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Abstract: The increasing demand of electrical energy and environmental concerns are invigorating
the use of renewable energy resources for power generation. Renewable energy resources can
provide an attractive solution for present and future energy requirements. In this scenario, solar
photovoltaic systems are becoming prominent and sustainable solutions with numerous advantages.
However, the utilization of solar photovoltaic systems in distribution generation makes it mandatory
to deploy efficient and organized control measures for integrating solar photovoltaic plants with
the grid. In this paper, the control of grid-tied solar photovoltaic systems using a Kalman filter-
based generalized neural network is presented with a variable step size perturb and observe-based
maximum power point tracking controller to extract the maximum power from a solar photovoltaic
plant. The presented system provides power-quality enhancement and supports a three-phase AC
grid. The proposed approach extracts the load currents’ primary components for efficient harmonics
elimination, synchronizes the system with the grid and provides a fast response during rapidly
changing conditions. The results of the proposed control technique are also compared with the
artificial neural network-based control technique for validation purposes. The proposed algorithm
is found more suitable for using a smaller number of unknown weights and training patterns with
reduced computational time.

Keywords: renewable energy resources; grid integrated solar PV systems; sustainable power genera-
tion; maximum power point tracking; grid reliability and voltage source converter

1. Introduction

The increasing concern regarding greenhouse gas emissions and the depleting nature
of conventional fuels has invigorated the use of renewable energy resources as an alterna-
tive and sustainable solutions for the power sector. Solar, wind, biomass and small hydro
power are the main renewable energy-based resources which can fulfill the future energy
requirements. The solar photovoltaic system (SPV) is more encouraged due to various
advantages such as abundance of availability, less environmental pollution, reduced cost
and many others. The progress of an SPV system in the existing power system is wit-
nessed for its progress [1]. The integration of an SPV system into the grid causes positive
effects, i.e., generating more power, along with some negative effects, i.e., the violation of
voltage limitations at common coupling, frequencies disruption and grid stabilization prob-
lems, etc. There are set guidelines, codes and standards for grid-connected SPV systems.
These standards include IEEE 1547, IEC 61727 and VDE-AR-N4105 [2]. The use of these
standards is encouraged and imposed to maintain the stability and power quality related
to the grid. The large-scale exploitation of distributed generation make it mandatory to
deploy efficiency and organized control measures for integrating and measuring problems.
The control algorithms are helpful for the accommodation and facilitation of the integration
of an SPV in the distribution grid. Single-stage and two-stage systems have been used for
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the integration of SPV systems into the grid, as shown in previous works. It has also been
shown by various researchers that for a three-phase system, a single-stage configuration
is more advantageous [3]. However, conventional single-stage SPV systems suffer from
the drawback of converters being idle during the unavailability of power from the SPV
system. To overcome the abovementioned problems, the proposed system is designed
in such a manner so that it operates as a distribution static compensator (DSTATCOM)
while SPV power is not available and restores the operation after recovering the SPV power
generation.

The electrical power distribution system has been designed to distribute active power
pertaining a smaller number of harmonics to the consumers. DSTATCOM integrated as a
shunt compensator with a distribution system effectively controls harmonics, fulfils the
demand of reactive power of consumers and improves voltage regulation with balanced
and unbalanced loads [4]. The researchers have reported various configurations of DSTAT-
COM in the literature [5–8]. For efficiently integrating distributed a generation system that
compensates for the reactive power and harmonics for utility grids at common coupling
points, several converter topologies [9–11] and control strategies [12–18] were reported in
the previous work. Additionally, Jain et al. [19] presented a grid-integrated solar energy
conversion setup with a movable direct current link voltage to vary the voltages at common
pairing points with two-stage circuitry methodology and an associated double-frequency
second-order generalized integrator (DFSOGI)-dependent control strategy for controlling
the multi-functional voltage source converter (VSC) in abrupt load modification at common
connecting points.

Varma et al. [19] have proposed a solar photovoltaic static compensator for improving
the power transfer capabilities of the system to transmit real power to utilities with an
existing converter system. Humid et al. [20] proposed a strategy that depends on a
power conditioning unit located parallel to the plant that works in feed-forward mode to
compensate the distorted current photovoltaic output to decrease the harmonic of current
from a PV system. Kannan et al. [21] presented icos Φ control technique for a distribution
static compensator that gives uninterrupted harmonic degradation, compensates re-active
power and compensates the loads along with comparing performances of fuzzy-logic
controllers to ordinary proportional integral (PI) controllers. Mishra et al. [22] implemented
an optimistic control technique which optimizes the proportional integral’s coefficients
and photovoltaic fed distribution static compensator’s filtration parameters.

