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Abstract: This study aimed to understand the effect of commercial seaweed extract as a biofertilizer,
named True-Algae-Max (TAM®), on the yield, nutritional, antioxidant, and cytotoxic activity of Eruca
vesicaria. Three concentrations of TAM® (5, 10, and 15%) were studied by foliar spray over the two
cultivation years (2016 and 2017) without any chemical fertilizer, along with a control consisting of
synthetic nitrogen, phosphorus and potassium (NPK) fertilizers. The yield and composition of E.
vesicaria were significantly improved in all treatments, particularly at 10% concentration of TAM®,
which resulted in maximum yield (1.99 kg m−2) and significant amounts of chlorophyll, carotenoids,
phenolic compounds, flavonoids and total nutrients. Compared to the NPK control, E. vesicaria grown
with 10% of TAM® improved total antioxidant activity from 41.80 to 49.36 mg g−1 and cytotoxicity
from 25.30 to 60.40% with an IC50 value 85.7 µg mL−1 against the hepatocellular carcinoma cell
line (HepG2). These findings indicate that seaweed extract can generally be used as a safe potential
multifunctional biofertilizer in the agricultural field. The use of seaweed as a biofertilizer could
potentially help mitigate the adverse effects of main nutrient deficiencies, diminishing the use of
chemical fertilizers.

Keywords: antioxidant; biofertilizer; growth regulators; cytotoxicity; HepG2; Eruca vesicaria; seaweed
extract; TAM®; 5-Silaspiro[4.4]nona-; phytol; rhodopin; nonadecane

1. Introduction

With rapid growth in the global population and increasing demand for foods with
good nutritional and health values, there is growing pressure to produce sufficient food [1,2].
On the other hand, essential nutrients required for crop growth are gradually depleting
from the soils, which results in lower crop yields per unit area of land [3]. As attempts to
overcome these issues, chemical fertilizers are widely used. Although chemical fertilizers
can increase the crops’ growth and yields, their overuse has various side effects, including
hardening the soil, decreasing soil fertility, strengthening pesticides, and polluting water [4].
Moreover, these chemicals tend to increase the susceptibility of plants to pathogens by
altering the soil microbiome composition and substantially influencing plant health and
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eventually pose a serious threat to consumers [5] as well as the whole ecosystem in the
long run [6]. Therefore, modern agricultural practice is seeking alternatives to chemical
fertilizers.

A promising approach is the use of biofertilizers in the form of mixtures of natural
compounds, which could stimulate the growth and yield of plants and improve the toler-
ance efficiency to abiotic and biotic stresses with no side effect [7–9]. Marine organisms
are good sources for bioactive compounds which have wide ranges of biological activi-
ties [10–14]. In this context, macroalgae would be potential options as biofertilizers [15,16].
In general, macroalgae are treasure chests of many organic and inorganic components,
improving plants’ quantity and quality by enhancing plant growth, protection and im-
mune stimulation [8,13,17]. In this aspect, screening native aquatic organisms should be
considered to achieve a thriving commercial and biotechnological potential [18]. Algal
cells are considered an attractive aquatic natural source of bioactive materials that can be
successfully utilized in several applications [19–21]. However, Egypt has a wide variety of
wild seaweeds throughout the year, either along the Mediterranean coast [22–26] or the
Red Sea coast [27,28]. Along the Egyptian Mediterranean coast, especially the Alexandria
coast, green algae such as Ulva lactuca (Chlorophyta) and red algae such as Jania rubens and
Pterocladiella capillacea (Rhodophyta) are the most dominant native seaweed species.

Eruca vesicaria (L.) Cav. is becoming a significantly important leafy salad crop across
the world. E. vesicaria (L.) Cav. (formerly E. sativa Mill.) belong to the Brassicaceae family
(Cruciferae) and are widely used as a source of healthy phytochemicals and nutraceutics [29].
E. vesicaria seems to be a promising industrial food crop as it has many bioactive phyto-
chemicals [30–32], making it a promising source for antioxidants and cytotoxicity properties
for health and cosmetics applications [33–38]. Despite the fact that these seaweed extracts
and their physiological effects have been widely described, the impact of these extracts on
the bioactive components and enhancing their activities have been poorly studied and still
need more investigation.

Therefore, the present study aimed to evaluate the suitability of the mixed seaweed
extract as a commercial biofertilizer for Rocket salad, E. vesicaria (L.) Cav. In this context, a
comparative evaluation was made on the performances between seaweed biofertilizers
(three treatments without chemical NPK application) and chemical fertilizer (NPK control),
considering the vegetative growth, yield, nutrient contents, and bioactive compounds.
Further experiments were conducted to study the effects of the seaweed extract to improve
antioxidant and cytotoxic activities of the E. vesicaria (L.) Cav.

2. Materials and Methods
2.1. Materials
2.1.1. Algae Source

A commercial seaweed liquid biofertilizer, namely True-Algae-Max (TAM®), that was
prepared and used in the current study has been submitted at the Academy of Scientific Re-
search and Technology (Egypt Patents Office, Cairo, Egypt submission No.: 2046/2019) [39].
TAM® was prepared from the extract of the green alga Ulva lactuca (Linnaeus) and red algae
Jania rubens (Linnaeus) and Pterocladiella capillacea (S.G. Gmelin) Santelices. These seaweeds
were collected from Boughaz El-Maadya, Abu-Qir Bay (31◦16′16.0′′ N, 30◦10′28.0′′ E),
Alexandria, Egypt. These three species are the most dominant native species along the
Egyptian Mediterranean coast of Alexandria [23,24,40].

