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Abstract: The application of recycled coarse aggregates (RCA) in high-performance concrete (HPC)
was analyzed in the article. In the paper, the behavior of HPC with coarse recycled aggregate and
natural coarse aggregate (NCA) was compared. Short-term experiments were conducted, including
concrete deformation, deflection, load bearing capacity, and cracking of beams. The analysis involved
reinforced concrete T-beams made in 100% of RCA or NCA. The studies indicated that the beams
with recycled aggregate are characterized by greater deflection and 7.6% lower load bearing capacity
in comparison to the beams with NCA. Substitution of coarse natural aggregate with RCA reduced
the compressive and tensile strengths by 20 and 26 (%), whereas and the modulus of elasticity was
decreased by 15%.

Keywords: recycled aggregates (RA); recycled coarse aggregates concrete (RCAC); high performance
concrete (HPC); reinforced concrete beams

1. Introduction

One of the greatest problems connected with sustainable development is the depletion
of global natural resources. The global construction industry uses over 40 billion tons of
aggregates per year, with even up to 4 billion tons corresponding to Europe. It should be
noted that up to 91% of aggregates used in Europe are of natural aggregates [1]. Along
with the development of the construction industry, the amount of construction waste
(i.e., concrete, masonry and ceramic rubble, plaster, wallpaper residues, adhesives, paints,
door and window woodwork, and installation waste) systematically increases, and their
storage is problematic [2]. Construction waste mainly originates from demolition and
dismantling of unused concrete structures, road and railway construction, the destructive
effects of natural disasters, as well as by-products from production plants [3]. According
to the European statistics, in 2016 the construction wastes constituted over 36% of total
wastes generated in the EU [4]. Therefore, the possibility of using recycled aggregates (RA)
becomes increasingly important. Such aggregate contributes to reduced exploitation of
natural resources, costs of construction waste disposal as well as supports the sustainable
development of the construction industry [5,6].

The International Union of Laboratories and Experts in Construction Materials, Sys-
tems and Structures (RILEM) [7] distinguishes three types of recycled aggregates:

• Type I—aggregate from masonry rubble;
• Type II—aggregate from concrete rubble;
• Type III—aggregates comprising at least 80% natural aggregates.

At present, recycled aggregate is most often utilized in road construction as a road
base, sidewalk base, as well as pavement for squares and parking lots [8–11]. This is
connected with certain limitations of the aggregate obtained from concrete. Numerous
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studies indicate that recycled aggregate is characterized by lower density and greater water
absorptivity improvement [12–16]. According to Surendar et al. [17], water absorptivity
increases along with the increase in the recycled aggregate substitution of natural aggregate.
Moreover, recycled aggregate is characterized by greater absorptivity and increases the
water demand, which may affect the hydration process [18]. The aggregate obtained from
concrete rubble indicates lower mechanical strength than natural aggregates as well as
greater susceptibility to abrasion and crushing value. Studies proved that the compressive
strength of concrete decreases with the increasing degree of natural aggregate substitution
with recycled aggregate [12–16,19].

The main issue with the aggregates from concrete rubble, is the double interfacial
transition zone (ITZ) between the aggregate and the old adhered mortar as well as between
the new and old ITZ. The old paste is porous and contains microcracks, which contributes
to the increased absorptivity of the recycled aggregate [17]. Numerous studies prove that
the content of old adhered mortar increases along with the aggregate crushing degree,
which is connected with the technological production process [6]. Suryawanshi et al. [13]
observed that there is a relationship between the fraction size of the recycled aggregate and
the amount of the remaining adhered mortar. According to the authors, the amount of old
adhered mortar encapsulating the aggregate increases as the aggregate size decreases. This
is connected with the aggregate processing method. As the concrete is being crushed into
finer aggregate, old mortar accumulates in the pores of fine aggregate [14].