To enhance the performance of grid the integrated SPV plant, various control tech-
niques were adopted by the researchers. There are some performance indicators such
as less computational time, high accuracy and less complexity, etc. A huge number of
techniques depending upon artificial neural networks (ANN) have been widely adopted by
a large number of journalists for distribution static compensators implementing dynamic
loading [23–27], whereas photovoltaic fed distribution static compensator systems have
been adopted by very few. Singh et al. [28] presented a grid interfaced SPV generation plant
implementing a neural network-based control technique that utilizes the least mean square
(LMS) algorithm, termed adaline (adaptive linear element), for estimating the reference
source current. Artificial neural network-based approaches are complex and need large
computational times. Further, generalized neural network (GNN)-based control strategies
can be used to overcome the abovementioned issues. Applications of GNN are widely
available in load forecasting, solar irradiance/energy forecasting, load frequency control in
power systems, power system stabilizers, electrical machines and control system-related
problems [29–36]. There are few works are reported in the literature related to the applica-
tion of GNN as a control strategy for grid-tied SPV systems. GNN-based models reduce
the training time as well as improve the performance of the system. Considering this,
a GNN-based control strategy has been developed for a PV DSTATCOM system in the
present work.

The converting capability of a solar photovoltaic plant is comparatively small; thus, to in-
crease the capability of solar photovoltaic plants, it is essential to keep a track of the maximum
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power point. Maximum Power Point Tracking (MPPT) is complicated because of the non-linear
character of SPV plants due to changing meteorological factors, i.e., solar irradiance, ambient
temperature, wind velocity and relative humidity, etc. A lot work has been reported in the
literature related to MPPT, including techniques such as perturb and observe, incremental
conductance, constant voltage, open-circuit voltage, short-circuit current, extremum seeking
control and hybrid, etc. Further, there are a number of intelligent techniques also available for
MPPT such as artificial neural networks (ANN), fuzzy logic, genetic algorithms, etc. [37–39].
A changeable step size perturb and observe (P&O) MPPT technique is utilized in this research
to track the MPP of a solar photovoltaic plant.

Further, to improve the performance of the system, an extended Kalman filter
(EKF) [40–42]-based method is adopted to estimate and update the weights of the GNN
model. The main contributions of this work are:

• Active power feeding to the connected loads and grid with mitigation of power quality
issues. A generalized neural network (GNN)-based approach plays the role of primary
control strategy and decides the switching pattern of the voltage source converter
(VSC).

• Further, the performance of the proposed algorithm has been improved with the help
of EKF for GNN weight estimations.

• The performance of the proposed setup is validated using simulation results imple-
mented in the MATLAB/ Simulink platform.

• The developed system obtains acceptable limits of harmonics in utility currents and
voltage fluctuations according to the IEEE-519 and IEEE-1547 standards.

The developed system functions very well with an EKF GNN-based approach and
gives a very fast response. Moreover, single-stage topology is able to reduce the losses in
semiconductor devices and increase the overall efficiency. The proposed control approach
performs with more flexibility in training the network under dynamic conditions. The pro-
posed technique possesses various advantages such as its speed, using a single layer, less
mathematical calculations and easy implementation on hardware.

The organization of paper is as follows: Section 2 provides details about the system
configuration, followed by Section 3 which explains the developed control technique. The
simulation and hardware results are provided in Section 4. The conclusion is given in
Section 5, followed by acknowledgements and references.

2. System Description

The proposed system deploys a single-stage circuit topology and consists of a solar
PV array, voltage source converter (VSC), ripple filter, loads and a three-phase utility
grid, as shown in Figure 1. A solar PV array is a combination of several PV modules in
a series and parallel according to the requirements. A PV cell serves as the basic unit
for a solar PV module. A single diode solar PV cell is considered for this system, and
mathematical modeling is given [43]. The developed system has been implemented with a
minimum number of sensors with a variable step size perturb and observe (P&O) MPPT
algorithm to achieve maximum power point operation of the solar PV system for different
meteorological parameters. An extended Kalman filter (EKF)-based GNN methodology is
used for controlling the VSC switching to synchronize the system with the grid and the
main task of separating the weights of the primary real and reactive parts of three-phase
load currents to obtain reference grid currents. The developed system design specifications
are given below:
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Grid description = three-phase, 415 Volts, 50 Hz, solar PV array ratings = (VMPP) = 700 
Volts, current (IMPP) = 13.5 Amp, solar photovoltaic power at maximum power point 
(PMPP) = 10 kW, rating of interfacing inductors (Lfa = Lfb = Lfc) = 2.6 mH, rating of DC link 
capacitor (CDC) = 10 mF, DC link voltage (VDC) = 700 V. 

 
Figure 1. Schematic representation of the system used in this research. 

3. Extended Kalman Filter-Based GNN Control Algorithm 
3.1. Maximum Power Point Tracking Control 

A variable step size perturb and observe (P&O)-based MPPT algorithm is employed 
in this research for the extraction of maximum power from the SPV system. The main 
operation of the given algorithm is dividing the SPV system’s dPpv/dVpv curve into three 
independent regions. Region 0 denotes the SPV system power’s closeness to the highest 
power point. Region 0 uses the normal value of tracking step size, whereas region 1 and 
region 2 needed a larger value of step size as compared to region 0 for achieving the high 
tracking speed. Figure 2 explains the performed functions of the proposed technique. 
∆Vref0, ∆Vref1 and ∆Vref2 represent the step size of tracking for region 0, region 1 and 
region 2, respectively. 