2.1.2. Plant Material

E. vesicaria seeds of local Egyptian cv. Balady were purchased from the Egyptian
Ministry of Agriculture stores and stored at 4 ◦C in a plastic bag containing silica gel until
sown.
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2.2. Methods

2.2.1. Phytochemical Analysis of TAM®

The crude TAM® was tested for physicochemical properties (color, odor, density,
pH, organic matter, polysaccharides and total dissolved solids), macronutrients (N, P, K
and Mg), micronutrients (Cu, Fe, Zn and Mn), and heavy metals (Cd, Cr, Pb, Ni and Ar)
according to the standard methods as the following—total macro, micronutrients and
heavy metals were determined in the seaweed extracts by using an Inductively Coupled
Plasma Spectrometer (Perkin Elemer Emission Specrrophotometer- 6000 Series, Thermo
Scientific) [41]. Total polysaccharides were determined using the micro phenol-sulfuric acid
method [42], with glucose as a standard. Total organic matter was determined according to
the method of Albrektienė [43]. GC-Mass Spectrophotometry analysis was performed ac-
cording to Elshobary et al. [44]. NIST library was used to identify the unknown compounds.
According to Ashour et al. [45], physical properties, chemical and biochemical composition,
and phytochemical compounds of crude TAM® are presented in Tables 1 and 2.

Table 1. Physical, chemical and biochemical analyses of True-Algae-Max (TAM®). *.

Item Value

Physical analyses

Color Dark brown
Odor Seaweed

Density 1.20
pH 9–9.5

Biochemical analyses (% DM)

Total polysaccharides 15
Total organic matter 23.2

Total dissolved solids 2.6

Chemical analyses

Macroelements
Potassium (%) 12

Phosphorus (%) 2.4
Total nitrogen (mg/kg) 1400

Microelements (mg/kg)
Copper 0.39

Iron 16.18
Magnesium 19.72

Zinc 1.19
Manganese 3.72

Heavy metals (mg/kg)
Cadmium LOQ **
Chromium LOQ **

Lead LOQ **
Nickel LOQ **

Arsenic 0.55
* Cited from Ashour et al. [45]. ** LOQ: Less than the limit of quantification.
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Table 2. Phytochemical constituents of crude TAM®.*.

Peak
No

Retention
Time Compound Name Phytochemical

Group Formula Molecular
Weight Content % Applications Ref.

1 9.022
5-Silaspiro [4.4]nona-1,3,6,8-

tetraene,3,8-bis(diethylboryl)-2,7-
diethyl-1,4,6,9-tetraphenyl

Silanes C44H50B2Si 628.38 1.93%
Immune
response
enhancer

[45,46]

2 16.824 Nonadecane Alkane
hydrocarbon C19H40 628.39 3.61%

Antioxidant,
antimicrobial

activities
[45,47–49]

3 19.284

Rhodopin
(6E,8E,10E,12E,14E,16E,18E,20E,22E,

24E,26E)-2,6,10,14,19,23,27,31-
octamethyldotriaconta-

6,8,10,12,14,16,18,20,22,24,26,30-
dodecaen-2-ol)

Carotene C40H58O 268.31 0.81%

Antioxidant
activity,
immune
response
enhancer

[46,48,50]

4 20.071

Milbemycin A4 5-oxime
(1R,4S,5′S,6R,6′R,8R,10E,13R,14E,16E,

20R,24S)-6′-ethyl-24-hydroxy-21-
hydroxyimino-5′ ,11,13,22-
tetramethylspiro[3,7,19-

trioxatetracyclo[15.6.1.14,8.020,24]
pentacosa-10,14,16,22-tetraene-6,2′-

oxane]-2-one)

Macrocyclic
lactones C32H44ClNO7 589.28 4.75%

Antiparasitic
and

insecticidal
activities

[45,51,52]

5 20.514
Octadecenoic acid methyl ester

(9,12-octadecadienoic acid, methyl
ester, (E,E)) Methylated

fatty acids

C17H32O2 554.45 52.20%
Antioxidant

activities
[44–46]

6 20.901 Tridecanoic acid methyl ester C14H28O2 268.24 2.79%

7 23.748
γ-Linolenic acid methyl ester

(6,9,12-Octadecatrienoic
acid, methyl ester)

C19H32O2 228.21 14.78%

8 21.627 Oleic Acid (cis-9-Octadecenoic acid) Fatty acid C18H34O2 292.24 12.55% Antioxidant
activities [44]

9 24.295 Phytol (3,7,11,15-Tetramethylhexadec-
2-en-1-ol) Phytol C20H40O 294.26 6.59% Antioxidant

activities [45,53]

* Cited from Ashour et al. [45].