These issues can be solved by using high strength recycled aggregates. Earlier stud-
ies [20] indicated that the concrete with recycled aggregate from crushed high performance
concrete (HPC) has much more favorable properties compared with the concrete containing
the aggregate from ordinary concretes. Adjukiewicz et al. [21] observed that high strength
concretes can be obtained with 100% recycled coarse aggregate from the concretes charac-
terized by the strength of 60 MPa. Gonzalez-Corominas et al. [22] observed an increase in
the compressive strength resulting from the incorporation of aggregates from the concretes
with the strength of 100 MPa. HPC comprises, i.a. microsilica, which reduces porosity
and permeability of concrete [23–25]. Studies prove [26] that HPC with recycled aggregate
achieves similar compressive strength to that of the concretes with natural aggregate.

The aim of the work was to analyze of the results of experimental studies on high
strength recycled aggregate in high performance concretes (HPC). Short-term experiments
were conducted, including elastic modulus, deflection, load-bearing capacity, and cracks in
the beam under increasing load.

2. Materials and Methods
2.1. Materials

Two concrete recipes were devised:

• NCAC—high performance concrete with natural aggregate
• RCAC—recycled coarse HPC aggregate concrete.

Detailed composition of concretes is presented in Table 1.

Table 1. Composition of concrete (kg/m3).

Component NCA RCA

Portland cement CEM I 52.5 R 450 450
Sand 0–2.0 mm 630 630

Natural coarse aggregate—basalt 2.0–8.0 mm 1070 -
Recycled coarse aggregate—concrete 2.0–8.0 mm - 1070

Silica fume 45 45
Superplasticizer 8.1 8.1

Water 119 119

CEM I 52.5 R Portland cement (Grupa Ożarów S.A., Poland) was used as the main
binder. The cement meets all the requirements in line with the EN-197–1:2012 [27] and
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PN-B-19707:2013 [28] standards. The cement properties are presented in Table 2. Silica
fume with the density of 2.40 g/cm3 was used as a pozzolanic additive to the binder
in the amount of 10% (w/w), in line with the requirements of the PN-EN 13263-1:2005
standard [29]. The w/c (water/cement) ratio in both cases amounted to 0.26. In turn, the
w/b (water/binder) ratio equaled 0.24.

Table 2. Properties of CEM I 52.5 R [30].

Parameters Unit

Specific surface (cm2/g) 4530
Loss on ignition by mass cement (%) 3.10

Insoluble parts (%) 0.64
SO3 content (%) 2.87
Cl content (%) 0.05

Na2Oeq content (%) 0.65
Initial setting time (min) 157

Compressive strength
after 2 days

after 28 days (MPa) 35.80
63.70

Volume stability (mm) 0.20

The chemical analysis of silica fume is presented in Table 3. The data has been taken
from a paper previously published by one of the authors [31].

Table 3. Chemical composition of the silica fume [31].

Compositions SiO2 Al2O3 Fe2O3 CaO SO3 Na2O3 K2O Other Alkali Compounds

Unit (%) 90 0.4 0.4 1.6 0.4 0.5 2.2 1.9

Natural quartz sand with the density of 0.65 g/cm3 and fraction size of 0.0–2.0 mm
were employed as natural fine aggregate (NFA). In NCA, natural basalt (fraction size
2.0–8.0 mm) was used as coarse aggregate; it was characterized by the following parame-
ters: specific density—2.93 g/cm3, bulk density—2.92 g/cm3, absorptivity—0.31%, com-
pressive strength—280 MPa, frost resistance—F2.

Recycled aggregate (fraction size 2.0–8.0) with the following parameters: specific
density—2.80 g/cm3, bulk density—2.60 g/cm3, absorptivity—0.78%, compressive strength
–155 MPa, frost resistance—F2, was obtained through crushing of HPC characterized by the
compressive strength of 155 MPA. A jaw crusher with adjustable grinding degree was used
for this purpose. Then, the aggregate was passed through sieves, obtaining the fraction
with the size of 2.0–4.0 mm (Figure 1a) and 4.0–8.0 mm (Figure 1b) fractions. The chemical
composition of the aggregates is presented in Table 4. The data have been taken from a
paper published by one of the authors [30].

