
sustainability

Article

Population Density or Populations Size. Which Factor
Determines Urban Traffic Congestion?

Yu Sang Chang 1, Sung Jun Jo 1,* , Yoo-Taek Lee 2 and Yoonji Lee 3

����������
�������

Citation: Chang, Y.S.; Jo, S.J.; Lee,

Y.-T.; Lee, Y. Population Density or

Populations Size. Which Factor

Determines Urban Traffic

Congestion? Sustainability 2021, 13,

4280. https://doi.org/10.3390/

su13084280

Academic Editor: Francesca Pagliara

Received: 10 March 2021

Accepted: 8 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Business, Gachon University, Seongnam 13120, Korea; ysc999@gachon.ac.kr
2 Endicott College of International Studies, Woosong University, Daejeon 34000, Korea; ytlee@wsu.ac.kr
3 Department of Korean Literature & Literature, Gachon University, Seongnam 13120, Korea;

yoonjilee@gachon.ac.kr
* Correspondence: sungguri@gachon.ac.kr

Abstract: A large number of articles have documented that as population density of cities increases,
car use declines and public transit use rises. These articles had a significant impact of promoting
high-density compact urban development to mitigate traffic congestion. Another approach followed
by other researchers used the urban scaling model to indicate that traffic congestion increases
as population size of cities increases, thus generating a possible contradictory result. Therefore,
this study examines the role of both density and population size on traffic congestion in 164 global
cities by the use of Stochastic Impacts by Regression on Population, Affluence and Technology
model. We divide 164 cities into the two subgroups of 66 low density cities and 98 high density
cities for analysis. The findings from the subgroups analysis indicated a clear-cut difference on the
critical role of density in low-density cities and the exclusive role of population size in high-density
cities. Furthermore, using threshold regression model, 164 cities are divided into the two regions
of large and small population cities to determine population scale advantage of traffic congestion.
Our findings highlight the importance of including analysis of subgroups based on density and/or
population size in future studies of traffic congestion.

Keywords: traffic congestion; population density; population size; income per capita; urban scaling
model; STIRPAT model; threshold regression model

1. Introduction

Traffic congestion in large global cities continues to worsen resulting in high economic
cost, lost time, accidents, pollution, and many other negative effects for billions of urban
inhabitants [1–4]. Research on the causes and mitigation of traffic congestion has produced
a very large number of publications particularly over the last three decades [5,6]. The two
best known papers, by Newman and Kenworthy (1989) and Kenworthy and Laube (1999),
have found a negative correlation between traffic congestion and population density [7,8].
They also found a positive correlation between density and transit use. In other words,
high density in cities may discourage car ownership in favor of using public transportation
systems. High-density cities may also require shorter driving distances.

Numerous follow-up studies using aggregate or disaggregate samples of cities have
had a significant impact of promoting high–density compact urban development to mit-
igate traffic congestion and pollution. Using an aggregate sample allows the researcher
to analyze the overall pattern of traffic congestion for all cities in one sample without
differentiating heterogeneous characteristics such as density, population, and income.
An aggregate sample can also be categorized into several disaggregate samples of cities
with homogeneous characteristics such as density and population. Analysis of disaggregate
samples often yields results that may be more relevant to individual cities with unique
characteristics.
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As for the key determinant of traffic congestion, a common approach is to use popula-
tion density of a city while another approach is to use population size. Using density as the
key determinant often has revealed a negative relationship between traffic congestion and
density of cities [7,8]. In contrast, using population size as the key determinant has often
shown a positive relationship between congestion and population size of cities. Similarly,
using an aggregate versus disaggregate sample often has provided contradicting evidence
on the relationship between traffic congestion and cities. This research attempts to resolve
these contradictory results by using both aggregate and disaggregate samples of cities.
In other words, both population density and population size are used simultaneously as
the key determinants of traffic density.

We used traffic congestion data available from TomTom [9]. TomTom [9] created the
traffic index (TI) in 2012 to provide an annual benchmark, making it possible to evaluate
congestion levels globally in an objective way. In TI 2017, coverage was extended to
390 cities in 48 countries over six continents. Congestion levels are measured as the
percentage of increase in overall travel times compared to non-congested, free-flow travel
time. For example, a congestion level of 50% means that overall travel time is 50% greater
than free-flow travel time. According to Cohn [10], travel times are calculated on all road
segments in the top five functional road classes in each urban area. The overall TI value
for a city is the weighted average percentage of extra travel time for drivers in that city
over 24 h, 7 days a week for the given calendar period. The TI includes 164 large global
cities with complete data on the traffic congestion index, population, income per capita,
and population density.

A sample of 164 cities obtained from the TI from TomTom will be divided into two
disaggregate samples: (1) 66 U.S.-Canadian low-density cities and (2) 98 high-density cities
in 14 countries primarily in Europe. We used a cross-sectional multivariate regression
model with population size, population density, and income as independent variables.
We also examined the population scaling advantage of traffic congestion between the
subgroup of large population size cities versus the subgroup of small population size
cities. The threshold regression model was used to divide 164 cities into 46 cities whose
population size was larger than the threshold value and 118 cities whose population size
was less than the threshold value.

This remainder of this paper is organized into four sections. Section 2 is a brief
literature review on urban congestion in relation to vehicle and transit usage. The data
and method of analysis are presented in Section 3, followed by an analysis of results in
Section 4. Finally, conclusions, implications, and limitations of this research are presented
in Section 5.

2. Literature Review
2.1. Aggregate and Disaggregate Analysis of Traffic Congestion

The relationship between urban form and traffic congestion or congestion-generated
pollution has been studied extensively over several decades, specifically after the publi-
cation of two well-known aggregate studies by [7] and [8]. With an aggregate sample of
46 global cities from several regions including North America., Asia, and Europe, Ken-
worthy and Laube [8] confirmed the earlier finding that as population density increases,
car use declines (R2 = 0.838) and transit use rises (R2 = 0.757). These two papers have
prompted numerous follow-up studies using both aggregate and disaggregate samples of
cities and have had a significant impact of promoting the concept of high-density compact
development to mitigate car use, traffic congestion, and pollution. Representative survey
articles include [5,11].