Figure 1. Schematic representation of the system used in this research.

Grid description = three-phase, 415 Volts, 50 Hz, solar PV array ratings = (VMPP) =
700 Volts, current (IMPP) = 13.5 Amp, solar photovoltaic power at maximum power point
(PMPP) = 10 kW, rating of interfacing inductors (Lfa = Lfb = Lfc) = 2.6 mH, rating of DC
link capacitor (CDC) = 10 mF, DC link voltage (VDC) = 700 V.

3. Extended Kalman Filter-Based GNN Control Algorithm
3.1. Maximum Power Point Tracking Control

A variable step size perturb and observe (P&O)-based MPPT algorithm is employed
in this research for the extraction of maximum power from the SPV system. The main
operation of the given algorithm is dividing the SPV system’s dPpv/dVpv curve into three
independent regions. Region 0 denotes the SPV system power’s closeness to the highest
power point. Region 0 uses the normal value of tracking step size, whereas region 1 and
region 2 needed a larger value of step size as compared to region 0 for achieving the high
tracking speed. Figure 2 explains the performed functions of the proposed technique.
∆Vref0, ∆Vref1 and ∆Vref2 represent the step size of tracking for region 0, region 1 and
region 2, respectively.
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A generalized neural network works like a multi-layer feed-forward network, where 

every node implements a precise function on all signals that come to the node, and the 
parameters are set referring to the node. Figure 3 shows an aggregate-type format of a 
GNN model, with Σ and Π being the aggregated functions. Σ is an aggregated function, 
which is adopted with the sigmoidal characteristic function f1, whereas the Π aggregation 
function is adopted with the Gaussian function f2. The derivation of active and re-active 
load current components is performed by assuming load current (iLa, iLb, iLc) as the input 
to the summation (ΣA) and product (Π) neurons having undefined weights of (WΣi) and 
(WΠi), respectively. 

 
(a) 

Figure 2. Flowchart of variable step size perturb and observe (P&O) algorithm.

3.2. Extended Kalman Filter-Based GNN Control Algorithm

A generalized neural network works like a multi-layer feed-forward network, where
every node implements a precise function on all signals that come to the node, and the
parameters are set referring to the node. Figure 3 shows an aggregate-type format of a
GNN model, with Σ and Π being the aggregated functions. Σ is an aggregated function,
which is adopted with the sigmoidal characteristic function f 1, whereas the Π aggregation
function is adopted with the Gaussian function f 2. The derivation of active and re-active
load current components is performed by assuming load current (iLa, iLb, iLc) as the input
to the summation (ΣA) and product (Π) neurons having undefined weights of (WΣi) and
(WΠi), respectively.
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Figure 3. (a) Summation-type generalized neural network (GNN) model, (b) a summation-type GNN structure to deter-
mine the fundamental active element of a load current. 
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3.2.1. Estimation of Amplitude of Terminal Voltage and Unit Templates

With the help of sensed line voltages (vab, vbc, vca) at the point of common coupling
(PCC), the amplitude of phase voltages (va, vb and vc) are calculated as follows:

va =
2vab + vbc

3
, vb =

−vab + vbc
3

, vc =
−vab − 2vbc

3
Σ (1)

The terminal voltage amplitude at PCC can be estimated as

Vt =

√[
2(va2 + vb

2 + vc2)

3

]
(2)

upa =
va

Vt
, upb =

vb
Vt

, upc =
vc

Vt
(3)

Further, quadrature unit templates can be calculated using in-phase unit templates as

uqa =
upc√

3
−

upb√
3

, uqb =

√
3upa

2
+

upb − upc

2
√

3
, uqc =

upb − upc

2
√

3
−
√

3upa

2
(4)

3.2.2. Terminal Voltage Amplitude and Unit Templates

The DC link voltage (Vdc) is sensed and compared with the reference DC link voltage
(V∗dc) in order to determine the active loss component.

Vdce(k) = V∗dc(k)−Vdc(k) (5)

k is the number of iterations. Further, the error (Vdce ) of reference V∗dc and sensed Vdc are
processed through a PI controller, the output of which is an active current component(

wpdc

)
used to regulate the DC link. The controller output at kth iteration is estimated as

wpd(k) = wpd(k− 1) + kpd{Vdce(k)−Vdce(k− 1)}+ kidVdce(k). (6)

During no sunshine conditions (PPV = 0), the set point DC link voltage is set to
reference the DC link voltage of DSTATCOM so that the system operates in the power
quality improvement mode (as a DSTATCOM).

The error Vte has been considered between actual and set terminal voltage, Vt and V∗t ,
at PCC to calculate the reactive loss component. Further, this error is passed through a
PI controller for minimization. The calculated reactive loss component is considered to
maintain AC terminal voltage constant and close to its reference value.

