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Abstract: The socio-economic development of a country is highly dependent on water availability.
Nowadays, increasing water scarcity is a major global challenge. Continuing improvements in water-
use efficiency are essential for cotton production sustainability. Reduced irrigation in cotton could be
a solution to water shortage in the arid climate without compromising the cotton yield. Therefore, a
two-year field study was conducted to assess the effect of two levels of irrigation i.e., 50% and 100%
of available water content (AWC) on the yield of four cotton genotypes (CIM-678, CIM-343, CRIS-613,
and CYTO-510). The maximum seed cotton yield was observed in CIM-678, which was 2.31 and
2.46 Mg ha−1 under 100% AWC during 2018 and 2019, respectively, and was non-significantly
reduced by 7.7 and 8.94%, owing to deficit irrigation. The maximum water use efficiency (WUE) of
0.55 and 0.64 Kg ha−1 mm−1 was observed under 50% AWC in CIM-678, which was significantly
higher than WUE at 100% AWC during both years. Leaf area index and physiological parameters
such as photosynthesis rate, transpiration rate, and stomatal conductance were not significantly
affected by deficit irrigation. So, it was concluded that the reduced irrigation technique performed
well without significant yield loss, improve WUE, and saved 37 cm of water that could be used for
other crops or to increase the area of the cotton crop.

Keywords: available water contents (AWC); water use efficiency (WUE); irrigation; time-domain
refractometry (TDR); soil moisture

1. Introduction

Water is an important element that plays a major role in crop production, as it main-
tains nutrient availability and leaf turgidity in plants. The entire world is water-dependent
and water shortage is one of the crucial global issues. [1]. Pakistan is also among the
countries that are at risk of water shortage due to climate change and its geographic loca-
tion. Water resources in the country are being depleted rapidly [2]. There is a dire need
to quantify the crop water requirement according to the growth stage of the crop and the
type of soil [3]. The primary aim of reduced irrigation is to minimize the loss of water
and increase crop water use efficiency (WUE). The relationship between the amount of
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water applied and crop yield is referred to as WUE [4]. Over or under irrigation results in
low crop yield and loss of water. Irrigation scheduling is necessary to know the optimal
amount of irrigation required for crops.

Cotton is a significant cash crop, also known as sliver fiber in Pakistan [5], which
provides raw materials to textile sectors due to its distinctive quality [1]. Pakistan ranks 5th
in the world as the largest textile producer after India, China, the United States, and Brazil.
At present, cotton production in the country is 11.9 million bales and it amounts to 5.5 and
1.5% in agriculture and total Gross Domestic Product (GDP), respectively. During 2017, the
cotton yield was recorded 11.8% higher than the 2016 production of 10.7 million bales. The
area under cotton cultivation was increased by 8.4% during 2017 compared to 2016. The
current area under cotton cultivation is increasing with low production per unit area which
cannot fulfill even the indigenous growing population’s requirements. The share of cotton
consumption is 2.6% in global water usage [6] as it consumes almost 10,000 L of water to
produce one kilogram of cotton fabric, which means it takes about 8000 L of water for a
pair of cotton jeans. There is a dire need to understand the pressure of cotton production
on freshwater resources i.e., assessing how much water is used in the production of cotton
related to an area of land. Since it may not be possible to extend the current area under
cotton cultivation as it is already occupied by other significant crops such as wheat, rice,
corn, and sugar cane, therefore, increasing the yield of cotton from the existing cultivated
area is a more feasible option.

There are several factors affecting cotton productivity such as the use of low-quality
seed resulting in poor germination, low seed rate, low plant population, poor management
practices, conventional sowing methods, insect pests attack, improper nutrition, water
stress, and use of inferior cotton genotypes; however, the two key factors that can have
a significant impact on cotton production are genotype and water availability. Cotton
yield can be optimized with appropriate genotype and optimal use of irrigation water;
however, there is a severe shortage of irrigation water and high-yielding cotton genotypes.
In agriculture, the current water availability scenario highlights the effective use of water
resources [7]. Cotton is a tropical seasonal crop that needs a limited supply of water from
either irrigation or rainfall for a successful production. Globally, scientists are working on
the optimization of cotton production by rational use of limited available water [4,8–10].
One of the main problems for farmers is the use of insufficient water to increase crop effi-
ciency [11]. By using the finest irrigation management procedures, WUE can be enhanced.
It is necessary to explore effective agronomic exercise with the ability to increase WUE
and crop yields [12]. Due to the importance of the cotton crop, efforts have been made to
improve cotton yield and enhance resource use efficiency. In Pakistan, WUE is very low as
compared to the rest of the world, where water-saving agriculture is focused on improving
crop WUE [7].