2.2.2. Field Experiment and Soil Analysis

Field experiment with E. vesicaria (L.) Cav. was conducted for two successive years in
2016 and 2017 at the Abeis Experimental Farm Station, Faculty of Agriculture, Alexandria
University, Egypt (31◦11′25.9′′ N 30◦00′25.1′′ E). The average maximum and minimum
temperatures in the experimental period were 25 and 15 ◦C, respectively. Average rela-
tive humidity was 70 ± 5%, with an average monthly rainfall of 250 ± 5.5 mm, during
cultivation season (March–May). E. vesicaria seeds were sown on the 25th March in both
years. Before sowing the seeds, physical and chemical properties of the soils collected from
up to 30 cm depth were determined by the standard procedures. To determine soil pH,
10 g of soil was mixed with 1:5 distilled water and the pH was determined using a pH
meter. The total nitrogen content of 1 g of soil was determined using the micro-Kjeldahl
process. The Lancaster method was used to calculate the amount of available phosphorus
(P2O5) and nitrogen content in the soil. Potassium, calcium, magnesium, and sodium
exchangeables were eluted with 1 N NH4OAc and then analyzed with a spectrophotometer.
Regarding anions analysis, bicarbonate is generally determined in soil saturation extract
by titration with 0.01 N H2SO4 to pH 4.5, respectively [54]. Soluble chloride is measured
in the saturation extract of soil by silver nitrate titration [54]. Sulfate is determined by the
wet digestion method with acid mixture (nitric: perchloric: sulfuric acid) at the ratio of
(8:1:1) [54].

2.2.3. Treatments and Experimental Design

Three foliar spray concentrations (5, 10 and 15%) of TAM® were studied as the
treatments without NPK application, while standard amounts of NPK chemical fertilizer
were used as the control. The experimental layout was a randomized complete block
design, as also studied earlier [55]. The experimental area was 150 m2 with three replicates.
The area of each plot was (5 × 2.5 m2) 12.5 m2. The seeds were sowed by the broadcasting
method at an amount of 28 kg h−1 [16]. The plots were randomly arranged under the
sunlight at 22 ± 4 ◦C at mid-day. TAM® concentrations were added as foliar spray three
times after planting at the 10th, 18th, and 26th days 2000 mL per plot (100–200 mL/m2) for
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each cut. The total amount of N, P and K of crude TAM® was 3136, 5376 and 2688 kg ha−1,
respectively. NPK chemical fertilization was carried out according to the recommendations
for commercial production of E. vesicaria plant [56]. The NPK treatment dose consisted
of ammonium sulfate (20.5%N) at the rate of 529 kg ha−1, calcium superphosphate (15%
P2O5), 302 kg ha−1 and potassium sulfate (48% K2O), 126 kg ha−1. Nitrogen fertilizer was
applied thrice on the 10th, 18th, and 26th days. Phosphorus fertilizer was mixed during
soil preparation. Potassium fertilizer was applied for 15 days.

2.2.4. Determination of Growth and Yield Parameters

In both years, the plants were harvested (cut) twice, at 35 and 65 days of sowing, from
each plot (treatment) to determine total yield (kg−2). Five plants were randomly selected
from each treatment of three replicates (15 samples) to measure plant height (cm), dry leaf
weight (g), and the number of leaves per plant (No.).

2.2.5. Determination of Chlorophyll, Carotenoid, and Mineral Contents

Pigment contents in the plants were determined by extracting 0.2 g of fresh leaf sample
in 25 mL of 80% acetone for 48 h at room temperature in the dark. Absorbances were read
at 662, 645, and 652 nm in a spectrophotometer (UV-3802, UNICO, Dayton, Ohio, USA).
Chlorophyll a, b and carotenoid were calculated using Equations (1)–(4) [57]:

Chlorophyll a = (11.75 × A662) − (2.69 × A645) (1)

Chlorophyll b = (18.61 × A645) − (3.960 × A662) (2)

Total chlorophyll = (Chl. a + Chl. b) (3)

Total carotenoid content = (1000 × A470 − 2.270 × Chl. a − 81.4 × Chl. b)/227 (4)

where A is the absorbance of the sample on the spectrophotometer. The results were
expressed as micrograms per gram fresh weight of the sample.

Nutrient contents (N, P, and K) in E. vesicaria were determined as a percentage of
the dry weight of the leaves. Total nitrogen and phosphorus contents were determined
using the spectrophotometric method [58], while potassium was determined in the atomic
absorption spectrometry [59].

2.2.6. Preparation of Plant Extracts

The harvested samples of E. vesicaria in 2016 and 2017 were oven-dried at < 45 ◦C till
constant weight (48 h) and then ground into fine powder. One gram of the plant powder
(three replicates for each treatment) was extracted with 10 mL methanol for 10min in a
sonication bath and then kept in methanol (90%) for 24 h at room temperature for further
extraction [60]. These extracts were filtered with a Whatman® No. 1 filter paper. Filtrates
were evaporated to dryness and resuspended in methanol to 100 µg mL−1 to evaluate the
antioxidants and cytotoxic activities.

2.2.7. Determination of Antioxidant Activity and Phytochemicals

Free radical scavenging activity of the methanolic extract was performed by the DPPH
(2,2-diphenyl-1-picrylhydrazyl) method described by Viturro et al. [61]. Total antioxidant
activity (TAA) was determined by the phosphomolybdate method using ascorbic acid
(µg mL−1) as the standard [62]. Total phenolic content (TPC) was determined by the
Folin–Ciocalteu method modified from Kumar et al. [63]. Total flavonoid content (TFC)
was estimated by the method described earlier [64] using quercetin as the standard.