Vte(k) = V∗t (k)−Vt(k) (7)



Sustainability 2021, 13, 4219 7 of 24

The controller output at kth instant is

wqt(k) = wqt(k− 1) + kpt{Vte(k)−Vte(k− 1)}+ kitVte(k) (8)

where wqt is a part of the reactive loss current component, and kpt and kit are proportional
and integral gains, respectively.

A feed-forward weight is calculated and incorporated into the controller to achieve a
fast dynamic response, which can be written as:

wPV(k) =
2PPV(k)

3Vt
(9)

where PPV is solar power.

3.2.3. Fundamental Active and Reactive Component of Load Current

A generalized neural network (GNN) of a summation-type network is used in the
present work for the estimation of the fundamental active and reactive components of
the load current. The output calculations have been divided into two sections: forward
calculations and reverse calculations.

With the help of Figure 3, the below mentioned equation is used to obtain the output
of the summation part of the GNN:

OΣ = f1(ΣWΣiXi + XoΣ) (10)

Similarly, the output of the product part of the GNN can be calculated as

OΠ = f2(ΠWΠiXi + XoΠ) (11)

The output of the final GNN will be the sum of the summation part and product part
which can be expressed as

Oi = OΣ ∗WΣ + OΠ(1−WΣ) (12)

In the above equation, OΣ denotes the output of the summation part of the neu-
ron, OΠ shows the output of the product part of the neuron, and W depicts the weights.
The proposed control strategy using GNN utilizes a GNN model to determine the funda-
mental active current components of the sensed load currents (iLa, iLb, iLc). The sensed
load currents are the input to the proposed model which are further multiplied with
weights (wΣpa, wΣpb, wΣpc) and (wΠpa, wΠpb, wΠpc) at summation (ΣA) and product (Π)
neurons, respectively. At the initial level, these weights are referred as unknown weights
and calculated by considering the in-phase unit templates (upa, upb, upc) as the reference
weights. A summation-type GNN structure for the calculation of fundamental active
current component of a phase is given in Figure 3b.

The output calculations can be divided into two parts: forward calculations and re-
verse calculations. The aggregation function of ΣA and Π of the forward mode calculations
for phase “a” is shown in Equations (8) and (9), respectively. Similarly, the aggregation
function of ΣA and Π of the forward mode calculations of another two phases, “b” and “c”,
can be calculated.

ΣAPa = iLawΣpa + iLbwΣpb + iLcwΣpc + Σbias (13)

Πpa = iLawΠpa ∗ iLbwΠpb ∗ iLcwΠpc ∗Πbias (14)

Σbias and Πbias represent the initial bias of the ΣA and Π part of the structure, respec-
tively. The proposed developed neuron has both Σ and Π aggregation functions. The ΣA
aggregation function has been used with the sigmoidal characteristic function f 1, while the
Π aggregation function has been used with the Gaussian function f 2 as a characteristic
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function. The output of the ΣA part with a sigmoidal characteristic transfer function after
threshold can be calculated as

OΣApa = f1
(
ΣApa

)
=

1

1 + e−λΣp∗ΣAPa
(15)

The output of the Π part is threshold by using Gaussian transfer function and can be
written as

OΠpa = f2
(
Πpa

)
= e−λΠp∗Πpa

2
(16)

where λΣp and λΠp are the gain scaling parameters of the ΣA and Π part of the network,
respectively, and are considered as unity here to avoid complexity. Similarly, output of the
ΣA and Π part of the forward mode calculations of other phases, “b” and “c”, are calculated
as

OΣApb = f1

(
ΣApb

)
=

1

1 + e−λΣp∗ΣAPb
(17)

OΠpb = f2

(
Πpb

)
= e−λΠp∗Πpb

2
(18)

OΣApc = f1
(
ΣApc

)
=

1

1 + e−λΣp∗ΣAPc
(19)

OΠpc = f2
(
Πpc

)
= e−λΠp∗Πpc

2
(20)

The final output of the GNN will be the function of two outputs and related to the
weights W and (1 − W), respectively, through the linear transfer function which can be
written as

Opa = OΠpa(1−Wa) + OΣApaWa (21)

Opb = OΠpb(1−Wb) + OΣApbWb (22)

Opc = OΠpc(1−Wc) + OΣApcWc (23)

where Wa, Wb, Wc are weights associated with the phase “a”, “b” and “c”, respectively.
The mean active component of load currents (wLp) is obtained by averaging the final output
of the GNN for each phase and is given as

wLp =

(
Opa + Opb + Opc

)
3

(24)

However, the estimation of the fundamental reactive current component under the load
current has been calculated by implementing the proposed GNN model. The sensed load cur-
rents (iLa, iLb, iLc) with their unknown weights,

(
wAqa, wAqb, wAqc

)
and

(
wΠqa, wΠqb, wΠqc

)
,

are processed as inputs to ΣA and Π neurons. The aggregation function of ΣA and Π of
the forward mode calculations for phase “a” is given in Equations (23) and (24), respectively.
Similarly, the aggregation function of ΣA and Π of the forward mode calculations of the other
remaining phases “b” and “c” are calculated.