Since the study area, Multan is an arid region and has limited rainfall in addition to
the low organic matter status of the soil, high-yielding genotypes grown with irrigation
management could be a viable option for efficient use of inadequate irrigation water.
Moreover, drought-tolerant cotton genotypes should be produced for being well fit in the
cotton belt. The present study focuses on the improvement of water productivity of cotton
with the objectives, (i) to assess the actual water requirement for cotton crop in arid climate
and (ii) to improve cotton yield and WUE through reduced irrigation.

2. Materials and Methods
2.1. Experimental Site

Two years of field experiments were conducted over the growing period of 2018 and
2019 at the research farm of Central Cotton Research Institute (CCRI), Multan (30◦12 N,
71◦28 E, and 123 m altitude). The soil used in the trial belonged to the Sultanpur series.
It was coarse silty, hyperthermic Typic Camborthids, permeable, friable, moderately cal-
careous, and weakly structured. The soil was developed in the Indus delta of sub-recent
flood plains with an arid climate [13]. The soil was silt loam composed of less than 1%
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organic matter, 0.042% total N, 8.9 mg kg−1 available P, 130 mg kg−1 extractable K, and
electrical conductivity was 3.69 dSm−1 at the depth of 0–40 cm. Groundwater was used
for agricultural irrigation (EC = 1.1 dSm−1). Two years’ daily weather data was collected
from the weather station installed at CCRI from May to November. The maximum and
minimum temperature and relative humidity are shown in Figure 1.
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Figure 1. Weather data collected daily during crop growing season.

2.2. Experimental Design

The experimental layout design in the study was a split-plot design with factorial
arrangements i.e., main plots consisting of two irrigation levels such as 50 and 100%
available water contents (AWC) and subplots containing four cotton genotypes such as
CIM-343, CYTO-510, CRIS-613, and CIM-678. The irrigation water applied throughout
the growth period (2018 and 2019) was based on the measurement of the soil moisture
content in the 0–40 cm soil horizon using a time-domain refractometer (TDR-200). The TDR
was calibrated using a direct method for soil moisture determination. The soil moisture
content was measured from 0–10, 10–20, 20–30, and 30–40 cm at a 2-day interval and the
irrigation was applied to maintain 50 and 100% AWC in the root zone when it reached
near the permanent wilting point (PWP). Each subplot was 15 m long and 3 m wide, for
a total plot size of 45 m2. The recommended dose of NPK (150-60-60 Kg) was applied, P
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and K were applied at the time of sowing, and N was applied in split doses. All the other
agronomic and plant protection measures were adopted accordingly.

2.3. Data Collections
2.3.1. Actual Evapotranspiration

By using the soil water balance equation, the actual evapotranspiration (Eta) was
calculated [14,15]

ETa = (I + p) − ∆S,

where I (mm) represents the irrigation, p (mm) represents the precipitation, and change in
root zone storage is denoted by ∆S (mm).

The reference evapotranspiration was calculated by the penman monteith equa-
tion [16] shown in Figure 2.

ET0 =
0.408∆(Rn − G) + γ 900

Tmean+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
,

where ET0 is reference evapotranspiration (mm day−1), Rn is net radiation as denoted
by (MJ m−2 day−1), G is the density of soil heat flux (MJ m−2 day−1), γ is psychrometric
constant (kPa ◦C−1), Tmean is the average daily temperature (◦C), u2 is wind speed (m s−1),
ea is actual vapor pressure (kPa), es is saturation vapor pressure (kPa), and ∆ is the slope of
the vapor pressure (kPa ◦C−1).
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Figure 2. Shows monthly ET0 data during crop growing season.

2.3.2. Water Use Efficiency

The WUE was calculated by using the following equation [17]

WUE =
Y

ETa

where WUE is water use efficiency (kg m−3 ha−1), Y is yield (kg ha−1), and ETa is actual
evapotranspiration (mm).



Sustainability 2021, 13, 4044 5 of 12

2.4. Soil Physico-Chemical Parameters

The measured and estimated parameters of soil are presented in Table 1. Soil texture
was calculated by the hydrometer method, organic matter was measured by the Walkley
Black method, EC and pH were measured by soil extraction and NPK was measured by
digestion. The bulk density of soil was calculated by taking the soil samples with the help
of core at the depth of 0–10, 10–20, and 30–40 cm [18]. The hydraulic conductivity and
water retention curve parameters were estimated using the Saxton and Rawls methods [19].

Table 1. Measured soil physical and hydraulic parameters in the four main horizons of the experimental site.