2.2.8. Determination of Cytotoxic Activity

Cytotoxic activity of the E. vesicaria crude methanolic extracts (after evaporating
methanol) was obtained from TAM® (three treatments) and the control using lung can-
cer cell line (A549) and hepatocellular carcinoma cell line (HepG2). Cell cultures were
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maintained in Dulbecco’s modified Eagle’s medium (DMEM) (ATCC 30-2002) for the A549
cell line and Roswell Park Memorial Institute medium (RPMI-1640) for the HepG2 cell
line. The culture media were supplemented with 10% fetal bovine serum and incubated
at 37 ◦C under 5% CO2 and 95% humidity. After that, a sub-culture of the cell lines was
achieved using 0.15% trypsin-versene. In 96 well plates, 104 cells (obtained after 24 h cul-
turing) were taken separately in each well for both A549 and HepG2 cell lines containing
100 µL respective serum-free media of each cell line. The final concentration of the plant
extracts in each respective well was 100 µg mL−1. The experiments were performed in
triplicate at 37 ◦C for 48 h. Doxorubicin and 0.5% dimethyl sulfoxide (DMSO) were used
as the positive and negative controls, respectively. Cell viability was determined using
the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay [65] by
adding 50 µL of MTT solution (5 mg mL−1) into the treated cells to form formazan crystals
within the living cell. To separate the formazan crystals, the mixtures were centrifuged at
8000 rpm for 10 min. The supernatant was disregarded, and 1 mL of DMSO was added
to dissolve the precipitated formazan crystals. Absorbance was detected in a microplate
reader (Model 680) at 595 nm. Cytotoxicity was calculated for all treatment and controls
using Equation (5):

Cytotoxicity (%) = (1 − AX/ANC) × 100 (5)

where AX and ANC are the absorbance of the sample and control at OD595, respectively.
The 50% inhibitory concentration (IC50) was determined using different concentrations

of the highly active extracts showing high cytotoxicity on the cancer cell lines.

2.2.9. Statistical Analysis

A comparison among the factors was statistically made by one-way analysis of vari-
ance (ANOVA) with Duncan post hoc test, as well as two-way ANOVA using plant
parameters as a dependent factor, while treatments, years and their interaction were used
as independent factors using the IBM SPSS Statistics software (IBM, v.23). Differences
among means were considered significant at p < 0.05. Pearson’s correlation coefficient was
determined for the relationship between phytochemical compounds and their biological
activities in SPSS software. All morphometric and phytochemical parameters of untreated
and TAM® treated plants were subjected to the principal component analysis (PCA) to
discover relationships among parameters and treatments. We determined the effective
treatment that gives the maximum yield and quality among TAM® concentrations using
Paleontological Statistics (PAST3).

3. Results
3.1. Soil Analysis

Regarding the soil analysis, it was observed that the difference in physical properties
between the two cultivation years was not significant at p < 0.05 using Duncan’s multiple
range test (Table 3).

3.2. Morpho-Agronomic Properties

The results showed that morpho-agronomic traits of E. vesicaria varied among the
treatments and NPK control (p < 0.05), but variations in the parameters were not significant
between the two experimental years (p < 0.05), except the plant height and number of leaves
that varied significantly between the years at p < 0.05 using two-way ANOVA (Table A1).
Plant height was increased with 10% and 15% TAM by 1.17 and 1.23 times over the control,
while plant height with the NPK control was comparable to that with 5% seaweed extract
(Table 4).
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Table 3. Physical and chemical properties of soil of the experimental field determined before cultiva-
tion in 2016 and 2017.

Soil Parameters 2016 2017

Particle size distribution
Sand (%) 32.3 ± 1.6 31.5 ± 1.2
Silt (%) 25.2 ± 2.5 28.7 ± 2.2

Clay (%) 42.5 ± 3.6 39.8 ± 3.1
Soil texture Clay loam Clay loam

pH 7.45 ± 0.5 7.35 ± 0.3

Chemical Properties

Soluble Cations (mmol g−1 soil)
Ca2+ 1.44 ± 0.4 1.40 ± 0.5
Mg2+ 1.45 ± 0.4 0.98 ± 0.2
Na+ 3.63 ± 0.5 4.75 ± 0.7
K+ 0.54 ± 0.05 0.36 ± 0.03

Soluble Anions (meq L−1)
HCO3− 1.66 ± 0.1 1.78 ± 0.2

Cl− 2.00 ± 0.3 1.80 ± 0.2
SO4

2− 1.70 ± 0.5 1.65 ± 0.6
Total nitrogen (TN) (%) 0.16 ± 0.03 0.15 ± 0.01

Available phosphorus (mg L−1) 0.32 ± 0.02 0.27 ± 0.01
Each value is the mean of three replicates ± SD. All data showed no significant differences (p < 0.05) using
Duncan’s multiple range test.

Table 4. Plant structure and yield of E. vesicaria treated with different foliar spray concentrations of
TAM®, compared with NPK control treatment.

Parameters Cultivated
Year

TAM® Treatments
0% (Control) 5% 10% 15%

Plant height (cm) 2016 34.00 ± 2.65 b 33.67 ± 2.31 b 40.00 ± 2.65 a 42.66 ± 0.58 a

2017 39.60 ± 1.53 BC 37.00 ± 2.65 C 43.33 ± 1.13 A 42.67 ± 1.15 AB

Number of leaves (No.) 2016 7.00 ± 0.04 c 8.33 ± 0.60 a 7.66 ± 0.58 b 8.02 ± 0.03 ab

2017 7.60 ± 0.55 C 8.00 ± 0.02 B 8.70 ± 0.58 AB 9.06 ± 1.00 A

Dry matter (%) 2016 17.12 ± 0.31 a 16.73 ± 0.65 a 15.07 ± 1.10 b 15.93 ± 0.39 ab

2017 17.31 ± 1.48 A 16.75 ± 0.75 AB 15.38 ± 0.23 B 15.82 ± 0.43 AB

Total yield (kg m−2)
2016 1.61 ± 0.19 b 1.89 ± 0.02 ab 1.99 ± 0.47 a 1.82 ± 0.07 ab

2017 1.59 ± 0.11 B 1.64 ± 0.27 B 2.28 ± 0.17 A 1.85 ± 0.13 B

Each value is the mean of three replicates ± SD. Different superscript letters in each row indicate significant
differences (p < 0.05) using Duncan’s multiple range test.