ΣAqa = iLawΣqa + iLbwΣqb + iLcwΣqc + Σbias (25)

Πqa = iLawΠqa ∗ iLbwΠqb ∗ iLcwΠqc ∗Πbias (26)

where Σbias and Πbias denote the initial bias of the ΣA and Π part of the network, respec-
tively. Similarly, as explained above while calculating the fundamental active load current
component, here also the ΣA aggregation function has been adopted along with the sig-
moidal characteristic function f 1, whereas the Π aggregation function has been adopted
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along with the Gaussian function f 2, taken as a characteristic function. The output of the
ΣA part with a sigmoidal characteristic transfer function after threshold can be obtained as

OΣAqa = f1
(
ΣAqa

)
=

1

1 + e−λΣq∗ΣAqa
(27)

The output of the Π part becomes threshold by using the Gaussian transfer function
and can be written as given:

OΠqa = f2
(
Πqa

)
= e−λΠq∗Πqa

2
(28)

where λΣq and λΠq are the gain scaling parameters of the ΣA and Π part of the network,
respectively, and are considered as unity here to avoid complexity. Similarly, the output of
the ΣA and Π part of the forward mode calculations of the other two phases “b” and “c”
are calculated as

OΣAqb = f1

(
ΣAqb

)
=

1

1 + e
−λΣq∗ΣAqb

(29)

OΠqb = f2

(
Πqb

)
= e−λΠq∗Πqb

2
(30)

OΣAqc = f1
(
ΣAqc

)
=

1

1 + e−λΣq∗ΣAqc
(31)

OΠqc = f2
(
Πqc

)
= e−λΠq∗Πqc

2
(32)

The output of the GNN model as a function of weights W and (1 −W) can be written
as

Oqa = OΠqa(1−Wa1) + OΣApaWa1 (33)

Oqb = OΠqb(1−Wb1) + OΣAqbWb1 (34)

Oqc = OΠqc(1−Wc1) + OΣAqcWc1 (35)

where Wa1, Wb1 and Wc1 are the weights associated with the ΣA and Π part of the developed
GNN model for the estimation of the fundamental reactive load current components.
The fundamental reactive current component of the load current (wLq) is determined by
taking the average of output of the GNN model for the reactive current component of the
load currents and given as:

wLq =

(
Oqa + Oqb + Oqc

)
3

(36)

3.2.4. GNN Weight Prediction and Updating Using Extended Kalman Filter (EKF)

The Kalman Filter (KF) is a recursive algorithm used for estimating the state of a
dynamic system in the case of less availability of data because of the presence of noise,
etc. The KF algorithm utilizes the prior knowledge to predict the past, present and future
state of the given system. The main advantage of the KF-based approach is less memory
space requirements because the data are updated in each and every iteration. The basic KF
theory is based on the probability of the hypothesis of the predicted state of the system
under consideration by hypothesis of prior state and then using the available data from
measurement sensors to correct the hypothesis to obtain the best estimation for each
iteration. Two basic assumptions are made to derive the basic equations for KF to be
optimal in the sense of mean square error, which should be described by a model of
linear state space; the noises are white and Gaussian with zero mean, uncorrelated with
each other.

xk+1 = Fk+1, k xk + qk (37)

yk+1 = Hk+1 xk+1 + rk+1 (38)
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Equation (37) is known as a process equation. xk is a system state vector, a minimal
set of data that uniquely defines the behavior of a system, and k depicts discrete time.
Fk+1, k is the transition matrix to take the state xk from time k to k + 1, and qk is the additive
process noise, white and Gaussian, with a zero mean and possessing a covariance matrix Qk.
The measurement step is shown in Equation (38), where Hk+1 is the measurement matrix,
yk+1 is observable at time k + 1, and rk+1 is the additive process noise, white and Gaussian,
with a zero mean and possessing a covariance matrix Rk. Both noises are uncorrelated with
each other. The KF algorithm works in two repeated functional steps:

The prediction step (time update): This step is to compute the estimation of state and
error covariance.

x̂−k+1 = Fk+1, k x̂k (39)

Pk+1 = Fk+1, k P k FT
k+1, k + Q k (40)

where P k is there error covariance matrix.
Correction step (measurement update): This step is to correct the estimated state

according to the previous step with the help of yk+1

Kk+1 = P−k+1 HT
k+1

[
Hk+1P−k+1 HT

k+1 + R k+1

]−1
(41)

x̂k+1 = x̂k
− Kk+1

(
yk+1 – Hk+1 x̂−k

)
(42)