Two methods of analysis have been used in traditional aggregate studies. The first
group of articles continue to use population density as the key determining factor in
multivariate regression analysis. For example, Karathodorou et al. [12] and Sue [13]
have found statistically significant negative density coefficients of −0.229 and −0.064,
respectively, for fuel consumption, supporting the earlier findings by Newman and Ken-
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worthy [7]. They determined that a 1% increase in density is expected to decrease car fuel
consumption by 0.229% and 0.064%, respectively, all else being equal. Ye et al. [14] and
Gudipudi et al. [15] also supported the impact of city density on decreased car use and less
carbon emissions.

The second aggregate approach uses the urban scaling model, which states that
traffic congestion, car use, and pollution emissions may be described by a power-law
function [16,17]. For 942 U.S. urban centers, Fragkias et al. [18] established a power
function exponent of 1.0 for CO2 emissions as a function of population size, indicating a
constant return to scale. In contrast, Oliveira et al. [19] found that the population size to
scale superlinearly (with an exponent of 1.46) represented an increasing return to scale
when the U.S. cities were defined as connected urban spaces. Muller and Jha [20] found a
sublinear exponent of 0.75 for local air pollution for U.S. metropolitan areas, indicating a
decreasing scale trend.

For traffic congestion, Louf and Barthelemy [21] derived a population exponent of 1.27
for a variation of total delay hours due to congestion and 1.262 for excess CO2 emissions
due to congestion for 101 U.S. cities. Barthelemy [22] also established a scale exponent of
1.58 (r2 = 0.96) for total delay from congestion during peak hours as a function of population
size of cities. Barthelemy’s [22] data on almost 300 urban areas globally came from TomTom
in 2016.

Kenworthy and Laube’s [8] aggregate study did not explicitly pursue the possibility
that driving behavior of people in dense cities may be different from those in less dense
cities, even though their data supported this possibility. Their sample of 13 U.S. and
11 European cities clearly showed that the 1990 average density of the European subgroup
was about 3.5 times higher at 49.9 persons per hectare and just 14.2 in the North American
subgroup. In contrast, the average car use in the North American subgroup is almost
2.5 times higher at 11,155 km per capita and just 4517 for the European subgroup. The dif-
ference in driving behavior in cities with different density has been subjected to rigorous
quantitative analysis in the context or residential self-selection of driving in disaggregated
studies, which we elaborate on next.

One group of disaggregate studies continues to use density as the key determinant.
These studies use household data to control for observable driving differences between
households living in low- and high-density areas [23–26]. For example, Brownstone and
Golob [25] found that residential density influences car use. Comparing two households
that are similar in all aspects except residential density, a lower density of 1000 housing
units per square mile, which is about 40% of the mean value of 2500 housing units, implies
a positive difference of 1200 miles per year or 4.8% more miles. Duranton and Turner [26]
also found that a 10% increase in “residential density” leads to a 0.7% to 1% decline in
driving, when the effects from other variables are held constant. “Residential density” is
defined as the density of residents and jobs within a 10-km radius of where a driver lives.
Other measures of urban form do not have a measurable effect on driving behavior. Policy
implications from these studies suggest that it would be more costly to reduce the driving
difference through a densification process than through congestion pricing or increased
gasoline taxes.

The second group of disaggregate studies has used population as the key determinant.
For example, Chang et al. [27] compared a group of cities with less than 1 million inhabitants
to show a strong superliner scale at the exponent of 1.7, while another group of cities with
more than 3 million inhabitants showed a linear scale at an exponent of 1.0. Lu et al.’s [28]
disaggregate study on pollution concluded that the rate of population growth can aggravate
air pollution, but the impact is heterogenous. In mega cities, the rate of population growth
can improve air quality, and in small- and medium-size cities, the rate of population growth
can aggravate air pollution.

Finally, in an attempt to combine both population size and density to examine the
effects on urban CO2 emissions, Ribeiro et al. [29] proposed a generalized logistic model.
The model can generate decreasing or increasing returns to scale, but population size always
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has a greater effect on emissions than population density. They also suggested a possible
use of the IPAT model, which can use both population size and density simultaneously
as predictors.

2.2. Comparison of Transit Capacity and Usage: The U.S. versus Europe

We analyzed the data by separating into two groups: 66 North American (Canada and
the United States) cities and 98 other (mostly, European) cities. Separating into two groups
in our analysis is based on the expectation that the effect of the independent variable (dense,
population, & income) on the dependent variable would be different between the groups.

The primary factor that moderates the effects of independent variables on the depen-
dent variable is public transit system [30]. In general, it is known that there is a strong
correlation between population density and transit system usage. However, high density
does not necessarily result in increases in transit capacity and transit uses. Well established
transit system is expected to mitigate the effects of density, population size, and income
on traffic congestion by absorbing the demands for automobile uses. There are sufficient
evidences that in the US cities transit capacities and uses are significantly lower than in
European cities.

Comparing the differences of transit capacity and transit usage between the 11 metropoli-
tan cities in Europe versus 13 metropolitan U.S cities, Kenworthy and Laube [8] demon-
strated a much greater transit dependency of the European cities over the U.S cities.
As Table 1 shows, the overall transit capacity measured as transit service kilometers (km)
per person was 3.28 times longer at 92 km in the European cities over 28 km in the Ameri-
can cities.

Table 1. Comparing transit capacity and usage between the European and the U.S. cities (1990).

Cities Transit Service
km per Person

Rail Service Intensity
(Service km per Urban ha)

Percentage of Total Motorized
Passenger km on Transit

Percentage of Workers
Using Transit

European (11) 92 km 3651 km 22.6% 38.8%
American (13) 28 km 153 km 3.1% 9.0%

European
American 3.28 times 23.86 times 7.29 times 4.31 times

Source: Kenworthy and Laube [8].