Natural coarse aggregate and recycled aggregate were added to the concrete in the
following way:

• 33% mass of coarse aggregate—2.0–4.0 mm fraction size;
• 67% mass of coarse aggregate—4.0–8.0 mm fraction size.

Waste aggregate was classified as RCAC II (aggregate from concrete rubble), according
to the RILEM classification [7].

In order to reduce the mixing water, new generation polycarboxylic superplasticizer
with the density of 1.08 g/cm3 and pH 4.0 was used in the amount of 1.8% cement mass
(w/w) [31]. Owing to the surface absorption phenomenon and the effect of spatial particle
separation acting upon cement grains, the additive accelerates curing, as well as improves
the early strength and the workability of fresh mixture [31].
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Figure 1. Recycled high performance concrete (HPC) aggregate: (a) 4.0–8.0 mm fraction; (b) 2.0–
4.0 mm fraction.

Table 4. Chemical composition of the aggregates (%) [30].

Compositions Unit NFA NCA RCA

SiO2 (%) 95.2 48.5 26.6
Al2O3 (%) 2.0 13.8 23.2
FeO (%) - 10.5 2.4

Fe2O3 (%) 0.6 - -
CaO (%) 0.45 10.0 35.3
MgO (%) - 12.2 2.5
TiO2 (%) - 0.9 0.3
K2O (%) - 0.1 3.2

Other alkali compounds (%) - 4.0 6.5

2.2. Methods

The concrete samples were prepared in line with PN-EN 12390-1:2013-03 [32] and
PN-EN 12390-2:2019-07 [33]. The samples were permanently marked and stored at a
temperature of (20 ± 5) ◦C. Directly after the preparation of samples, they were tightly
covered with foil protecting against the evaporation of water from their surface. After two
days, the samples were demolded and kept in water at a temperature of (20 ± 2) ◦C and
relative air humidity ≥ 95% until the experiments were conducted.

The compressive strength was determined on 3 cubic samples with edge length of
100 mm, according to PN-EN 12390-3:2019-07 [34]. The test was performed after 7, 14, and
28 days of curing in water at a temperature of (20 ± 2) ◦C.

Tensile test during four-point bending after 28 days of curing was determined on 3
cuboid samples with the dimensions of 100 × 100 × 400 mm, in line with PN-EN 12390-
5:2019-08 [35].

Secant modulus of elasticity was determined in accordance with the PN-EN 12390-
13:2014-02 standard [36] on cylindrical samples with the diameter of 150 mm and height
of 300 mm. The measurements of dislocations were performed using an extensometer
with the base of 100 mm. The modulus of elasticity test was preceded by determining
the compressive strength of cylindrical samples, in accordance with PN-EN 12390-3:2019-
07 [34], in order to determine the upper limit of compressive force.

The modulus of elasticity of concrete was calculated based on the formula below:

Ecm =
σG − σD(

ε′G+ε′′ G+ε′′′ G
3

)
−

(
ε′D+ε′′ D+ε′′′ D

3

) (GPa) (1)

where
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εG–deformation at the upper limit of the force, which is 250 kN (this value is governed by
the maximum pressure force that can be generated by the operated testing machine);
εD–deformation at the lower limit of the force, amounting to 20 kN (this value is governed
by the minimum pressure force causing first visible deflections);
σG—stresses at the upper limit of the force;
σD—stresses at the lower limit of the force.

Measurement of deflections was performed on 3 reinforced concrete T-beams with the
dimensions and static diagram shown in Figure 2.
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Figure 2. Static diagram of the reinforced concrete T-beam (mm).