Pk+1 = (I − Kk+1 Hk+1 )Pk+1
− (43)

where K k+1 is the Kalman gain matrix.
The GNN model is a nonlinear system, so the basic KF approach should be extended

by using the linearization process and is known as the extended Kalman Filter (EKF).
The basic difference between KF and EKF is the linearization of the nonlinear system
function performed by using the Jacobian matrix in EKF, and then rest of the KF steps
can be applied. The nonlinear dynamic system can be defined by using the following
equations:

xk+1 = xk + qk (44)

yk+1 = h(xk+1, uk+1) + rk+1 (45)

Equation (44) depicts the state of a stationary process corrupted with process noise qk,
and state xk consists of network weights. xk+1 is the weight vector matrix and input vector
depicted by uk+1. The noise covariance matrix can be written as Rk+1 = E

[
rk+1rT

k+1
]

and Qk+1 = E
[
qk+1qT

k+1
]

In EKF, the linearization of measurement equation is carried out at each time step
around the newest state estimation by using the first-order Taylor approximation. The GNN
training problem is taken as a problem to find the state estimation of xk+1 for minimizing
the least square errors by implementing the previous calculations. Kk+1 Kalman gain can
be written as

Kk+1 = Pk+1HT
k+1

[
Hk+1 Pk+1HT

k+1 + R k+1

]−1
(46)

x̂k+1 = x̂k+1 + Kk+1[ yk+1 − h( x̂k+1 + uk+1)] (47)

Pk+1 = Pk − Kk Hk Pk + Qk (48)

3.2.5. Reference Current Calculation

The fundamental real power current component of the load current can be obtained as

ILp = wpd + wLp − wPV (49)

The reference active components of the grid currents can be written as

ipsa = ILp ∗ upa, ipsb = ILp ∗ upb, ipsc = ILp ∗ upc (50)
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Similarly, the fundamental reactive current component of a load current can also be
obtained as

ILq = wqt + wLq (51)

The grid currents’ active reference components can be written as

iqsa = ILq ∗ uqa, iqsb = ILq ∗ uqb, iqsc = ILq ∗ uqc (52)

The net fundamental reference grid currents (i∗sa, i∗sb, i∗sc) can be obtained as

i∗sa = ipsa + iqsa, i∗sb = ipsb + iqsb, i∗sc = ipsc + iqsc (53)

VSC gating signals have been generated by comparing reference (i∗sa, i∗sb, i∗sc) and
actual (isa, isb, isc) grid currents for an individual phase, and the error is processed through
the PI current regulator. A hysteresis current regulator is used for indirect current control.

4. Results

The SPV array is designed for a maximum power rating of 10 kW. The given system is
designed, developed and simulated using the MATLAB/Simulink platform. The perfor-
mance evaluation of the proposed system is carried out under a linear and nonlinear load
with dynamic changes and a changing solar irradiance scenario.

4.1. Performance Analysis of Proposed Controller for Linear Load for PFC

The performance of the proposed EKF-based GNN controller is evaluated with a
combined structure of the summation and product neurons collectively in single layer.
In the proposed GNN network, each processed neuron consists of different weights with the
inputs as measured load currents (iLa, iLb, iLc). With the help of this, the summation weights
(wΣpa, wΣpb, wΣpc) and product weights (wΠpa, wΠpb, wΠpc) are estimated. The proposed
GNN is trained to calculate the unspecified weights and EKF filter which is used to predict
and update the weights of the GNN network. The output of the proposed system is
evaluated under the influence of several performance parameters, i.e., grid voltage (vs),
grid current (is), load current (iL), voltage source converter current (ivsc), grid real power
(Pg), grid re-active power (Qg), PCC terminal voltage (Vt), SPV power (Ppv), SPV array
current (Ipv) and voltage at direct current link (Vdc), provided in Figure 4a,b in steady-state
linear load (at t = 0.2 to 0.3 s) conditions. Intermediate signals are given in Figure 4b, which
depicts the performance parameters and corresponding weights with a variation in error
between the active fundamental components of the load currents. The SPV system remains
in operation for feeding the maximum value of power onto the load and grid at unity
power factor (UPF).
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4.2. Performance Analysis of Proposed Controller Considering Dynamic Linear Load for Zero
Voltage Regulation (ZVR)

If the load is drawing reactive power with unbalanced behavior, then a change in
the terminal voltage (Vt) occurs at the point of common coupling. Figure 5a,b shows the
behavior of the given system for dynamic linear loading conditions under a zero voltage
regulation (ZVR) mode. It can be observed from the results after phase “c” of the load is
taken out from the supply at 1.1 s, the grid currents (is) remain sinusoidal with the help
of a voltage source converter. The PCC voltage (Vt) and voltage at the DC junction are
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maintained at set values, which are 415 V and 700 V, respectively, without any fluctuations.
Intermediate signals are provided in Figure 5b, which shows the performance parameters
and corresponding weights with a variation in error between the active fundamental
components of the load currents. The reactive power (Qg) taken from the utility grid is
approximately equivalent to 0, for compensating the linear loads using reactive power.
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for zero voltage regulation (ZVR).