The transit service km per person includes rail service km as well. The rail service
intensity measures as rail service km per urban hectare (ha) shows even a greater difference.
The European cities experienced 23.86 times higher intensity at 3651 km over just 153 km
in the U.S. cities. As for actual passenger travel using transit systems, the European cities
captured even a greater proportion of 22.6% over a tiny 3.1% realized by the U.S. cities,
which represented 7.27 times higher transit usage by the European cities. Another transit
usage measure is percentage of commuting workers using transit during peak hours.
Once again, 38.8% of commuters used transit systems in the European cities over just 9.0%
in the U.S. cities representing 4.31 times higher usage in the European cities. In short,
the transit dependence of the European cities is much greater than the U.S. cities, whereas
the automobile dependence is dominant in the U.S. cities.

A discrepancy in dependency on transit systems between the US and European cities
has been widen. For example, Freemark [31] in his comparison analysis with data of
2002–2018 period reported that the transit ridership in the U.S. urban cities had declined by
15% during 2010–2018 while that in the French counterparts had increased by 18% during
same period of time. With a few exceptions such as New York, Boston, and Houston,
people in the U.S. cities tend to prefer using their own cars instead of using public transit
system. Freemark [31] attributes the transit’s decline in the U.S. to some factors such as
low gas price, cultural influences, and economic differences from European ones. On the
contrary, the largest French cities had developed effective tram and bus services. Public
transit systems in French cities were designed to serve large and dense cities and a large
amount of resources has been invested to develop pedestrian-friendly facilities. As an
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additional evidence, Figure 1 shows that there is a clear demarcation between US and
Western European cities in terms of transit ridership per capita [32].
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 Figure 1. Public operating subsidies and transit ridership levels for selected US and Western European urban areas.

3. Method and Data

Ribeiro et al. [29] suggested that the well-known environmental principle of I = PAT
might be used as the analytical model [33–35]. The IPAT (I = PAT) model is a multiplicate
approach to assess the role of population (P), affluence (A), and technology(T), on envi-
ronmental impact (I). The model is not an equation but rather an identity. The IPAT is still
useful in determining which factors (driving forces) are most damaging to the environment.

The IPAT model was extended into the stochastic impacts by regression on population,
affluence and technology (STIRPAT) model which enabled to estimate the proportional
change in environmental impact per given proportional change in population.

The STIRPAT model is defined as

Ii = aPi
b Ai

cTi
dei (1)

where a is a constant, b c, and d are the exponents of P, A and T, respectively, that are to be
estimated and e is the residual or error term. Subscript i denotes the cross-sectional units,
namely cities in this paper.

To ease the task of estimating exponents, Equation (1) is converted into is log-log form
of Equation (2) by taking the natural log of both sides.

lnIi = ln(ai) + b[ln(pi)] + c[ln(Ai)] + d[ln(ti)] + ei (2)

The natural log is helpful as it converts non-linear variables to linear ones rendering
the results to interpret as percentage change. For example, b can be viewed as population
elasticity that measures the percentage change in environmental impact resulting from an
one percent change in population.

The STIRPAT model has been used to examine the relationship between population
size and CO2 emissions [29,36–40]. The STIRPAT model has also been used to examine the
impact of population, income, and/or technology in other areas such as material footprint,
human ecological footprint, and environmental efficiency of well-being [41–43].
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Although the STIRPAT model has not been used in the analysis of traffic congestion,
the use of the STIRPAT model conceptually may be appropriate. The reason is that TI scores
such as CO2 emission or other environmental and ecological measures may be greatly
influenced by underlying elements such as population size, income level, and technology.
Another reason for the use of the STIRPAT model is the ready availability of necessary data.

As for the measure for technology, there is no consensus on single measure of tech-
nology [44]. According to Cole and Neumayer [37], technology is a broad term which is
intended to reflect technological, cultural, and institutional determinants of environmental
impact. For example, Uddin et al. [45] have extensively used urbanization ratio measured
as percentage of population living in urban areas for technology in their STIRPAT model.
Wang et al. [46] also have used urbanization ratio, together with energy intensity for
technology factor in their STIRPAT model.

For this study, population density is used to represent technology factor in the STIRPAT
model, together with population size of city as P and income per capita of city as A,
as shown in Equation (3) as follows.

InYi = lna + b(InPi) + c(In Ii) + d (InPDi) + εi (3)

For the estimation of Equation (3), an ordinary least square method of cross-sectional
multivariate regression corrected for heteroskedasticity was used. Equation (3) was used
to analyze the impact of traffic congestion for the total groups of 164 cities, 66 cities, and
98 cities.

To avoid error caused from the artificial division of population subgroups, this research
uses the Hansen’s [47] threshold regression model to test the threshold effect of the population
size on traffic index. The single threshold regression model contains Equations (4) and (5)
as follows:

Yi = θ1xi + ei qi ≤ γ (4)

Yi = θ2xi + ei qi > γ (5)

where i represents the units of analysis which is a city; Yi represents the dependent variable
of traffic index; xi represents the explaining variables of population size (P), income per
capita (I), and population density (PD); θ1 and θ2 represent parameters to be estimated; qi
represents the threshold variable of population size used to split the sample into subgroups;
γ represents the threshold quantity; and ei represents the error term. According to the
variables selected in this research, the threshold model is expressed in Equations (6) and (7)
as follows:

InYi = θ1[InPi + InIi + InPDi] + ei , (Inqi ≤ Inγ) (6)

InYi = θ2[InPi + InIi + InPDi] + ei , (Inqi > Inγ) (7)

We, then, combine Equation (6) and Equation (7) using a dummy variable which
takes the value of one when the condition in parentheses is met, otherwise it becomes zero.
This combined equation is used as the estimation equation of this research. The generalized
threshold panel model has been extensively used in the field of energy consumption,
renewable energy development, carbon emission, regional technological innovation level
on sustainable development [48–53].

