai :=
[

A1
i A2

i
]

(14)
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A1
i =



0
∑

j=−∞
a f (i)(j)

−1
∑

j=−∞
a f (i)(j)

−2
∑

j=−∞
a f (i)(j)

...
−B+1

∑
j=−∞

a f (i)(j)

−B
∑

j=−∞
a f (i)(j)



(15)

A2
i =



a f (i)(1) a f (i)(2) · · · a f (i)(B− 1)
∞
∑

j=B
a f (i)(j)

a f (i)(0) a f (i)(1) · · · a f (i)(B− 2)
∞
∑

j=B−1
a f (i)(j)

a f (i)(−1) a f (i)(0) · · · a f (i)(B− 3)
∞
∑

j=B−2
a f (i)(j)

...
...

...
...

...

a f (i)(−B + 2) a f (i)(−B + 3) · · · a f (i)(0)
∞
∑

j=1
a f (i)(j)

a f (i)(−B + 1) a f (i)(−B + 2) · · · a f (i)(−1)
∞
∑

j=0
a f (i)(j)



(16)

Note that only the transition from states (i, j) to (i+1, k) occurs for states i ∈ {1, . . . , M− 1}
and all j and k. In any states (M,j) for all j, the transition can only occur to state (1,k). This is
because the first value in the state of our Markov chain represents time. Thus, our Markov
chain is periodic. Figure 1 provides the transition probability diagram of two examples of our
system. The left figure of Figure 1 shows the state space of the model expressed by dividing
day into day and night. For convenience, we assume that the states (1,j) and (2,j) are the battery
state of day and night, respectively. The transition probability is defined by the distribution of
power generation-load occurring over the next 12 h and follows Equations (7)–(12). For example,
suppose the battery state is 0 at the start of the day. If the difference between power generation
and load during the next 12 h is ∆, the battery state at the beginning of the night becomes
∆, where the transition occurs from (1,0) to (2,∆). Note that the probability of transition from
day to night and transition from night to day can be defined differently. As such, through the
two-dimensional Markov chain model including time index, it is possible to consider power
supply and demand that appear differently over time. The figure on the right in Figure 2 is the
state space of the model expressed by dividing the day into hours. Transition probabilities are
omitted from the figure (they follow Equations (7)–(12)).
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In [25], it is stated that, if the discrete time-homogeneous Markov chain is irreducible,
then it is positive recurrent and periodic. There is a unique solution to the balance equations
π = πQ and ∑

(i,j)∈S
π(i,j) = 1, where Q is a transition probability matrix (abovementioned),

π is a row vector representing the equilibrium probabilities. Each element π(i,j) in π,
is the equilibrium probability that the Markov chain is in state (i,j). For example, π(1,0)
represents the probability that the battery state is 0 at 1:00 a.m. if each hour is defined
as a time index (T = 1 h). As such, our Markov chain model can be used to predict the
distribution of battery state at each time point. Also, the following performance measures
can be considered for capacity design of battery and PV resources of the system.

P[battery is empty] = 1− Availability = ∑
i

π(i,0), (17)

P[battery is f ull] = ∑
i

π(i,C). (18)

In [16], it is stated that “availabilities over 0.99999 or 5 nines are typically required for
critical loads, such as conventional communication plants, whereas the U.S. grid availability
is about 3 nines [26].” While most PV-energy storage systems are designed to meet this goal,
there is another issue of PV resource size and energy storage system combination should
be used to achieve the goal with minimal cost. Let C1 and C2 denote the operating cost of
one unit of PV module and one unit of energy storage system per unit time, respectively.
Then, the total operating cost of the system consisting of p units of PV modules and s
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units of the storage system is pC1 + sC2. Since the availability requirement should be
satisfied, the problem at hand becomes finding the values of p and s that satisfy the
requirement (∑

i
π(i,0) < 0.00001) at the lowest cost. Another measurement, the probability

that the battery is full, can be used to check whether the storage system is oversized or
not comparing to the capacity of PV modules. If the storage system is oversized, ∑

i
π(i,C)

decreases because there is less chance to fill the battery with the power produced by the PV
module. Contrary, if the battery size is designed to be small, the power will fill the battery
and the remaining power will be lost after the battery state reaches its capacity. In this case,
the probability ∑

i
π(i,C) has a large value.

Also, an Absorbing Markov chain technique can be employed to answer the following
questions: (1) When a new battery is installed in the system, what is the average time it
takes for the system’s battery state to go below a certain level? (2) If the system does not
meet the load, when does the event occur?

By the definition in [25], state i is called an absorbing state when once the state is
entered, it is impossible to leave. In other words, when a system state enters an absorbing
state, it is stuck. A Markov chain that has at least one such state is called an Absorbing
Markov chain.