4.3. Performance under a Nonlinear Load

Figure 6a,b show the behavior of a developed system for dynamic nonlinear loads
under the zero voltage regulation (ZVR) mode. By using the given control algorithm,
the grid current (is) is sinusoidal in nature, when the load of phase “c” is extracted at
1.1 s. Intermediate signals are given in Figure 6b for corresponding weight signals with
a variation in error between the active fundamental components of the load currents.
Wpa of the linear transfer function Σ and the estimated GNN output of the active current
component of the load current are represented by Opa, and its actual value is achieved by
scaling and depicted by ILpa. This indicates that the calculated weights change according to
the load condition. Figure 7a,c show the total harmonic distortion (THD) at the point of
common coupling for phase “a” of a load current, grid current and grid voltage, respectively,
and obtained as 37.48%, 1.04% and 1.07%, respectively, which is within acceptable limits
of harmonics in utility currents and voltage fluctuations according to the IEEE-519 and
IEEE-1547 standards. THD analysis of the given system is provided in Table 1 for a
nonlinear load.
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Table 1. Parameters of the developed system for the proposed controller.

Operating Mode Parameters GNN Based Control
Algorithm

EKF GNN Based
Control Algorithm

ZVR

Grid voltage (V),
%THD at PCC 333.02 V, 1.89% 337.2 V, 1.04%

Grid current (A),
%THD at PCC 23.17 A, 2.54% 25.58 A, 1.02%

Load current (A),
%THD at PCC 40.58 A, 40.62% 41.34 A, 39.78%

4.4. Performance Analysis at Varying Solar Irradiance

Dynamic behavior of the developed system is also observed under varying solar
irradiance conditions. The solar irradiance (S) is raised to 1000 W/m2 from 600 W/m2 at
0.5 s. The SPV feeds the connected load and excess amount of power output provided to
the utility grid. As shown in the results, the grid power (Pg) decreases after 0.5 s because
of an increase in power (Ppv) output from SPV, given in Figure 8. The proposed system
under variable solar irradiance remains operating at the maximum power point of the SPV
array and works at unity power factor. The grid side current is maintained to be sinusoidal,
and the voltage at DC link is also maintained at a set point.

4.5. Comparative Study of Developed Algorithm with Other Conventional Approaches

The proposed algorithm is analyzed for different scenarios and found accurate as
per the desired performance. The parameters of proposed EKF GNN-based controller
is presented in Table 1 and compared with the GNN approach. The developed EKF
GNN based control approach is found better than ANN conventional approaches such as
ADALINE and multilayer perceptron neural network (MLPN). A comparative analysis is
made and presented in Table 2 under dynamic nonlinear load conditions on the basis of
various performance parameters. The smaller number of unknown weights required and a
single layer enhanced the performance of the controller. Additionally, the weight update
time, settling period and maximum change in DC voltage is less for the proposed technique.



Sustainability 2021, 13, 4219 17 of 24Sustainability 2021, 13, 4219 17 of 24 
 

 
Figure 8. Analysis of performance for a non-linear load with variable solar irradiance. 

4.5. Comparative Study of Developed Algorithm with other Conventional Approaches 
The proposed algorithm is analyzed for different scenarios and found accurate as per 

the desired performance. The parameters of proposed EKF GNN-based controller is pre-
sented in Table 1 and compared with the GNN approach. The developed EKF GNN based 
control approach is found better than ANN conventional approaches such as ADALINE 
and multilayer perceptron neural network (MLPN). A comparative analysis is made and 
presented in Table 2 under dynamic nonlinear load conditions on the basis of various 
performance parameters. The smaller number of unknown weights required and a single 
layer enhanced the performance of the controller. Additionally, the weight update time, 
settling period and maximum change in DC voltage is less for the proposed technique. 

Table 2. Comparative performance analysis of the proposed technique. 

Performance 
Parameters 

ADALINE MLPN GNN 

Training Least Mean Square Back Propagation EKF 
Learning Gradient decent (GD) GD/GDM GDM 

Layers Two Three One 

Training pattern Online Training 
Offline stochastic 

training Online training 

Estimation nature Linear Nonlinear Both types 
Transfer function Linear Sigmoidal All 

Figure 8. Analysis of performance for a non-linear load with variable solar irradiance.

Table 2. Comparative performance analysis of the proposed technique.