The beams were reinforced from the top and bottom with two ∅8 mm bars, whereas
rebar stirrups were made of smooth steel with the diameter of ∅3 mm. The main reinforce-
ment was made of B500 steel with the yield strength of Re = 500 MPa, in line with Technical
Approval AT-15-4648/2006 [37]. Steel spacers welded to the bottom reinforcement ensure
1 cm cover of the lower reinforcement. The reinforcement scheme was identical for all
beams. The measurements of deflections were performed using dislocation sensors with
the approximate accuracy of the measurement equal to 0.001 mm, placed in three spots:
above the left support, above the right support and in the middle of the beam span. The
sensors were reset after applying the load of 5 kN. The specimens were subjected to load
until failure at a loading rate of 50 N/s. The measurements were performed after increasing
the load by 5 kN increments until beam destruction. The reinforcement scheme of the beam
is presented in Figure 3.
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Figure 3. Reinforcement scheme of T-beam (mm).

The flexural bending capacity was determined on reinforced concrete T-beams with
the dimensions presented in Figure 2 as well as reinforcement shown in Figure 3. The tests
were conducted until the beams were destroyed.

The cracks tests were performed on T-beams with the dimensions shown in Figure 3.
The loading was gradually increased in 5 kN increments. In order to facilitate the observa-
tion of the appearing of cracks, the beam surface was painted white. The appearing cracks
or development of the existing ones were marked on the beam surface.
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3. Results and Discussion

The compressive strength values, measured after three periods of curing (7, 14, 28 days)
as well as tensile bending strength after 28 days of curing are presented in Table 5, as well as
Figures 4 and 5.

Table 5. Compressive strength of concretes with natural and recycled aggregates.

Compressive
Strength fcm
after 7 Days

Compressive
Strength fcm
after 14 Days

Compressive
Strength fcm
after 28 Days

Flexural
Strength ffm
after 28 Days

(MPa) (MPa) (MPa) (MPa)

NCAC 106.7 117.4 127.2 9.2
SD 4.21 2.44 1.23 0.90
CV 3.94 2.08 0.97 10.34

RCAC 90.7 95.6 101.4 6.8
SD 1.61 1.05 3.82 0.67
CV 1.77 1.10 3.77 9.74

SD—standard deviation; CV—coefficient of variation, (%).
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The results indicate that the concrete made of recycled aggregate is characterized by
lower compressive strength in each of the curing periods (Figure 4) and 26% lower flexural
strength after 28 days (Figure 5). It was also observed that the percentage of compressive
strength reduction decreased progressively with time. While the early strength of concrete
with recycled concrete aggregate after 7 days was 15% lower in comparison to the concrete
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with natural aggregate, after 28 days of curing, this difference increased to 20%. The
concretes with recycled aggregate were also characterized by greater compressive strength
increase after 7–28 days, compared to NCAC.

A reduction in the compressive strength of the concrete containing recycled aggre-
gate has already been described in numerous publications [38–42]. This phenomenon is
connected with the presence of old cement mortar and microcracks appearing during the
crushing of concrete [38]. The concrete with recycled aggregate contains double interfacial
transition zones (ITZ) between the old adhered mortar and new ITZ [39]. Due to the poros-
ity of the old adhered mortar, ITZ between the old and new mortar is characterized by low
adhesion and high water absorption [40]. As a result, the concrete with recycled aggregate
is characterized by lower strength than the concrete with natural aggregate. Moreover,
recycled aggregate with higher capillary absorption compared to natural aggregate results
in the supply of insufficient amount of water required for the hydration of cement particles,
thus forming weaker C-S-H phase [41,42]. The studies on the HPC with recycled aggregate
were conducted by Tu et al. [41]. Their results show that the samples containing solely
recycled aggregate achieve 20–30 (%) lower compressive strength compared with the HPC
comprising mixed aggregate (recycled coarse aggregate and natural fine aggregate) during
all curing periods. Mohammed et al. [43] noted that the concretes with fcm,28 = 70 MPa,
reached 14% lower compressive strength when the natural aggregate was completely
substituted with recycled aggregate and 3% lower when the substitution amounted to
50%. The concretes with recycled aggregate also achieved lower flexural strength than the
concrete with recycled aggregate. The authors [43] also observed a reduction in flexural
strength of 18 and 5 (%) at 50 and 100 (%) aggregate substitution, respectively, compared to
the reference concrete.