For data, the TomTom traffic index was downloaded from [9]. The 2016 TomTom traffic
index covered 390 cities in 48 countries. For multivariate analysis, GDP per city as well as
GDP per capita per city for 280 cities in the world for 2010 were downloaded from the World
Cities Report 2016 by UNHABITAT: http://wcr.unhabitat.org/ (accessed on 20 December
2020). By dividing GDP per city by GDP per capita per city, we obtained population
figures for 2010. Population density data were downloaded from the “Demographia
World Urban Areas and Population Projections 10th Annual Edition 6.1: 2010.7” at http:
//www.demographia.com/db-worldua2010.pdf (accessed on 20 December 2020).

We were able to generate data for 164 cities with complete matching data sets of
the traffic index, income per capita, population size, and population density for this

http://wcr.unhabitat.org/
http://www.demographia.com/db-worldua2010.pdf
http://www.demographia.com/db-worldua2010.pdf
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analysis. Figures 2–4 display 66 cities in the U.S. and 90 cities in Europe and 8 cities in
Australia and Mexico respectively. The location of each city in the map is identified in
number. Furthermore, each city has its traffic index listed. For example, Akron in the U.S.
is numbered as 1© in the map and has its traffic index ranked as T163 among the 164 cities.
In addition, Figures 5–8 provide rank distribution of 164 countries in traffic index, density,
population and income per capita.

Figure 2. 66 Cities in the U.S. and Canada. 1. Akron(163) 2. Albany(T149) 3. Albuquerque(T140) 4. Atlanta(T68)
5. Austin(T84) 6. Baltimore(T123) 7. Baton Rouge(T78) 8. Boston(T58) 9. Buffalo(T140) 10. Calgary(T115) 11. Charlotte(T135)
12. Chicago(T78) 13. Cincinnati(T149) 14. Cleveland(T156) 15. Colorado Springs(T128) 16. Columbia(T153) 17. Dal-
las(T128) 18. Dayton(164) 19. Denver(T115) 20. Detroit(T140) 21. Edmonton(T115) 22. El Paso(T135) 23. Fresno(T123)
24. Grand Rapids(T156) 25. Houston(T93) 26. Indianapolis(T159) 27. Jacksonville(T128) 28. Kansas City(T159) 29. Las Ve-
gas(T93) 30. Little Rock(T149) 31. Los Angeles(3) 32. Louisville(T135) 33. McAllen(T113) 34. Memphis(T135) 35. Miami(T41)
36. Milwaukee(T153) 37. Minneapolis(T140) 38. Montreal(T49) 39. Nashville(T100) 40. New Orleans(T100) 41. New York(T22)
42. Oklahoma City(T149) 43. Omaha(T159) 44. Orlando(T115) 45. Ottawa(T58) 46. Philadelphia(T100) 47. Phoenix(T140)
48. Pittsburgh(T123) 49. Portsmouth(T84) 50. Providence(T123) 51. Quebec(T93) 52. Raleigh(T128) 53. Richmond(T159)
54. Sacramento(T108) 55. Salt Lake City(T140) 56. San Antonio(T115) 57. San Diego(T68) 58. San Francisco(T11) 59. Seat-
tle(T25) 60. St. Louis(T153) 61. Toronto(T41) 62. Tucson(T115) 63. Tulsa(T156) 64. Vancouver(T11) 65. Washington(T49)
66. Winnipeg(T93).
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Figure 3. 90 Cities in Europe. 1. Amsterdam(T108) 2. Antwerp(T41) 3. Athens(T18) 4. Barcelona(T36) 5. Berlin(T49)
6. Bilbao(T140) 7. Birmingham(T78) 8. Bologna(T93) 9. Bordeaux(T36) 10. Bratislava(T84) 11. Bremen(T100) 12. Bris-
tol(T25) 13. Brussels(T14) 14. Budapest(T108) 15. Cardiff(T68) 16. Cologne(T25) 17. Copenhagen(T100) 18. Dresden(T78)
19. Dublin(T4) 20. Edinburgh(T7) 21. Florence(T78) 22. Frankfurt(T58) 23. Freiburg(T100) 24. Gdansk(T49) 25. Geneva(T20)
26. Ghent(T128) 27. Glasgow(T49) 28. Gothenburg(T100) 29. Graz(T49) 30. Grenoble(T58) 31. Hamburg(T30) 32. Hanover(T49)
33. Helsinki(T140) 34. Karlsuhe(T84) 35. Katowice(T135) 36. Krakow(T14) 37. Las Palmas(T68) 38. Leeds(T78) 39. Le-
icester(T33) 40. Leipzig(T93) 41. Lille(T108) 42. Lisbon(T20) 43. Liverpool(T41) 44. Ljublijana(T140) 45. Lodz(2) 46. Lon-
don(T7) 47. Lyon(T49) 48. Madrid(T84) 49. Malaga(T108) 50. Malmo(T128) 51. Manchester(T14) 52. Mannheim(T93)
53. Marseille(T7) 54. Milan(T41) 55. Montpellier(T36) 56. Munich(T41) 57. Nantes(T84) 58. Naples(T30) 59. Newcastle(T33)
60. Nice(T49) 61. Nottingham(T68) 62. Nuremberg(T41) 63. Oslo(T41) 64. Palermo(T4) 65. Paris(T14) 66. Porto(T68) 67. Poz-
nan(T25) 68. Prague(T58) 69. Rennes(T68) 70. Rome(T7) 71. Rotterdam(T123) 72. Rouen(T113) 73. Saint-Etienne(T115)
74. Seville(84) 75. Sheffield(T22) 76. Stockholm(T58) 77. Strasbourg(T58) 78. Stuttgart(T25) 79. Tallinn(T33) 80. Thessa-
lonica(T84) 81. Toulon(T58) 82. Toulouse(T58) 83. Turin(T84) 84. Utrecht(T128) 85. Valencia(T100) 86. Vienna(T36) 87. War-
saw(T18) 88. Wroclaw(T22) 89. Zaragoza(T115) 90. Zurich(T36).
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Figure 4. 8 Cities in Central America, South America, and Australia. 1. Adelaide(T68) 2. Brisbane(T58) 3. Gold Coast(T68) 4.
Melbourne(T30) 5. Mexico City(1) 6. Perth(T68) 7. Santiago(T4) 8. Sydney(T11).