The different TAM® foliar extracts increased the number of leaves slightly over the
NPK control treatment, which recorded the lowest number of leaves (seven leaves), where
the maximum leaf number was observed with 15%, 5% and 10% TAM®, respectively
(Table 4). Although the lowest dry matter was recorded with 10% seaweed extract, the
results were comparable in all treatments, while with the NPK control, and in 2016 also
for TAM® 5%, the results were significantly higher (Table 4). In 2016, the total yield of
E. vesicaria was enhanced by the foliar TAM® spray over the NPK control. The highest
increasing percentage (24%) was recorded with 10% TAM® over the NPK control. In 2017,
the yield was higher than what was found in 2016, where the total yield was increased
by 43% with 10% TAM® over the NPK control. The lowest yield was found in the NPK
control in both years compared to any treatment (Table 4).

3.3. Pigment Content

It was observed that Chlorophyll a in E. vesicaria did not vary significantly among the
treatments and NPK control as well as in both years (p < 0.05) (Figure 1). TAM® treatment
did not affect the Chlorophyll b content compared with the control, and the 15% showed
the lowest concentration and the highest content was observed with 5 and 10% TAM®. The
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highest carotene content was found with 10% TAM® in both years, which was considered
the best TAM® concentration to act as a biofertilizer. Indeed, it was observed that there
was no significant difference in all pigment contents in both studied years (Table A1).
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3.4. Nutrient Content

In general, there was no significant variation in nitrogen content in the plants between
two years (Table A1). Treatments consisting of 10% TAM® provided the highest nitrogen
accumulation in both years, while 15% TAM® and the NPK control showed the lowest
value with no significant difference at p < 0.05 (Figure 2). Regarding the phosphorus
content, all TAM® treatments showed phosphorus content close to that of the NPK control
(Figure 2). However, potassium content increased significantly in the TAM® treatments,
mainly with 15% TAM® (2.38% in 2016 and 2.32% in 2017), over the NPK control in both
years. The differences were not statistically significant among treatments.
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3.5. Phytochemical Content

As shown in Figure 3, maximum phenolic content in E. vesicaria was achieved with 10%
TAM® (106.38 mg g−1 in 2016 and 105.52 mg g−1 in 2017), while there was no significant
difference between 5% and 15% TAM® treatments. On the other hand, the lowest phenolic
content was provided by the NPK control. Likewise, treatment with 10% TAM® showed
the highest total flavonoids (2.94 mg g−1 in 2016 and 2.97 mg g−1 in 2017), while the
control, 5% and 15% TAM® were comparable. It was observed that there was no significant
variation in phytochemical content in both studied years (Table A1).
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3.6. Antioxidant Activity

The highest DPPH inhibition was achieved by 10% TAM® (63.63% in 2016), which
was a little higher than the NPK control. However, 5% and 15% TAM® showed a lower
DPPH scavenging activity than the NPK control in 2016, while in 2017, 5% TAM® showed
comparable results with NPK treatment. Compared to the activity shown by the NPK
control treatment, 10% TAM® showed the maximum total antioxidant activity (Figure 4).
The highest total antioxidant activity was achieved with 10% TAM® (48.59 mg g−1 in 2016
and 52.43 mg g−1 in 2017), while the lowest activity was achieved with the NPK control.
The same trend of antioxidant activities was observed in both years with no significance
(Table A1).
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3.7. Cytotoxic Activity

Cytotoxic effects of methanolic extracts (dissolved in 0.05% DMSO) of E. vesicaria
obtained from the different treatments of TAM® and the NPK control were estimated
against the human cancer cells HepG2 and A549. Cultures of two cell lines were firstly
treated with a methanol extract of E. vesicaria (100 µg mL−1). Treatment with 10% TAM®

showed 60.40% cytotoxicity against HepG2, which was more than 2-fold higher than that
exhibited by the NPK control (Table 5). Likewise, TAM® 10% showed cytotoxic effect
against the A549 cell line almost the same as the NPK control did. The IC50 value with
10% TAM® against HepG2 was found to be 85.7 µg mL−1 (Table 5). Noteworthily, the
negative control showed no cytotoxic activity. The correlation coefficients (r) between the
carotenoids with total phenolic and antioxidant activities were relatively high (0.91 and
0.96, respectively) (Table 6). On the other hand, cytotoxicity activity (HepG2) significantly
correlated with carotenoids, total flavonoids and total antioxidant activity (0.73, 0.59 and
0.77, respectively) (Table 6).

Table 5. Cytotoxicity of methanol extracts (100 µg mL−1) on human tumor cell lines, lung carcinoma
(A549) and hepatocellular carcinoma (HepG2).