Moreover, Andreu et al. [26] observed that HPC with recycled aggregate achieved
similar or higher tensile bending strength compared to the concrete with natural aggregate.
Complete substitution of natural aggregate with the recycled aggregate obtained from the
concrete with the strength of 40 MPa reduced the flexural strength by about 20%. In turn,
the application of concrete aggregate with higher strength (60, 100 MPa) improved the
tensile strength in bending test by 20% or enabled to achieve a comparable result to the
reference concrete, respectively.

Despite the lower mechanical properties of RCAC compared to the high-strength
concretes with high strength, made of NCA, the concretes with recycled aggregate were
characterized by greater compressive strength values, reaching approximately 100 MPa.
Thus, higher strength parameters can be achieved by increasing the designed compres-
sive strength.

The properties of concrete, out of which the aggregate is obtained, have significant
influence on the mechanical properties of new concrete [26]. Therefore, the concrete with
the recycled aggregate obtained from high-strength materials also achieved high strength
properties. Poon et al. [44] compared the properties of the recycled aggregates obtained
from normal-strength concretes (NPC) and HPC. It turned out that the porosity of the
HPC aggregates was less than half the value exhibited by the aggregates from NPC. The
Mercury Intrusion Porosimetry (MIP) analyses indicated the sizes of pores in the HPC
aggregates to be lower than 0.1 µm, whereas the pores in the aggregates from ordinary
concrete reached less than 1µm. Smaller pore distribution in the HPC aggregates can be
attributed to the presence of pozzolanic additives in old concrete matrix, which improved
the matrix-aggregate ITZ. The HPC aggregate is characterized by dense ITZ with low total
pore volume compared to normal-strength concretes.

The strength tests [44] indicated that the concrete with RCA from ordinary concrete
reached 20 and 20.5 (%) lower compressive strength after 7 and 28 days of curing, re-
spectively, compared to the concrete with HPC aggregate. Moreover, the compressive
strength of the concretes with the RCA-HPC aggregate following 28 days of curing was
only 6.8% lower than the concrete with natural aggregate. Kou et al. [45] showed that the
compressive strength of HPC with recycled aggregate from the concretes characterized
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by compressive strength of 80–100 (MPa), achieved 65 MPa. In addition, the achieved
strength was comparable to the strength of the concretes with natural aggregate. According
to Gonzales-Corominas et al. [22], the compressive strength in the early curing period is
dependent on the amount of free water, rather than the quality of aggregate. The recycled
HPC aggregate with moderate moisture content absorbs the entire free water, lowering
the initial w/c ratio in ITZ during the early hydration process. This leads to the release
of water and self-hardening in the later period and filling the ITZ with the newly created
hydrates. As a result, the cement–aggregate bonding improves [22];

The concrete strength largely depends on the mortar–aggregate ITZ [26]. ITZ can be
improved through the application of silica fume, which—owing to its thickening abilities—
increases the density of ITZ [46,47]. Corinaldesi et al. [48] showed that the concrete with
recycled aggregate and 10% silica fume addition reached 25% and 38% greater compressive
strength after 28 days of curing, than the concrete with natural aggregate and the concrete
with recycled aggregate without additives, respectively. Authors [47] observed that the
recycled aggregates containing calcium hydroxide improve the pozzolanic properties of
silica fume and fly ash. Interestingly, the concretes with silica fume reached 14% higher
modulus of elasticity compared with the reference concrete.