Figure 5. Rank Distribution of Traffic Index.
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Figure 6. Rank Distribution of Density.

Figure 7. Rank Distribution of Population.
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Figure 8. Rank Distribution of Income.

The 164 cities were then further divided into two groups: (1) 66 U.S.-Canadian cities
and (2) 98 cities in 14 mostly European countries including Germany, United Kingdom,
France, Spain, Poland, Australia, Italy, Netherlands, Belgium, Norway, Switzerland, Ireland,
and Mexico. The population density of 66 cities was estimated at 3139 persons per square
mile, while the density of 98 cities was higher at 8169 persons, as shown in Appendix A
Table A1.

The averaged traffic index for the 98 cities was again higher at 29.3 over 20.5 for the
66 cities. As for income per capita, the average for the 66 cities was higher at $52,048 over
$39,636 for the 98 cities. Finally, the averaged population size for the 66 cities was again
higher at 2.598 million over 1.994 million for the 98 cities.

4. Analysis of Results

The correlation analysis of both dependent variable (traffic index) and three indepen-
dent variables (population, income, and density) is shown in Table 2. The results indicated
that statistically significant correlation between population size and population density
did not exist.

Table 2. Correlations among Variables.

In_Traffic Index In_Density In_Population In_Income

In_Traffic Index 1.000 - - -
In_Density 0.556 ** 1.000 - -

In_Population 0.351 ** 0.123 1.000 -
In_Income −0.257 ** −0.409 ** 0.27 ** 1.000

** Correlation is significant at the 0.05 level (2-tailed).

The results of the multivariate regression of the STIRPAT model on traffic congestion
index shown in Table 3 indicate that all three variables generated statistically significant
coefficients at less than 1% level for the aggregate group of 164 cities with a density
coefficient of 0.242, a population coefficient of 0.155, and an income coefficient of −0.20.
These coefficients indicate that a 1% increase in population density is expected to increase
traffic congestion by 0.242%, while the effects from population and income are held constant
for the 164 cities. A 1% increase in population is expected to increase traffic congestion by
0.155%. In other words, the impact from density is greater than the impact from population
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size for the 164 cities. However, a 1% increase in income is expected to reduce traffic
congestion by −0.2%, holding the effects from population and density constant.

Table 3. Multivariate Regression of Traffic Index by Aggregate Group of 164 Cities, Disaggregate
Groups of 98 Cities and 66 Cities.

Variable\Group Aggregate Group
(164 Cities)

Disaggregate Group 1
(66 Cities)

Disaggregate Group 2
(98 Cities)

ln_Density 0.242 ***
(0.039)

0.311 ***
(0.077)

−0.004
(0.042)

ln_Population 0.155 ***
(0.027)

0.207 ***
(0.039)

0.155 ***
(0.035)

ln_Income −0.200 **
(0.083)

−0.140
(0.142)

−0.137
(0.103)

Constant 1.050
(0.963)

−0.972
(1.553)

2.632
(1.014)

R2 0.412 0.472 0.208
Observation 164 66 98

*** Significant at 1% level, ** Significant at 5% level.

The results of the same multivariate regression of the STIRPAT model on traffic
congestion for the two disaggregate subgroups displayed a substantial difference. For the
98 high density cities primarily from Europe, only the population coefficient met less than
the 1% level of statistical test of significance at 0.155 which was identical to the population
coefficient of whole 164 cities at 0.155. The density coefficient displayed a marginal value
of −0.004, while the income coefficient was −0.137.

In contrast, the 66 low density cities in the US-Canada had both density and population
coefficients meeting the statistical test of significance at less than the 1% level, while their
income coefficient failed to meet the statistical test of significance. In fact, the impact of
density and population became greater at 0.311 and 0.207 respectively, compared to the
coefficients for whole 164 cities. On the other hand, the income coefficients realized a
negative value of −0.140 while feeling to meet the statistical test of significance.

In short, the results from the aggregate group of 164 cities and the first disaggregate
group of low density 66 cities indicated that density was the key determinant whereas
the second disaggregate group of high density 98 cities indicated that population was the
exclusive determinant for traffic congestion, as shown in Figure 9.

In order to pursue now the question of urban scaling of traffic congestion [18–22,27],
population size of cities for whole 164 cities were analyzed by the use of threshold panel
regression [54]. The results as shown in Table 4 indicate that the optimal number of
threshold was just one with the threshold value of ln14.675 or the population size of
2.138 million inhabitants. In other words, the aggregate group of 164 cities was divided
into Region 1 or 46 cities with more than 2.138 million population and Region 2 of 113 cities
with less than 2.138 million population.

All three independent variables generated statistically significant coefficients at less
than the 1% level for the income and density coefficients and less than 5% level for the
population coefficient from the Region 1. However, only the density and population
coefficients from the Region 2 met the statistical test of significance at less than the 1% level.



Sustainability 2021, 13, 4280 13 of 21

Figure 9. Density and Population Coefficient from Multivariate Regression from an Aggregate Group of 164 Cities,
and Disaggregate Groups of 98 Cities and 66 Cities. *** Significant at 1% level.

Table 4. Threshold Multivariate Regression of Traffic Index for Aggregate Group of 164 Cities.