In our Markov chain, we can define some states as absorbing states to answer the
abovementioned questions. Let U and V denote sets of transient and absorbing states of
the absorbing Markov chain, respectively. Suppose that we are interested in the average
time until the battery runs out when a new battery is installed. Then,

U = {(x, y)|(x, y) ∈ S, y >0}, (19)

V = {(x, y)|(x, y) ∈ S, y = 0}. (20)

If we rearrange the states of Markov Chain in the order of transient states and absorb-
ing states, the transition probability matrix, P, is

P =

[
Q′ R

O|V|,|U| I|V|

]
(21)

where Q′ is a |U|-by-|U|matrix, R is a |U|-by-|V|matrix, and I|V| is the |V|-by-|V| identity
matrix. Note that |A| is the number of elements of set A.

Q′ =



OB,B A4
1 OB,B OB,B OB,B · · · OB,B

OB,B OB,B A4
2 OB,B OB,B · · · OB,B

OB,B OB,B OB,B A4
3 OB,B · · · OB,B

...
...

...
...

...
...

...
OB,B OB,B OB,B OB,B · · · OB,B A4

M−1
A4

M OB,B OB,B OB,B · · · OB,B OB,B


(22)

R =



OB,1 A3
1 OB,1 OB,1 OB,1 · · · OB,1

OB,1 OB,1 A3
2 OB,1 OB,1 · · · OB,1

OB,1 OB,1 OB,1 A3
3 OB,1 · · · OB,1

...
...

...
...

...
...

...
OB,1 OB,1 OB,1 OB,1 · · · OB,1 A3

M−1
A3

M OB,1 OB,1 OB,1 · · · OB,1 OB,1


(23)
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A3
i =



−1
∑

j=−∞
a f (i)(j)

−2
∑

j=−∞
a f (i)(j)

...
−B+1

∑
j=−∞

a f (i)(j)

−B
∑

j=−∞
a f (i)(j)


(24)

A4
i =



a f (i)(0) a f (i)(1) · · · a f (i)(B− 2)
∞
∑

j=B−1
a f (i)(j)

a f (i)(−1) a f (i)(0) · · · a f (i)(B− 3)
∞
∑

j=B−2
a f (i)(j)

...
...

...
...

...

a f (i)(−B + 2) a f (i)(−B + 3) · · · a f (i)(0)
∞
∑

j=1
a f (i)(j)

a f (i)(−B + 1) a f (i)(−B + 2) · · · a f (i)(−1)
∞
∑

j=0
a f (i)(j)


(25)

Figure 2 illustrates an example of an Absorbing Markov chain model (T = 1 h). Note
that no transition occurs from state (i,0) for all i. This is because the states are defined as
absorbing states. The average time to run out of battery, α, can be calculated as follows:

α =
[

I|U| −Q′
]−1

e (26)

where e is a length-α column vector whose entries are all 1. Note that α is a matrix consisting
of a single column of |U| elements. Each element in α represents the average time until the
battery is exhausted when starting the system in the corresponding state. For example,
the element corresponding to state (7,C) represents the average time until the battery is
depleted when we install a new battery at 7:00 a.m. Thus, we can calculate the average time
it takes to run out when a new battery is installed. Through a similar process, the absorbing
state can be defined differently to calculate the time it takes for the battery to drop below a
certain level.

3. Model Demonstration

The behavior of the proposed two models is simulated and the results are presented
using MATLAB R2019b. The irradiance and load demand data sets used in the analysis
are obtained at the Handong Global University Campus from March 2018 to February
2020, which were measured hourly. From the solar irradiance data, PV power generation is
calculated as shown in Equation (27), considering the number (N), area (A), and efficiency
(η) of PV modules:

W(t) = N × A× η × I(t), t = 1 to 24 (27)

Then, the net power of each hour, X(t), can be calculated from the W(t) and L(t) in
Equation (28) and the probability distributions of X(t) are shown in Figure 3.

X(t) = W(t)− L(t) , t = 1 to 24 (28)
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Most previous research studies have calculated the net power based on the daily basis [17,18].
However, it may not explain the randomness of solar power generation and load demand within
a day, which can significantly affect the availability. In Figure 3, hourly net power distributions
are derived and the random characteristics within a day can be confirmed. As we can see in the
figure, the net power distribution follows a different distribution every hour and this suggests
that even though the average net power per day is sufficient, a power shortage may occur within
a day. If the demand for power at a specific time exceeds the amount of power stored in battery
+ power generation at that time, a power shortage occurs. To consider those stochastic natures,
this study assumes one-hour intervals for our Markov chain models. While the volatility may be
better reflected in the model if we use a more specific unit of time (such as minutes or seconds),



Sustainability 2021, 13, 3837 11 of 16

it can be a burden in data processing. For example, if the data interval is reduced to one minute,
the data should be measured 60 times more often than the hourly based model, and the number
of states in the Markov chain model will also increase. It increases the computational complexity
to obtain the equilibrium probabilities [25].