Table 6 presents the mean values of modulus of elasticity for the cylindrical samples
with known strength values.

Table 6. Modulus of elasticity values of concrete measured on cylindrical samples with the given
compressive strength.

Compressive Strength fcm after 28 Days Modulus of Elasticity Ecm,28

(MPa) (GPa)

NCAC 77.1 59.34
SD 2.57 1.23
CV 3.33 2.07

RCAC 63.5 50.19
SD 4.03 1.15
CV 6.35 2.29

SD—standard deviation, CV—coefficient of variation, (%).

The concretes made from recycled aggregate were characterized by 15% lower modu-
lus of elasticity compared to the concretes made of natural aggregate. Figure 6 presents the
samples during the elastic modulus Ecm,28 test.
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This is confirmed in the studies by Wagih et al. [49], where 100% substitution of natural
aggregate with recycled aggregate reduced the modulus of elasticity by 15% compared to
the reference concretes. The authors of the paper noticed a beneficial influence of silica
fume application on the elastic modulus increase, which improves the ITZ between the
old adhered mortar and new mortar, acting as microfiller. The silica fume addition in the
concretes with 100% recycled aggregate increased Ecm,28 by 17% compared to the concrete
without additive. The studies by Andreu et al. [26] showed that all concretes containing
the recycled aggregate obtained from concretes of varying strength (40, 60, and 100 MPa)
were characterized by lower modulus of elasticity compared to the concrete with natural
aggregate. Nevertheless, it should be noted that the concretes with recycled aggregate
obtained modulus of elasticity in the range of 37.15–48.54 GPa, which is relatively high.
Moreover, the authors [26] observed that the modulus of elasticity increases along with
the strength of concrete, from which the aggregate was obtained. While the concretes
made of the aggregate obtained from the 40 MPa strength concrete were characterized
by 26.3% lower elastic modulus than the reference concrete, the concretes with HPC
aggregate (100 MPa) reached the value which was only 3.7% lower than conventional
concrete. According to Neville [50] the modulus of elasticity of concrete largely depends
on the modulus of aggregate forming the concrete. In turn, Andreu et al. [26] observed that
the modulus of elasticity strictly depends on the density of the material. Since the concretes
with recycled aggregate are characterized by lower density; thus, the modulus of elasticity
is lower than that of the concrete with natural aggregate [51]. In the above-mentioned
studies, the concretes with greater compressive strength were characterized by higher
modulus of elasticity. The correlations between elastic modulus and compressive strength
are presented in Figure 7.
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Figure 7. Dependence of elastic modulus Ecm,28 on the compressive strength of concrete.

The graph clearly shows close correlation between the modulus of elasticity and the
compressive strength of concrete. This is also confirmed by the previous studies conducted
by the authors [30]. Similar conclusions were also drawn by Góra et al. [52]. The authors
also emphasize the influence of aggregate crushing resistance on the modulus of elasticity
of concrete. The concretes containing the aggregate with low crushing resistance had
lower moduli of elasticity. Since recycled aggregates are characterized by low crushing
resistance [12–16], the concretes produced using these aggregates have lower modulus
of elasticity.

The values of deflections of the beams in the middle of the span are show in Table 7
and Figure 8.
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Table 7. The average deflections of the beams in the middle of the span depending on the applied load.

Force F (kN) 0 5 10 15 20 25 30 35 40 45 50

Beam
deflection

(mm)

NCAC T-beam 0 0.01 0.11 0.42 0.98 1.52 2.02 2.56 3.05 3.67 11.23
SD 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02
CV 0 10.83 5.09 1.20 0.62 0.38 1.03 0.60 0.50 0.54 0.14

RCAC T-beam 0 0.17 0.39 0.73 1.10 1.88 2.16 2.76 3.14 9.08 –
SD 0 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.01 –
CV 0 3.33 1.49 2.08 0.52 0.53 0.71 0.72 0.18 0.11 –

SD—standard deviation. CV—coefficient of variation, (%).
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Figure 8. The average deflections of the beams in the middle of the span depending on the ap-
plied load.