In_Traffic Index Coef. Std. Err. z P > z 95% Conf. Interval

Region 1
(46 Cities)

ln_Density 0.227 0.040 5.620 0.000 0.148 0.307
ln_Population 0.149 0.062 2.410 0.016 0.028 0.270

ln_Income −0.349 0.100 −3.470 0.001 −0.545 −0.152
In_cons 2.845 1.312 2.170 0.030 0.273 5.417

Region 2
(118 Cities)

ln_Density 0.327 0.094 3.480 0.001 0.143 0.511
ln_Population 0.209 0.080 2.630 0.009 0.053 0.365

ln_Income 0.165 0.159 1.040 0.300 −0.147 0.477
In_cons −4.447 2.404 −1.850 0.064 −9.159 0.266

Number of Threshold = 1.

Comparing the population coefficient for the 46 large population cities at 0.149 to
that of 118 smaller population cities at 0.209 supported a moderate scale advantage for
the subgroup of large population size cities. To explain, a 1% increase of population
size in the larger population city subgroup (Region 1) generated only 0.149% increase
of traffic congestion, while a 1% increase of population size in the smaller population
size subgroup would generate 0.209%, supporting the urban scale advantage in traffic
congestion, as shown on Figure 10.

It is interesting to note that the density coefficient also displayed urban scale advantage
in that a 1% increase in density generated smaller increase of congestion at 0.277% in
the large population city subgroup overcome small population city subgroup at 0.327%.
The same urban scaling advantage did exist on income in that a 1% increase in income
generated a larger reduction of congestion at 0.349% in the large population city subgroup
over −0.2% for the aggregate group of 164 cities. Finally, between density and population,
density played somewhat greater impact to traffic congestion in large population subgroup
as well as in small population subgroup, supporting the earlier finding from the whole
164 cities.
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Figure 10. Density and Population Coefficient from Threshold Multivariate Regression for Aggregate Group of 164 Cities,
and Population Subgroups of 118 Cities and 46 Cities. *** Significant at 1% level. ** Significant at 5% level.

5. Conclusions

The key findings of this research can be summarized as follows. First, the results of
multivariate regression on traffic congestion using the STIRPAT model for the aggregate
group of 164 cities from 16 countries generated the most influential factor to be density
with its coefficient at 0.242 over the population coefficient at 0.156. On the other hand,
the income coefficient at −0.20 reduced congestion as income per capita in cities increased.
All three coefficients met the statistical test of significance.

Second, the results from the same STIRPAT analysis for the disaggregate group of
66 low-density US-Canadian cities supported the results from the aggregate group with
even higher density coefficient at 0.311 and a population coefficient at 0.207, both meet-
ing the statistical test of significance. However, the income coefficient with a value of
−0.140 failed to meet the statistical test of significance.

Third, the results of traffic congestion from the other disaggregate group of 98 high-
density cities primarily from Europe generated that population coefficient at 0.155 was the
only influential factor for traffic congestion. The density and income coefficients failed to
meet the statistical test of significance. Besides, the density coefficient carried a very low
value of 0.004.

Fourth, the use of threshold panel regression enabled the division of whole 164 cities
into two regional subgroups of 46 larger population cities and the remaining 118 smaller
population cities. Comparing the population coefficients between the subgroup of 46 larger
population size cites and the subgroup of 118 smaller population-size cities, the same
1% increase in population resulted in 0.149% and 0.209% increase of traffic congestion
respectively. Put it another way, the larger city would generate about 35% less traffic
congestion from the same 1% increase of population size, compared to the smaller city.

Fifth, as for the difference of impact among the three variables, the large population
subgroup of 46 cities displayed the order of impact from income at −0.349, followed by
density at +0.227 and population at 0.149. The smaller population subgroup of 118 cities
displayed the order of impact from density at +0.327 followed by population at +0.209.

In short, combining the use of STIRPAT model and threshold panel regression, we have
analyzed traffic congestion in the aggregate group of 164 cities together with four disaggre-
gate groups of 66 low-density cities, 98 high-density cities, 46 large population cities and
118 small population cities. Among the three independent variables of density, population,
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and income, statistically significant impact exercised by income was limited only in the
two case of the aggregate group and the disaggregate group of large population cities.
Therefore, focusing on the relative impact between remaining variables of density and
population, population exercised the primary impact to congestion only in one case of the
98 high-density cities. In the remaining four cases, density has exercised greater impact
over population to determine the level of traffic congestion.

These findings from the aggregate group indicate that traffic congestion in cities is
influenced by varying density and population sizes. The findings from the disaggregate
samples highlighted a clear difference in the critical role of density in low-density cities
and the exclusive role of population size in high-density cities. Further threshold analysis
by population-based subgroups in the aggregate group established the existence of both a
population and density scale advantage to traffic congestion.

This study has several implications for researchers and city planners. For evaluation
and planning of traffic congestion, individual cities may want to begin their analysis
with an aggregate sample of cities and use all three determinants of density, population,
and income since this research established statistically significant coefficients for all three
factors. Next, if a disaggregate analysis between cities with low versus high density is
possible, then a high-density city may wish to focus on analyzing a disaggregate group
of high-density cities and use population and other determinants, because an additional
increase of density in highly compact cities may have little impact on traffic congestion
as suggested by Kenworthy and Laube [8] and many others. In contrast, the population
scale advantage of congestion indicates that cities with a larger population may experience
proportionately less congestion.

A low-density city, however, may wish to focus on a disaggregate group of low-
density cities and use density as the primary determinant together with population and
other variables. This research estimated that the size of the density coefficient was nearly
82 percent larger than the population coefficient from the 64 low-density cities (0.351/0.193).
However, this study also indicates that using both density and population as determinants
is preferred, as both variables met the statistical test of significance.