TAM Treatments
Cytotoxicity%

A549 HepG2

0% (Control) 27.33 ± 1.60 b 25.30 ± 0.72 c

5% 15.80 ± 1.39 c 13.20 ± 1.80 d

10% 27.00 ± 0.89 b 60.40 ± 1.61 b

15% 13.00 ± 1.00 d 12.10 ± 1.80 d

Doxorubicin 87.33 ± 0.61 a 88.83 ± 0.90 a

IC50 ND 85.7 µg mL−1

Represented data are mean ± SD. Different superscript letters in each column indicate significant differences
(p < 0.05) using Duncan’s multiple range test. ND, not detected.

Table 6. The Pearson correlation coefficient between the studied features of E. vesicaria extracts and
its biological activities.

TC TPC TFC TAA Cyto%
(A549)

Cyto%
(HepG2)

TC 1.00
TPC 0.91 ** 1.00
TFC 0.44 0.38 1.00
TAA 0.96 ** 0.858 ** 0.38 1.00

Cyto% (HepG2) 0.73 ** 0.44 0.59 * 0.77 ** 1.00
Cyto% (A549) 0.03 0.43 −0.04 −0.07 −0.58 1.00

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed). TC:
Total carotenoids; TPC: Total phenolic content; TFC: Total flavonoid content; TAA: Total antioxidant activity;
Cyto% (A549) and Cyto% (HepG2): Cytotoxicity% (HepG2) and cytotoxicity% (A549), respectively.

3.8. Principal Components Analysis (PCA)

Three factors (PCs) were associated with Eigenvalues higher than one and accounted
for 100% of the total variance. Factor 1 (PC1) explained 50.16% of the difference. The
loading of the parameters on PC1 shows that plant height, number of leaves, total yield,
phosphorous, potassium, total phenols, flavonoids and dry matter were the dominant
variables, while plant height, Chl. a, carotenoids, Chl. b and nitrogen content were the
dominant variables on the PC2, which explained 30.23%. PC3 explained the remaining
19.61% and showed Chl. a, Chl. b, and nitrogen as dominant variables (Table 7).
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Table 7. Eigenvalues, variance percentages and loadings values of some variables on the axes
identified by PCA for NPK control and TAM treatments of E. vesicaria.

Principal
Components PC 1 PC 2 PC 3

% variance 50.16 30.23 19.61
Eigenvalue 6.02 3.62 2.35

Eigenvectors

Plant height 0.63 * 0.65 * −0.41
Leaves no. 0.85 * −0.24 −0.48
Total yield 0.92 * 0.27 0.28
Dry matter −0.93 * −0.38 0.00

Chl. a −0.02 0.72 * 0.70 *
Chl. b −0.01 −0.65 * 0.76 *

Carotenoids −0.17 0.97 * 0.19
Nitrogen% 0.26 −0.74 * 0.62 *

Phosphorus% 0.98 * −0.13 0.13
Potassium% 0.83 * −0.51 −0.23
Total phenols 0.98 * −0.21 −0.04

Total flavonoids 0.70 * 0.44 0.57
The values with asterisks indicate the most significant characters for each principal component.

As shown in Figure 5, plotting data between PC1 and PC2 grouped 15% and 10%
TAM® in the first upper positive quarter with plant height, total flavonoids and total yield,
the NPK control in the second negative quarter with carotenoids and Chl. a, and 5% TAM®

was located in the positive third quarter with mineral contents, the number of leaves and
total phenols. In particular, regarding the interpretation of the components, it was observed
that PC1 is strongly correlated with the morphometric trait variables including total yield,
number of leaves and plant height, as well as nutrient and bioactive compounds such as P,
K, total phenols and flavonoids. On the other hand, PC2 strongly correlated with carotene
and Chl. a. However, PC3 was positively correlated with Chl. a, Chl. b and N% (Table 7).
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4. Discussion

Seaweed extracts have been shown much interest over the past few years as biofertiliz-
ers of various plants for improving plant growth and the yield of crops [66]. These extracts
can be added directly to the soil or with irrigation water, while foliar spraying is a popular
and widely used method of applying seaweed extracts [67,68]. The influences of these
seaweed extracts on crops are mainly based on the availability, solubility and biological
activity of the algal biomolecules and their extraction methods.

Physical, chemical, and biochemical properties of TAM® were evaluated before apply-
ing it as a biofertilizer in the cultivation of E. vesicaria, as described by Ashour et al. [45].
Physical investigations (Table 1) showed an appropriate amount of nutrients, macronu-
trients, and micronutrients. These findings indicated that these seaweed extracts had
potential for use as organic fertilizers. In fact, the positive effects of any seaweed extract
application as biofertilizers are the result of their chemical and biochemical constituents
that work synergistically, although the mode of action is still unknown [45,47,67,69]. The
composition of TAM® revealed in this study is good compared to the green and red sea-
weed extracts detected in previous studies, which reported levels of various minerals such
as Mg, Na, K, Fe, Mn, Zn and Cu [70–72]. These results were in agreement with previous
studies, which showed the beneficial effects of diluted seaweed extracts on plants, such as
improved crop growth performance, nutrient contents, yield, and fruit quality [6,73].