Depth (cm)
Particle Fractions (%) B.D. * θs * θFC * θPWP * θAWC * Kfs SOM

Sand Silt Clay (Mg m−3) cm3 cm−3 cm day−1 (%)

0–10 19.83 ± 0.12 56.58 ± 0.10 23.59 ± 0.13 1.32 ± 0.13 0.43 ± 0.021 0.318 ± 0.032 0.145 ± 0.013 0.248 ± 0.014 12.23 ± 2.06 0.62 ± 0.4

10–20 20.23 ± 0.13 55.32 ± 0.15 24.45 ± 0.12 1.37 ± 0.08 0.43 ± 0.035 0.319 ± 0.021 0.150 ± 0.023 0.242 ± 0.013 11.58 ± 3.42 0.48 ± 0.3

20–30 20.68 ± 0.18 54.71 ± 0.21 24.61 ± 0.23 1.43 ± 0.04 0.42 ± 0.051 0.323 ± 0.092 0.154 ± 0.016 0.242 ± 0.011 11.58 ± 3.67 0.41 ± 0.6

30–40 21.56 ± 0.17 54.23 ± 0.24 24.21 ± 0.19 1.45 ± 0.03 0.41 ± 0.012 0.328 ± 0.021 0.156 ± 0.017 0.139 ± 0.012 10.97 ± 2.19 0.26 ± 0.3

B.D.—soil bulk density, θs—saturated water content, θFC—water content at field capacity, θPWP—water content at the permanent wilting point,
θAWC—available water content, Kfs—field saturated hydraulic conductivity, SOM—soil organic matter, * indicates the estimated parameter.

2.5. Leaf Area Index (LAI) and Seed Cotton Yield

The leaf area was obtained from three randomly selected leaves (top, middle, and
bottom leaf) from three randomly selected plants per replication per treatment using an
area measurement system (Delta-T-Devices LTD, Sunwell Cambridge, England). The LAI
was calculated with the following formula [20].

LAI =
Leaf area

Ground area

In the end yield (Mg/ha) was also compared among all the treatments.

2.6. Gas Exchange Parameters

The data of gas exchange parameters of intervals of 60, 105, and 130 days after sowing
was recorded at the time of 10:00 a.m.–12:00 p.m. from the top of the fourth fully expanded
leaf. These were measured with the help of an InfraRed Gas Analyzer (Photosynthetic meter,
Model CI-340, Handheld Photosynthetic system, CID-Bioscience) [21]. The observations
were taken after the irrigation when the field was fully saturated. The following parameters
were measured:

Net photosynthesis (PN = µmol CO2 m−2 S−1)
Transpiration rate (E = mmol H2O m−2 S−1)
Stomatal conductance (gs = mmol CO2 m−2 S−1)

2.7. Statistical Analysis

The data collected were subjected to ANOVA using randomized complete block design
with split plot arrangement and means were compared by least significance difference test
(LSD) at 5% level of probability by using statsistix 8.1 software [22].

3. Results
3.1. Soil Water Storage and Actual Evapotranspiration

The soil water storage and evapotranspiration data at 50 and 100% AWC in all geno-
types are shown in Figure 3. No significant difference was observed in treatments regarding
soil water storage in both years. It showed that irrigation at the time of sowing resulted in
storage above field capacity (FC). After germination when plant roots were grown deeper,
it reduced the soil storage below FC and up to the permanent wilting point (PWP). Soil
water storage showed more depletion of water at 50% AWC as compared to 100% AWC
in all genotypes. The highest ETa was observed in 100% AWC as compared to 50% AWC
treatment in all genotypes which was statistically significant (Figure 3). The increase in ETa
might be due to more water loss through evaporation which is the main component of ETa.
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Figure 3. Effect of reduced irrigation on soil water storage and actual evapotranspiration (ETa)
during 2018 and 2019 (DAS—days after sowing).

3.2. Leaf Area Index

It was observed that LAI increased with the days after sowing (DAS) in 100% AWC as
compared to 50% AWC during the whole growing period in both years (2018 and 2019)
but it was statistically at par in both treatments. This might be due to the availability of
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moisture in the root zone and it was observed that when water was applied at the rate
of 50% of AWC there was no water stress. The water stress started when soil moisture
contents fell below 40% of AWC. The maximum LAI was observed in CYTO-510 in both
years as compared to other genotypes (Figure 4).
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Figure 4. Effect of reduced irrigation on leaf area index of different varieties of cotton (DAS—days after sowing).