Depending on the statistical values such as mean and variance values, Figure 3 shows
that the net probability distribution can be classified into three groups: (1) 1:00 a.m. ~
6:00 a.m. and 7:00 p.m. ~ 12:00 p.m., (2) 7:00 a.m. ~ 8:00 a.m. and 5:00 p.m. ~ 6:00 p.m.,
and (3) 9:00 a.m. ~ 4:00 p.m. Each group was divided into distributions of D1 ∼ D3,
as previously mentioned in Section 2, in order to perform the simulation based on the
proposed mathematical model. In D1 ∼ D3, power difference between two adjacent
states (∆) is set with 125 kW, and each histogram is shown in Figure 4 with the mean values
of −1056 kWh, −344 kWh, and 7610 kWh, respectively. Considering the visual features
and the statistical values of the net distribution, it can be interpreted that the daily net
power cannot represent the hourly measured random characteristic.
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Due to the nature of scheduled classes for each semester of the university, the campus
power consumption data should be divided into semesters and break as well as weekdays
and weekends. However, the average and variance values of the campus usage during the
vacation and weekend shows only 9% differences with the average and variance of the
entire power usage. Therefore, based on the statistical results, the whole data are used for
obtaining enough sample data, regardless of vacation and weekend. When the proposed
model is expanded to other applications, the prior data analysis can also be considered as
an important factor influencing the results.

A. Performance of Embedded Markov Chain-Based Model
Since the model proposed in this paper is based on the power usage of the university

campus, the optimal number of PV modules and ESS capacity is proposed based on
the given target power supply availability of 3 nines. Figure 5 indicates the limiting
probabilities according to number of PV modules and ESS capacity. For this experiment,
the simulation was performed using the manufacturer of Hanwha with a PV module’s
rated output of 150 W, size of 1.51 m2, and efficiency of 0.153.
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Figure 5. Limiting probability of Embedded Markov chain-based model.

In Figure 5, as the number of PV modules increases or the ESS capacity increases, the
limiting probability is decreased. Also, the nonlinear characteristic can be checked through
the sudden change in the limiting probability at specific points. In order to calculate
the number of PV modules and ESS capacity required under a given limiting probability
condition, the correlation of the three variables (limiting probabilities, PV module counts,
ESS capacity numbers) are shown in Figure 6.
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In Figure 6, the four points represent the number of modules and ESS capacity when
the target limiting probability is 0.001. When the ESS capacity increases, the number of
modules has a great influence on the limiting probability. The values of each point are
shown in Table 1.

Table 1. Value of each point in Figure 6.

Cases ESS Capacity MWh Number of Modules

1 35 57,800
2 30 61,870
3 25 67,510
4 20 77,140

The optimal number of PV modules and ESS capacity can be calculated from their
prices at Figure 6. According to a report by Mirae Asset Daewoo Research 2020, “ESS
connected to renewable energy” the ESS price is $251/kWh and the cost of installing a PV
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system including PV modules is $1.0/W. The results of calculating the price in the case of
Table 1 are summarized in Table 2.

Table 2. Cost of each point in Figure 6.

Cases ESS M$ PV System [M$] Total [M$]

1 8.785 8.670 17.455
2 7.530 9.281 16.811
3 6.275 10.127 16.402
4 5.020 11.571 16.591

Therefore, Case 3 (ESS capacity: 25 MW, Number of Module: 67,510) can be proposed
as the optimal point for satisfying 3-nine availability and having a minimum price.

B. Performance of Absorbing Markov Chain-Based Model.
When knowing the SOC of the ESS at a specific point, it is possible to predict a ESS’

lifetime until the battery is fully discharged based on the proposed absorbing Markov
chain-based model. Considering the aging of the lithium-ion battery, it is considered as the
time until the SOC of the battery remains more than 20% instead of complete discharge.

Here, we assume the initial battery SOC at 7:00 p.m. in four cases and estimate the
time duration until the battery is discharged. The reason we assume the battery state at 7:00
p.m. as the initial state is that charging does not occur after 7:00 p.m. because the sun has
set. As can be observed from the preceding data, no electricity is produced, only demand
exists after sunset. Therefore, if the amount of power stored in the battery at sunset is
insufficient, it may be difficult to meet the demand generated during the night. Using the
absorption Markov chain model, it is possible to calculate the average time to discharge
according to the state of the battery at sunset [25]. This simulation condition is based on
the previous embedded Markov chain results (limiting probability: 3 nines, ESS capacity:
25 MW, Number of Modules: 67,510).