GC-Mass analysis showed that TAM® extract contains different bioactive phytochemi-
cal compounds with many biological activities [45]. Methylated fatty acids and fatty acids
represented about 83% of the total peak area of TAM®. Linoleic, γ-linolenic and oleic
acid are the most abundant fatty acids found in seaweeds [23]. Biofertilizers in such fatty
acids and their methyl ester have shown beneficial effects in antimicrobial and antioxidant
activity [44]. In this context, seaweeds rich in fatty acids, minerals and polysaccharides
stimulate the germination of many seeds, improve the quality of crop plants, enhance
the resistance to climatic changes and insect pests, and prolong seeds and fruits preserva-
tion [74]. Phytol is one of the chlorophyll products that has been reported to have significant
antioxidant effects [45,75]. Rhodopin, as a carotenoid compound in seaweeds, has antiox-
idant activity [49,51]. Nonadecane reported in many red, brown, and green seaweeds
displayed antioxidant and antimicrobial activities [48–50]. This finding reflects the key role
of these bioactive compounds as a protective effect against plant pathogens and invaders.
Interestingly, TAM® showed new reported bioactive compounds, which for the first time
were reported in seaweed extract [12] and utilized in the current study for the first time as
plant foliar spray, such as milbemycin-oxime and 5-silaspiro[4.4]nona-1,3,6,8-tetraene,3,8-
bis(diethylboryl)-2,7-diethyl-1,4,6,9-tetraphenyl. The milbemycin-oxime showed strong
antiparasitic and insecticidal activities [52,53]. Moreover, 5-silaspiro[4.4]nona- is a phyto-
bioactive compound and has two atoms of boron attached with one atom of silicon. Boron
is an essential micronutrient required for the embryonic development and bone metabolism
of plants [75,76]. However, many studies are still needed at this point.

Although the content of macro- and microelements in TAM® extract is lower than that
used in the NPK control, its effect is almost better than the NPK control; this may be due to
the fact that these elements are completely soluble in water and presented in the form of
chelate that plants absorbed it efficiently over the soil fertilizer [77]. The enhancement of
vegetative growth, yield, and bioactive ingredients of E. vesicaria was also reported earlier
using different concentrations of commercial seaweed extract (Algamex) as a foliar spray
on E. vesicaria [31]. Similar results were found using different foliar spray concentrations
from the autoclaved cellular content of a blue-green alga, Arthrospira platensis (formerly
Spirulina platensis), applied on E. vesicaria [60]. Yıldıztekın et al. [78] also recorded an
enhancement in growth and plant yield when seaweed extracts from Ascophyllum nodosum
were applied to Capsicum annuum. Applying red seaweed extracts of Kappaphycus alvarezii
and Gracilaria edulis has been detected as plant growth and yield stimulants of wheat [79].
Applications of seaweed extracts have improved the total yield of Phaseolus radiate L. These
results are overlapping those of Rathore et al. [80], in which applying seaweed extract (K.
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alvarezii) induced growth, yield and nutrient utilization in soybean plants. Mola et al. [81]
detected that biostimulant applications of seaweed extracts (Ecklonia maxima) increased
the yield of baby leaf lettuce by 13.4% over non treated plants. Another study proved that
the addition of acid green seaweed extracts of Ulva lactuca at low concentrations (0.2%)
can significantly increase seed germination rates and fresh and dry weight production of
mung bean compared to the control treatments [82]. The nonsignificant difference of most
morpho-agronomic parameters and bioactive significant components in both cultivated
years might be because cultivation time was the same in both years, as well as insignificant
differences in the climatic conditions and soil parameters.

Interestingly, E. vesicaria grown under all three treatments of TAM®contained signifi-
cantly higher amounts of total phenol and total flavonoid compounds as well as antioxidant
activity compared to those obtained from the NPK control. Colla et al. [83] found that
the application of brown seaweed (Ecklonia maxima) increased the yield and content of
mineral, lycopene, total phenols and ascorbic acid as well as antioxidant activity of Solanum
lycopersicum. Our results on TAM were consistent with the findings of Ali et al. [84], who
observed that the foliar application of Ascophyllum nodosum (0.5%) enhanced the plant
quality of tomato by 54% relative to the control. Earlier, Bell and Wagstaff [85] reported
that flavonoids and phenolic compounds are the major phytochemicals found in different
parts of E. vesicaria. Flavonoids in this plant are usually found with sugars as conjugates
and typically occur in relatively large quantities [86]. Recently, El-Wakeel et al. [87] have
studied the effects of natural flavonoid compounds from E. vesicaria to manage two annual
weeds of Pisum sativum (Pea) plants. PCA is a useful analytical approach for illustrating
the impact of environmental factors and genetic traits on the productivity and quality of
plants [83,88,89]. In this study, the PCA score plot was divided into the TAM®-treated
and NPK control plant (untreated). Most of the morphometric (total yield, number of
leaves, and plant height) and phytochemical parameters (N, P, K, Chl. b, total phenols, and
flavonoid content) of E. vesicaria under the treatments fell in PC1. Finally, NPK control
plants had the lowest nutritional quality compared to that of the treatments.

Rocket salad, E. vesicaria, is a good source of polyphenols, which work as natural
antioxidants [90]. In this study, it was found that E. vesicaria, treated with three TAM®

concentrations or NPK chemical fertilizers, showed considerable antioxidant activity either
by DPPH or phosphmolypedate methods (Figure 4). These findings were in agreement
with Hassan et al. [60], who reported that foliar spray of A. platensis increased antioxidant
activities of E. vesicaria. The Pearson correlation coefficient obtained for antioxidant activity
with carotenoids and phenolics (Table 6) further confirmed the above findings. Earlier,
Gutiérrez et al. [91] also reported that antioxidant activity and the phenolic contents in
E. vesicaria correlated significantly. Interestingly, TAM® could also increase cucumber
Cucumis sativus yield due to improving its chemical and physical traits related to immunity,
productivity, and stress defense, under greenhouse conditions [47].