In summary, the use of aggregate analysis where high- and low-density cities are
combined may generate both density and population coefficients, which may not always
be appropriate to evaluate traffic congestion for individual cities with either low or high
density. In other words, the results from an aggregate study with a large cross-country
sample needs to be verified with appropriately designed disaggregate studies before
developing specific policy implications for an individual city or country. Furthermore,
empirical findings of population scale advantage on traffic congestion provide valuable
supporting evidence to earlier studies of urban scaling of traffic congestion [21,22,27].

This study has several limitations that provide opportunities for future studies. Due to
the unavailability of relevant data, this study was unable to account for several other
possible determining factors for traffic congestion. These other factors may include au-
tomobile density, percent of the commuting population, traffic control systems, traffic
regulations, road conditions, weather, and many other factors that vary across cities in
multiple countries. The use of the TomTom traffic index may be another limitation in that
the index cannot be verified by other data sources.

Despite these limitations, this research has established the role of both population
density and population size of cities as important determining factors in traffic congestion.
Equally important is that it is essential to use disaggregate samples based on density
and/or population in future studies of traffic congestion.
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Appendix A

Table A1. Traffic Index, Population, Income and Density for the Total Group of 164 Cities.

Rank of
Population City Traffic Index (%) Population (2010) Income per Capita

(in $)
Density (Population

per m2)

1 Mexico City 66 19,255,921 20,215.63 18,900
2 Los Angeles 45 17,053,745 51,053.36 6400
3 New York 35 16,539,429 71,109.83 4600
4 London 40 11,793,530 52,237.95 13,200
5 Paris 38 11,693,219 60,450.15 8700
6 Chicago 26 9,461,104 56,441.72 3900
7 San Francisco 39 6,848,028 76,564.96 5600
8 Madrid 25 6,507,502 43,229.84 14,100
9 Toronto 30 6,418,623 40,672.78 6400

10 Santiago 43 6,393,830 21,815.31 15,800
11 Houston 24 5,920,500 67,964.36 3300
12 Washington 29 5,636,185 77,356.4 3400
13 Miami 30 5,564,641 45,055.92 4400
14 Sydney 39 4,555,516 41,163.05 5300
15 Atlanta 27 4,377,197 58,611.71 1800
16 Berlin 29 4,374,708 36,532.48 9700
17 Montreal 29 4,169,714 34,588.1 5100
18 Dallas 18 4,145,124 66,430.82 2900
19 Melbourne 33 4,105,858 37,940.97 4100
20 Milan 30 4,060,624 58,845.9 4700
21 Philadelphia 23 4,024,830 58,040.46 2900
22 Rome 40 4,008,095 48,383.29 8300
23 Detroit 16 3,863,924 48,862.76 3100
24 Phoenix 16 3,817,117 46,708.03 3600
25 Barcelona 31 3,675,206 38,232.79 13,100
26 Boston 28 3,639,144 80,446.39 2200
27 Athens 37 3,563,607 41,327.19 14,100
28 Naples 33 3,552,568 22,693.61 10,000
29 Minneapolis 16 3,348,859 59,931.46 2700
30 San Diego 27 3,095,313 56,602.03 3400
31 Hamburg 33 2,984,966 52,203.59 7100
32 Warsaw 37 2,981,198 43,220.62 9600
33 Budapest 22 2,846,464 36,383.2 6000
34 Munich 30 2,844,749 60,969.98 9600
35 Lisbon 36 2,797,612 38,308.21 6300
36 Vienna 31 2,683,251 47,076.79 9200
37 Seattle 34 2,644,466 81,820.3 2800
38 Katowice 17 2,628,207 23,544.08 8800
39 Saint Louis (US) 13 2,559,926 50,708.89 2500
40 Denver 20 2,551,341 60,606.95 4000
41 Frankfurt 28 2,517,805 56,430.53 8800
42 Brussels 38 2,485,480 54,631.33 5600
43 Amsterdam 22 2,360,958 51,664.7 6900
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Table A1. Cont.

Rank of
Population City Traffic Index (%) Population (2010) Income per Capita

(in $)
Density (Population

per m2)

44 Vancouver 39 2,312,497 38,896.62 4500
45 Sacramento/Roseville 22 2,149,127 44,583.68 3800
46 San Antonio 20 2,142,508 38,053.07 3300
47 Orlando 20 2,134,411 47,411.67 2600
48 Brisbane 28 2,108,348 40,495.97 2400
49 Cincinnati 14 2,107,074 49,612.88 2200
50 Kansas City 11 2,009,344 53,458.74 2300
51 Las Vegas 24 1,995,215 43,392.82 4600
52 Copenhagen 23 1,989,871 49,396.2 6100
53 Stockholm 28 1,964,829 59,970.73 8600
54 Baltimore 19 1,957,901 57,239.36 3000
55 Stuttgart 34 1,954,756 52,425.89 7900
56 Cologne 34 1,903,154 46,880.74 5600
57 Lyon 29 1,894,945 44,700.19 3800
58 Birmingham (UK) 26 1,884,199 31,555.11 9900
59 Manchester 38 1,841,382 37,290.18 10,400
60 Prague 28 1,829,843 47,763.9 10,900
61 Perth 27 1,781,132 64,368.88 3100
62 Turin 25 1,747,614 39,019 7000
63 Marseille 40 1,722,236 37,015.14 3100
64 Austin 25 1,716,283 51,069.08 2800
65 Indianapolis 11 1,658,600 63,942.48 2200
66 Dublin 43 1,650,202 57,273.71 7400
67 Valencia 23 1,570,517 30,441.55 11,200
68 Milwaukee 13 1,555,908 56,077.22 2700
69 Cleveland 12 1,510,163 62,025.09 2800
70 Rotterdam 19 1,484,830 45,676.02 6400
71 Helsinki 16 1,455,677 53,154.43 6100
72 Seville 25 1,421,045 26,445.16 14,400
73 Ottawa-Gatineau 28 1,386,544 39,189.63 4300
74 Kraków 38 1,351,831 24,237.5 8200
75 Lille 22 1,349,194 31,022.56 5700
76 Jacksonville 18 1,345,596 42,674.77 2100
77 Memphis 17 1,324,829 47,111.74 2400
78 Porto 27 1,300,285 25,300.07 7200
79 Charlotte 17 1,298,931 69,592.61 1700
80 Calgary 20 1,271,737 61,957.94 3600
81 Adelaide 27 1,253,097 36,662.65 3600
82 Oklahoma City 14 1,252,987 48,159.32 2300
83 Mannheim 24 1,240,964 42,997.92 8900
84 Nashville 23 1,239,565 57,311.23 1700
85 Louisville 17 1,235,708 47,104.17 2200
86 Oslo 30 1,225,202 60,611.41 8300
87 Pittsburgh 19 1,223,423 65,591.38 2100
88 Hanover 29 1,222,773 43,258.58 6600
89 Toulouse 28 1,217,316 39,352.55 2700
90 Zurich 31 1,206,312 61,496.19 7600
91 New Orleans 23 1,189,866 65,883.89 5100
92 Edmonton 20 1,169,701 61,957.94 2600
93 Nuremberg 30 1,166,976 45,539.94 7800
94 Leeds 26 1,166,267 36,564.48 10,500
95 Buffalo 16 1,135,509 41,937.14 2700
96 Raleigh 18 1,130,641 52,516.23 1700
97 Salt Lake City 16 1,125,301 59,997.28 3800
98 Bordeaux 31 1,121,983 35,859.6 2000
99 Gdansk 29 1,091,850 24,647.37 12,900
100 Fresno 19 1,081,742 32,741.63 4000
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Table A1. Cont.