The higher the SOC of the battery is, as shown in Table 3, the more available the
time. If the initial battery SOC is above 80%, there is no significant difference in available
time. In addition, the initial battery SOC is important because overall availability varies
significantly depending on the initial battery SOC.

Table 3. Available time according to initial battery SOC.

ESS SOC % Available Time h

60 273.14
70 8407.88
80 20,287.48
90 22,082.46

4. Discussion

While various Markov chain models have been developed and employed as stochastic
models to analyze the steady-state behavior of the energy storage systems, the variation
caused by diurnal and the seasonal cycle is not considered in few researches. To include
such variation into mathematical models, two Markov chain models are proposed. The Em-
bedded Markov chain model enables us to calculate the probability that the state of ESS is
at a certain level at a specific point of time. The variation is reflected in the transition prob-
abilities of the model. The steady-state behavior of the battery state is fully characterized
by the Embedded Markov chain model. The model can be used to calculate the optimal
number of PV modules and ESS capacity satisfying a certain service level. Also, with the
proposed Absorbing Markov chain model, the time duration until the energy system fails
to supply power to loads can be estimated. The model can be used to calculate the average
time duration until a new battery state becomes lower than a certain service level. To verify
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our model, we applied our model to the data of a university in Pohang, South Korea, from
May 2018 to February 2020.

The results in this paper were evaluated with the price model received from the renewable
energy evaluation agency, Mirae Asset Daewoo corporation. The corporation assessed the
total cost of the PV system at $1/W for commercialized PV modules. This means that the price
model represents the total installation cost of PV systems including PV modules, inverters,
and protection circuits but it is regardless of the rated output and the size. Therefore, an
approach that can evaluate the optimal PV modules size and ESS capacity which can satisfy
the sustainable power supply availability of 3 nines (99.9%) has been made based on the price
model. For example, the results when PV module (size of 2 m2 and the rated output 300 W) is
applied to the proposed Markov chain model are shown in Tables 4 and 5.

Table 4. Capacity sizing with new PV module applied.

Cases ESS Capacity MWh Number of Modules

1 35 47,600
2 30 53,530
3 25 62,700
4 20 75,300

Table 5. Cost with new PV module applied.

Cases ESS M$ PV System M$ Total M$

1 8.785 15.708 24.493
2 7.530 17.665 25.195
3 6.275 20.691 26.966
4 5.020 24.849 29.869

It is expected that only half of the modules will be needed when comparing the results
with the previous one of Hanwha’s PV module (rated output of 150 W, size of 1.51 m2),
because the rated output is doubled. However, the results in Tables 4 and 5 show that
while the number of modules decreased slightly, the total cost increased significantly for all
cases compared to the results in Tables 3 and 4. It can be interpreted that the design of PV
installation corresponding to the environmental conditions is an important point since the
PV modules’ outputs are depending on the variation of solar irradiation caused by diurnal
and the seasonal cycle.

Our research can be further studied in various directions in the future. One direction
is to obtain closed-form expressions for the equilibrium probabilities under the specific
load and power generation patterns. The research scope in this paper is to calculate
the probabilities numerically based on data. However, the closed-form expressions for
the probabilities could provide additional insight into understanding the steady-state
behavior. Moreover, it would be interesting to study the continuous-time state Markov
process in Equation (2). In future studies, the application of the Markov decision process
to existing Markov chains for control of the energy system should be studied. Especially,
this application for battery electric vehicles and wind power plants will also be another
important area to investigate.
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Abbreviations
The following abbreviations are used in this manuscript:
V The set of PV sources
T Fixed time interval (Data measurement interval)
ti Epochs at which the state of energy storage system is examined (t0 = 0, t1, t2, . . . (ti+1 = ti + T))
W(t) Power generation rate by PV sources at time t
Wk Power generated by the PV sources during [tk−1, tk], k = 1, 2 . . . .
L(t) Load (demand) rate at time t
Lk Load during [tk−1, tk]
X(t) Battery status at time t (Amount of power stored in the energy storage system)
Xk Battery status at time X(tk + 0+)
I(t) Irradiance value at time t
C Capacity of energy storage system
∆ Energy difference between two adjacent states in Markov chain model
Dk A random variable calculated by Wk − Lk
Di The distribution of Dk in a specific time zone. Any Dk follows one of the distributions Di (i = 1, . . . e)
f (i) A function that maps time i to the distribution Dj, (i = 1, . . . and f (i) = 1, . . . , e)
ai(j) The probability of the distribution P[Di = j∆] = ai(j)
M The time length of a cycle
gk The remainder of the division of k by the cycle length (M)
Y(k) A discrete-time, time-homogeneous Markov chain, Y(k):= {gk, Xk}∞

k = 1
U A set of transient states of our Absorbing Markov chain
V A set of absorbing states of the Absorbing Markov chain
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