3.3. Seed Cotton Yield

In the case of cotton seed yield irrigation, varieties and their interaction showed
non-significant (p ≥ 0.05) results (Figure 5). The maximum yield was observed in CIM-678,
which was 2.31 and 2.46 Mg ha−1 under 100% AWC while 7.7 and 8.94% reduction in
yield was observed where 50% AWC was maintained throughout the growing period in
both years 2018 and 2019 respectively (Figure 5). This reduction in yield was statistically
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non-significant as compared to 100% AWC. A similar trend was observed in all genotypes
under 50 and 100% AWC.
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3.4. Water Use Efficiency

The WUE data showed statistically significant (p > 0.05) results for irrigation while
varieties and their interaction were statistically non-significant. Overall, WUE was higher
in all the genotypes under 50% AWC (Figure 6). The highest WUE under 50% AWC
might be due to reduced water losses from the field as evaporation losses. CIM-678
showed maximum WUE 0.54 and 0.64 Kg m−3 ha−1 under 50% AWC in 2018 and 2019
respectively. The minimum WUE was observed in CIM-343 in 50% and 100% AWC in 2018
and 2019, respectively.
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3.5. Physiological Parameters
3.5.1. Net Photosynthesis Rate

It was observed that in the first 105 DAS the photosynthetic rate of plants at 50% AWC
was higher as compared to 100% AWC maintained throughout the growing period in both
years. The CIM-343 showed the maximum photosynthesis rate in 100% AWC but CRIS-613
and CIM-678 showed a positive response in 50% AWC as compared to 100% AWC.
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3.5.2. Transpiration Rate

It was observed that the transpiration rate was maximum at 100% AWC as compared
to 50% AWC. At first 60 DAS, the transpiration rate in CIM-343 was maximum in 100%
AWC while all the other varieties showed minimum transpiration rate at both AWC. At
105 DAS there was no significant difference in both treatments. At 130 DAS the maxi-
mum transpiration rate was observed in 50% AWC treatment. As the DAS increased, the
rate of transpiration also increased because the plants utilized more water for different
physiological processes (Figure 7).
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3.5.3. Stomatal Conductance

The CRIS-613 showed extreme stomatal conductance in 100% AWC while the least
stomatal conductance was measured in CYTO-510 in the same treatment. In the case of
50% AWC, extreme stomatal conductance was shown by CRIS-613, and the minimum
was observed in CYTO-510. At 105 DAS the stomatal conductance was maximum in
CIM-343 in the treatment where 80% AWC was maintained. This observation was made
before irrigation, so plants showed maximum stomatal conductance. At 130 DAS stomatal
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conductance in CYTO-510 was higher at 100% AWC as compared to other varieties in the
same treatment. While in 50% AWC stomatal conductance was maximum in CYTO-510 as
compared to other varieties. Except for CYTO-510, all other varieties showed the highest
stomatal conductance at 60 DAS and 105 DAS. In reduced irrigation at 105 DAS of the crop,
the stomatal conductance was maximum and was equal to full irrigation because of the
fruiting stage of the crop.

4. Discussion

Accumulation of biomass is strongly related to photosynthesis and light interception
(leaf area index) [20]. Under a water deficit, aboveground growth is more impaired, as
compared to belowground. Under these conditions, leaf area is often reduced [20], which
leads to decreased yield [21,23]. Our results are in agreement with Fereres and Soriano [24]
who reported that deficit irrigation reduced water usage without affecting the crop yield
and quality. Similarly, Ertek and Kanber [25] reported that there was no effect on yield by
using reduced irrigation in the form of drip irrigation. Basal et al. [26] also showed that
applying 75% irrigation water did not affect cotton yield as compared to full irrigation.

The WUE was increased by 50% AWC, probably because of the reduced water losses
in the form of both evapotranspiration and drainage below the root zone. So, there was
no yield benefit in the application of water more than 50% AWC. As discussed both
photosynthesis and leaf area index (light interception) are major yield components [27].
The underwater stress, the former is less sensitive as compared to the latter [28]. When the
water supply is restored, both parameters often recover [29]. Reduction in photosynthesis
is generally due to stomatal closure in response to reduced irrigation.

At the onset of the photoperiod, photosynthesis was at the highest rate because of low
vapor pressure deficit and improved water status owing to the scot period. No statistically
significant difference in photosynthesis rate was observed in the whole crop cycle between
the two irrigation regimes.

Sustainable cotton production requires intelligent farming. For example, it involves
efficient resource use, timely planting, and optimal irrigation by using the respective
methods. To achieve the maximum crop per drop and increase yield, a strategy in the
direction of improving farm-level water management ought to be developed. This involves
the strengthening of the engagement between farmers and partners located in the river
basins, where cotton cultivation takes place. Since significant yield variations between
farms located in the same areas are evident, the above-mentioned strategy may incorporate
information and knowledge sharing, as well as training.

5. Conclusions

Our findings suggest that yield, leaf area index, and physiological parameters were
not affected by 50% AWC, whereas WUE was significantly enhanced. Therefore, it can be
suggested that the application of reduced irrigation maintains the yield in arid and semi-
arid areas. As cotton is a hot seasonal and sensitive crop that requires precise application of
irrigation water, the results of this study will help in mitigating the water crises especially
in cotton-growing areas for sustainable crop production.
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