Rank of
Population City Traffic Index (%) Population (2010) Income per Capita

(in $)
Density (Population

per m2)

101 Antwerp 30 1,053,725 45,242.08 3600
102 Newcastle 32 1,050,561 26,967.74 10,800
103 Bremen 23 1,025,580 42,069.64 6200
104 Bilbao 16 997,311 39,892.96 15,000
105 Tucson 20 980,263 33,647.09 2500
106 Thessalonica 25 957,946 23,153.73 10,700
107 Lódz 51 956,156 23,413.22 13,300
108 Tulsa 12 948,014 50,150.1 2100
109 Glasgow 29 947,808 38,793.74 8400
110 Palermo 43 935,921 23,983.38 13,400
111 Poznan 34 934,001 33,721.75 7100
112 Liverpool 30 929,014 32,751.69 11,400
113 Albuquerque 16 887,077 43,740.28 2700
114 Sheffield 35 880,236 27,884.3 10,200
115 Gothenburg 23 877,149 41,114.96 6700
116 Albany 14 870,710 49,349.38 2000
117 Nantes 25 870,045 35,281.28 3100
118 Omaha 11 865,350 55,089.85 2800
119 Nice 29 845,186 36,935.75 3400
120 Providence 19 842,700 46,882.64 2300
121 Leipzig 24 837,610 31,192.13 5200
122 Dresden 26 836,995 31,540.9 5800
123 Nottingham 27 835,625 31,018.8 10,800
124 Málaga 22 834,023 24,858.77 9200
125 Wroclaw 35 832,974 28,682.28 12,500
126 Zaragoza 20 825,837 36,155.34 14,700
127 Quebec 24 820,529 34,588.1 2500
128 El Paso 17 804,122 30,984.07 3100
129 Winnipeg 24 803,601 36,342.14 3700
130 Bristol 34 795,480 43,403.14 10,200
131 Geneva 36 785,022 54,529.92 7400
132 McAllen 21 774,768 18,937.26 1700
133 Strasbourg 28 758,724 35,761.87 5000
134 Bologna 24 745,254 48,110.43 10,400
135 Edinburgh 40 727,619 44,885.33 9100
136 Florence 26 723,164 44,815.39 7100
137 Utrecht 18 716,648 52,927.46 9500
138 Bratislava 25 715,455 54,881.97 8700
139 Rouen 21 698,385 32,486.72 3800
140 Dayton 9 696,726 44,823.93 2200
141 Karlsruhe 25 686,938 48,127.25 7600
142 Rennes 27 671,929 34,897.79 3800
143 Little Rock 14 671,459 55,966.19 1800
144 Leicester 32 660,817 30,950.14 11,200
145 Las Palmas 27 658,957 27,249.89 17,500
146 Malmö 18 656,834 37,027.86 9300
147 Grenoble 28 649,285 34,839.83 3300
148 Columbia 13 646,877 44,153.68 1600
149 Baton Rouge 26 645,639 55,743.22 1700
150 Colorado Springs 18 645,626 40,548.24 2400
151 Cardiff 27 640,632 30,532.13 11,200
152 Montpellier 31 635,897 32,078.6 4800
153 Graz 29 608,420 41,510.68 3700
154 Grand Rapids 12 602,622 49,789.09 2100
155 Portsmouth 25 577,191 39,255.57 12,100



Sustainability 2021, 13, 4280 19 of 21

Table A1. Cont.

Rank of
Population City Traffic Index (%) Population (2010) Income per Capita

(in $)
Density (Population

per m2)

156 Ghent 18 576,408 35,359.67 4700
157 Ljubljana 16 567,097 38,662.37 10,700
158 Toulon 28 547,702 27,216.78 2000
159 Akron 10 541,781 44,418.32 1900
160 Tallinn 32 530,760 31,661.92 5700
161 Freiburg im Breisgau 23 527,581 39,673.2 12,400
162 Saint-Étienne 20 520,667 28,743.96 3300

163 Gold Coast-Tweed
Heads 27 519,630 40,495.97 2500

164 Richmond 11 511,149 71,732.51 1900

Average

164 Cities
(Total) 25.8 2,236,921 44,631.82 6145

66 Cities
(U.S.-Canada) 20.5 2,598,129 52,048.61 3139

98 Cities
(Remaining
countries)

29.3 1,993,658 39,636.83 8169
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