The results of studies indicate that reinforced concrete made of natural aggregate
shows smaller deflection compared to the concrete containing recycled aggregate. In case
of the applied load of 45 kN, this value is almost 2.5-fold lower than RCAC. The greatest
RCAC beam deflection, amounting to 9.08 mm, was noted after applying the load of 45 kN;
in turn, the beam with natural aggregate was loaded with 50 kN, achieving the deflection
of 11.23 mm. Figure 9 represents a reinforced concrete T-beam during the bending test.

Observations of the deflections during the bending test were also conducted by Khan
et al. [53]. The studies conducted by the authors confirmed that the reinforced beams with
recycled aggregate content of 30% of total coarse aggregate as well as fine natural aggregate
exhibited twice greater deflection, compared to the beams made of natural aggregate.
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Lapko et al. [54,55] observed that concrete beams containing RCA crack faster and
are characterized by greater deflections compared to the beams made of natural aggregate.
While the considered beams exhibited comparable deflections in the tension zone, the
deflections in the compression zone of the beams with recycled aggregate were 45% greater,
compared to the concretes with natural aggregate. The authors also observed a similar
destruction mechanism in all beams, regardless of the type of aggregate, resulting from
plastification of reinforcement in the tension zone.

The load bearing capacity of our T-beam was tested until destruction occurred. All
beams, based on natural aggregates and high strength recycled aggregates, were destroyed
through plastification of reinforcement in the tension zone. Table 8 presents the values of
rupture force and breaking moments of T-beams.

Table 8. Mean values of rupture force and breaking moments of T-beams.

Rupture Force F Breaking Moment MSd

(kN) (kNm)

NCACT- beam 54.0 9.00
SD 1.00 0.17
CV 1.85 1.83

RCACT- beam 49.9 8.32
SD 1.15 0.19
CV 2.31 2.29

SD—standard deviation. CV—coefficient of variation, (%).

The studies indicate that the strength of reinforced RCAC T-beam, despite similar
values, is 7.6% lower compared to the beam made of natural aggregate. A reduction in the
load bearing capacity of the reinforced concrete beams following the substitution of natural
aggregate with recycled aggregate was confirmed in other studies [54–57]. According to
Arezoumandi et al. [58] the lower breaking moment of the concrete with recycled aggregate
is caused by double ITZ in RAC and the related zone porosity as well as numerous
microcracks in the aggregate occurring in the course of recycled aggregate processing.

Saara-Paz et al. [59] observed a decrease in the bending moment value along with the
increasing substitution of natural aggregate with recycled one in the concretes with the w/c
ratio equal to 0.65 and 0.50. Complete natural aggregate substitution in the concretes with
w/c = 0.65 reduced the bending moment by 34%, whereas the same amount of substitution
in the concretes with lower w/c decreased the bending moment by 28%, compared to the
concrete with natural aggregate.

According to Xiao et al. [60], the load bearing capacity of a RA beam results from
the tensile reinforcement and compressed zone dependent on often random compressive
strength of the concrete with the recycled aggregate. The authors’ statistical study, showed
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that recycled aggregate with non-uniform quality increases the scatter of the concrete
compressive strength results. Mukherjee et al. [61] while analyzing the statistical strength
parameters of concrete made of recycled aggregate, noticed that the coefficient of variation
of the compressive strength is 30% higher in the case of recycled aggregates compared to
the concrete made of natural aggregates.