Many Arabian medicinal plants have been used as alternative cytotoxic natural sources
throughout history [37]. Khoobchandani et al. [92] demonstrated that isothiocyanates found
in E. vesicaria seed oil had anti-melanoma activity and played an essential role in inhibiting
cancer cell proliferation. However, there is little information on the cytotoxic activity of E.
vesicaria on lung carcinoma (A549) and hepatocellular carcinoma (HepG2). In the current
study, among three different foliar spray concentrations of TAM®, 10% showed the highest
cytotoxic effect (60.40%) with an IC50 value equal to 85.7 µg mL−1 against HepG2 only.
These findings agreed with the results obtained by Hassan et al. [60], who reported that
foliar spray prepared from autoclaved cellular content of S. platensis could significantly
increase cytotoxic activity by 61.3% against the hepatocellular carcinoma cell line (HepG2).

5. Conclusions

This study has shown that a new foliar spray formed of commercial seaweed extract
(TrueAlgaeMax, TAM®) significantly improved the morpho-agronomic and bioactive
properties of a Rocket salad, E. vesicaria, which were nicely comparable with those obtained
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from the NPK control. Among the three TAM® treatments, 10% concentration resulted in
the maximum influence on the most morpho-agronomic, mineral and bioactive compounds
of E. vesicaria. Interestingly, TAM® showed new reported bioactive compounds, which for
the first time were reported in these seaweed extracts and utilized in the current study as
plant foliar spray, such as milbemycin-oxime and 5-silaspiro[4.4]nona-1,3,6,8-tetraene,3,8-
bis(diethylboryl)-2,7-diethyl-1,4,6,9-tetraphenyl; however, many studies are still needed
to determine the actual effects of these phyto-bioactive compounds on plants. Eventually,
E. vesicaria grown with 10% TAM® showed the highest antioxidant activity and cytotoxic
activity (60.40% with an IC50 value 85.7 µg mL−1) against the hepatocellular carcinoma
cell line (HepG2). This study shows that TAM® may be a feasible tool for improving the
growth and yield of Rocket salad plants. Furthermore, the product’s preparation is easy,
has no side effects and has much potential to be an alternative to NPK fertilizers. However,
more research is needed to enable the adoption of TAM®.

6. Patents

Seaweed extract (TrueAlgaeMax, TAM®) is a patent submitted at the Egyptian Patents
Office, Academy of Scientific Research and Technology (submission No.: 2046/2019).
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Appendix A

Table A1. Two-Way Analysis of Variation (ANOVA) Performed for Different Parameters.

Parameters Factors Sum of
Squares df Mean

Square F-Value p-Value

Plant height
Years 57.01 1 57.01 656.80 0.00

Treatments 231.76 3 77.25 890.00 0.00
Interaction 24.48 3 8.16 94.01 0.00

Number of
leaves

Years 2.05 1 2.05 6.04 0.03
Treatments 4.45 3 1.48 4.36 0.05
Interaction 1.78 3 0.59 1.75 0.20
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Table A1. Cont.

Parameters Factors Sum of
Squares df Mean

Square F-Value p-Value

Dry matter
Years 0.06 1 0.06 0.19 0.67

Treatments 14.17 3 4.72 13.89 0.00
Interaction 0.15 3 0.05 0.15 0.93

Total yield
Years 0.00 1 0.00 0.01 0.92

Treatments 0.90 3 0.30 3.46 0.04
Interaction 0.22 3 0.07 0.85 0.49

Chl. a
Years 0.00 1 0.00 0.35 0.56

Treatments 0.22 3 0.07 16.92 0.00
Interaction 0.03 3 0.01 2.53 0.09

Chl. b
Years 0.09 1 0.09 0.18 0.68

Treatments 54.99 3 18.33 39.03 0.00
Interaction 0.95 3 0.32 0.67 0.58

Carotene
Years 0.00 1 0.00 0.00 0.98

Treatments 4.57 3 1.52 42.81 0.00
Interaction 0.10 3 0.03 0.89 0.47

Total phenols
Years 19.15 1 19.15 0.42 0.52

Treatments 3485.78 3 1161.93 25.68 0.00
Interaction 62.40 3 20.80 0.46 0.71

Nitrogen
Years 0.00 1 0.00 0.70 0.42

Treatments 0.16 3 0.05 15.60 0.00
Interaction 0.00 3 0.00 0.12 0.95

Phosphorus
Years 0.00 1 0.00 0.05 0.82

Treatments 0.01 3 0.00 1.00 0.42
Interaction 0.00 3 0.00 0.20 0.90

Potassium
Years 0.00 1 0.00 0.10 0.75

Treatments 4.80 3 1.60 137.48 0.00
Interaction 0.01 3 0.00 0.23 0.88

Total
flavonoids

Years 693.38 1 693.38 0.86 0.37
Treatments 9,586,325.46 3 3,195,441.82 3950.88 0.00
Interaction 507.46 3 169.15 0.21 0.89

DPPH
Years 3.11 1 3.11 0.60 0.45

Treatments 1078.40 3 359.47 69.72 0.00
Interaction 10.15 3 3.38 0.66 0.59

Total
antioxidants

Years 8.86 1 8.86 0.23 0.64
Treatments 256.11 3 85.37 2.23 0.12
Interaction 30.36 3 10.12 0.26 0.85
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