Performance
Parameters ADALINE MLPN GNN

Training Least Mean Square Back Propagation EKF
Learning Gradient decent (GD) GD/GDM GDM

Layers Two Three One

Training pattern Online Training Offline stochastic
training Online training

Estimation nature Linear Nonlinear Both types
Transfer function Linear Sigmoidal All

Weight update Time 15.7 µs 82 µs 6 µs
Settling period of DC

link 1 cycle 2 1
2 cycle 1 cycle

Max change in DC
link voltage 4.5 V 10 V 3.7 V

Figure 9 shows the performances by experimenting the given system in power fac-
tor correction mode by implementing linear and nonlinear loads. It depicts the voltage
source current (Ivsc), load current (ILa), grid current (Ig) and direct current link voltage
(Vdc). Phase “a” gid voltage and grid current are shown in Figure 10; it also shows the
performances of the controller under PFC mode.
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Figure 11 provides the performance of the SPV plant for nonlinear loads, whereas
Figure 12a depicts non-linear current and Figure 12b depicts the source current and voltages
for phase “a”. The THD of the load current is given in Figure 13.

Figure 11. Performance analysis considering non-linear load conditions for EKF GNN.
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The performance of the proposed controller under nonlinear dynamic load is shown in
Figure 14; when load of phase “b” is removed, the grid current is reduced. Further, the per-
formance of intermediate signals for different weights is also shown in Figure 15. Figures
16 and 17 show the controller performance under variable solar irradiance.

Figure 14. Performance parameters under dynamic nonlinear load for EKF GNN.

Figure 15. Performance of intermediate weight signals under dynamic nonlinear load for EKF GNN.
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Figure 16. Performance parameters under nonlinear load with solar PV ON for EKF GNN.
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5. Conclusions

The proposed system was developed and tested using MATLAB simulation environ-
ment, and the performance of the EKF GNN-based VSC control approach was validated
under linear and nonlinear loads for static and dynamic scenarios. The proposed EKF
GNN approach has successfully improved the function of the developed SPV system.
The performance of the developed system was found satisfactory under load unbalanc-
ing and varying solar irradiance. Additionally, it continues to operate in a UPF mode
of operation, providing reactive power compensation, load balancing, MPP extraction
and harmonics compensation. A changeable step size perturb and observe (P&O) MPPT
approach was utilized in this research and enabled fast tracking of MPP and convergence.
Moreover, single-stage topology was able to reduce the losses in semiconductor devices
and increase the overall efficiency.

The proposed control approach performs with more flexibly in training the network
under dynamic conditions and provides improved online learning. This control technique
needs a smaller number of training patterns and unknown weights and hence reduces the
complexity and the computational time. The developed system obtains acceptable limits
of harmonics in utility currents and voltage fluctuations according to the IEEE-519 and
IEEE-1547 standards.
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Nomenclature

C DC link capacitor (µF)
f 1 Sigmoidal characteristic function
f 2 Gaussian characteristic function
Iinv Inverter output current
I*inv Reference Inverter output current
iLa, iLb, iLc Load currents of phase ‘a’, ‘b’ and ‘c’ respectively (Ampere)
ILp Fundamental active current component
ILpa Fundamental active current component for phase ‘a’
ILq Fundamental reactive current component
ILqa Fundamental reactive current component for phase ‘a’
IMPP PV current at maximum power point (Ampere)
ipsa Active reference component of grid current
IPV PV array output current (Ampere)
iqsa Reactive reference component of grid current
Irs Reference component of grid current
isa, isb, isc Grid currents of phase ‘a’, ‘b’ and ‘c’ respectively (Ampere)
i*sa, i*sb, i*sc Reference currents of phase ‘a’, ‘b’ and ‘c’ respectively (Ampere)
Ki Integral gain of PI controller
Kp Proportional gain of PI controller
Lf Interfacing inductor (mH)
Oi Final output of generalized neuron
Opa output of the GNN model for active component
Oqa output of the GNN model for reactive component
OΣ Output of ΣA part network
OΠ Output of Π part network
Ppv PV power (W)
Pg Grid Active power (W)
Qg Grid Reactive power (vAR)
S Solar irradiance (W/m2)
upa, upb, upc In phase unit templates of phase voltages
uqa, uqb, uqc Quadrature unit templates of phase voltages
Va, Vb, Vc Phase voltage of utility grid (Volts)
vab, vbc, vca Line voltage of utility grid (Volts)
Vdc DC link voltage (Volts)
V*dc Reference DC link voltage (Volts)
VMPP PV voltage at maximum power point (Ampere)
Vpv PV output voltage (Volts)
Vt Voltage at point of common coupling (Volts)
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V*
t Reference voltage at point of common coupling (Volts)

Vte Error between sensed and reference voltage at point of common coupling (Volts)
w Weights of GNN
wap, wbp, wcp Updated weights for hidden layer of active components
waq, wbq, wcq Updated weights for hidden layer of reactive components
wLp Mean active component of load current
wLq Mean reactive component of load current
wp Active current component
wpdc Active current component phase c
wpv Feed forward weight function of solar power
wq Reactive current component
wqt Function of reactive loss current component
wsa weight of summation neuron
WΣ Weights of summation part of GNN
∆W Change in weights of GNN
Greek Symbols
α Learning rate
µ Micro
Ω Ohm
F Phase
ΣA Aggregation function used with sigmoidal characteristic function
Π Aggregation function used with Gaussian characteristic function
η Learning rate
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