Fahmy et al. [62] investigated reinforcement concrete beams with different natural
aggregate substitution degree. The studies showed that the reinforcement concrete beams
with 25% substitution of natural coarse aggregate with recycled one reached the load
bearing capacity comparable to the reference concrete. It should be noted that increasing
the substitution of natural coarse aggregate with recycled aggregate to 50% improved the
tensile load bearing capacity by 11.4%. According to the authors, the increased tensile load
bearing capacity was caused by improved maximum load. As a result, the yield strength of
the beam with recycled aggregate increased by 13.5%. The authors [62] drew attention to
the fact that despite a similar crack morphology of the beam with 50% RCA to the reference
beam, the beam with recycled aggregate exhibited a lower number of cracks.

In our testing, despite a lower breaking moment in the concretes with recycled aggre-
gate, all beams were characterized by the same destruction mechanism. Figure 10 presents
the dependence of the applied load on the crack width in the investigated beams.
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Figure 10. Load versus crack width.

The cracks on all beams had a similar appearance. The first perpendicular cracks were
observed at the load of 15 kN. They occurred in the middle zone, in the area of constant
bending moment. Due to a very small opening of the cracks at this load, it seems that
only the surface lime layer was cracked. Initially, the image of diagonal cracks was similar
to that of perpendicular cracks, with similar opening values and high inclination angles.
A substantial increase in the influence of diagonal cracks on the whole cracking image
occurred under the load of 35 kN. They started in the zone between the area of applied
forces and supports, and then propagated in the direction of point applied forces. Figure 11
shows crack shaping and development in the test samples.
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Propagation of cracks at different stages was observed by Yang et al. [63]. The authors
observed a greater number of cracks at the initial cracking stage in the beams with recycled
aggregate (RA), compared to the beams with natural aggregate. This phenomenon was
attributed to weaker ITZ and the remains of old adhered mortar on the recycled aggregate.
Despite a greater amount of cracks in a RAC beam, the authors observed similar crack
propagation both in the concretes with natural and recycled aggregate. The cracks appeared
in the flexure zone and then propagated in the compressed zone until beam destruction.
Arezoumandi et al. [58], while investigating reinforced concrete beams with recycled
aggregate, observed that despite similar morphology and crack propagation, the beams
with RA were characterized by smaller distance between cracks on the beam span compared
to the beams with natural aggregate. The authors [58] also observed lower rigidity of the
beams with RA after cracking moment, which confirms the attainment of lower moduli of
elasticity of the concretes with recycled aggregate.

4. Conclusions

The study investigated the effect of recycled aggregates from high-strength concretes
on the mechanical deformation properties of HPC. The following conclusions can be drawn
from the research:

• The concrete made of recycled aggregate is characterized by lower compressive
strength in each of the three curing periods (after 7, 14, and 28 days) as well as
26% lower flexural strength after 28 days. An increase in the compressive strength
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after 28 days was observed in RCAC, compared to NCAC, which may result from the
self-hardening phenomenon of the concrete with recycled aggregate.

• The concretes made of recycled aggregate indicated 15% lower elastic modulus com-
pared to the concretes made of natural aggregate. A strong correlation between the
compressive strength and Ecm,28 was observed. NCAC with higher compressive
strength, equal to 127.2 MPa, were also characterized by higher modulus of elasticity.

• Reinforced T-beams made of recycled HPC aggregate, were characterized by greater
deflection, compared to the concrete made of natural aggregate. When the load of
45 kN was applied, this value was almost 2.5-fold greater than in the case of NCAC.

• The studies indicated a 7.6% reduction in the flexural bearing capacity of the beams re-
inforced with recycled aggregate, compared to the T-beam made of natural aggregate.

• In the case of the beams with RCA, first cracks appeared earlier than in the beams
with natural aggregate. Eventually, all investigated beams exhibited a similar destruc-
tion pattern.

Substitution of natural basalt aggregate with high-strength recycled aggregate enables
to obtain concrete with high compressive strength and good performance parameters.
Taking into account the depletion of natural resources and the emphasis of European
Union on sustainable development and waste management, recycled aggregate will be
increasingly popular in the construction industry. This will enable decreases both in the
usage of natural aggregates, as well as in the costs connected with the processing of wastes.
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