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Abstract: The conjecture discussed in this paper was that the daily number of certified cases of
COVID-19 is direct correlated to the average particular matter (PM) concentrations observed several
days before when the contagions occurred (short-term effect), and this correlation is higher for areas
with a higher average seasonal PM concentration, as a measure of prolonged exposure to a polluted
environment (long-term effect). Furthermore, the correlations between the daily COVID-19 new
cases and the mobility trips and those between the daily PM concentrations and mobility trips were
also investigated. Correlation analyses were performed for the application case study consisting
in 13 of the main Italian cities, through the national air quality and mobility monitoring systems.
Data analyses showed that the mobility restrictions performed during the lockdown produced a
significant improvement in air quality with an average PM concentrations reduction of about 15%,
with maximum variations ranging between 25% and 42%. Estimation results showed a positive
correlation (stronger for the more highly polluted cities) between the daily COVID-19 cases and both
the daily PM concentrations and mobility trips measured about three weeks before, when probably
the contagion occurred. The obtained results are original, and if confirmed in other studies, it would
lay the groundwork for the definition of the main context variables which influenced the COVID-19
spread. The findings highlighted in this research also supported by the evidence in the literature and
allow concluding that PM concentrations and mobility habits could be considered as potential early
indicators of COVID-19 circulation in outdoor environments. However, the obtained results pose
significant ethical questions about the proper urban and transportation planning; the most polluted
cities have not only worst welfare for their citizens but, as highlighted in this research, could lead to
a likely greater spread of current and future respiratory and/or pulmonary health emergencies. The
lesson to be learned by this global pandemic will help planners to better preserve the air quality of
our cities in the post-COVID-19 era.

Keywords: SARS-CoV-2; coronavirus; pandemic; air quality; PM concentration; lockdown; trans-
portation; mobility habits; planning; correlation

1. Introduction

The year 2020 will probably be remembered as the year of the COVID-19 pandemic.
This was caused by the pathogen SARS-CoV-2, severe acute respiratory syndrome Coro-
navirus 2 [1] which, in December 2019, produced a cluster of pneumonia cases in the
city of Wuhan in China. The World Health Organization (WHO) at the end of January
2020 declared the COVID-19 epidemic as a public health emergency and lately, in March
2020, as a global pandemic [2]. In the spring of 2020, when in Europe the first wave of
the massive virus diffusion was almost stopped, a total of about 4 million of cases and
283 thousand of deaths were confirmed worldwide [3]. Despite the fact that the risk of
a second wave has already been announced in June by researchers [4,5], this outbreak
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seems to be more aggressive than the first one. It started globally in September 2020, with
different impacts on each country, manifested by both the level of infection reached and
different governmental measures to limit the diffusion of the COVID-19.

While the scientific community has mainly focused during these months on health
issues to defeat this virus, other main key topics discussed in the literature aim to correlate
the COVID-19 new cases and/or deaths to meteorological, air quality, and mobility vari-
ables. Precisely, research papers dealing with these topics could be grouped according, for
example, to “direct” or “indirect” virus transmission mechanisms [6]. The direct diffusion,
which is the prevalent one, occurs during the “social interactions” from person to person
and could be controlled by limiting this social distance that, during the pandemic outbreak,
has been the main implemented policy to reduce the contagion. The minimum social
distance of about 1.5 m [7] is considered as a useful spatial separation among people,
because most of the saliva droplets, which are the transmission vector of the virus, fall
down and reach the floor and/or evaporate before covering this distance. However, recent
studies have observed that this distance is not fixed (progression of social distancing) and
that the coronavirus spread is a function of some context variables such as uncertainty
in epidemiological reporting, imported infections from outside the national boundaries,
provision of personal protective equipment, and aerodynamic effects due to the movement
of people or vehicles, as well as the wind intensity and direction [8–10]. Furthermore, this
minimum distance is also influenced by whether the face masks are used or not, with a
more extensive distancing up to 10 m in indoor environments without face masks or 2 m in
the presence (usage) of the commonly used face masks [11].

In addition to the papers dealing with health issues, also those on the transportation
field could be grouped in researches related to the direct diffusion of the virus, because
all the public transport trips do not always (almost never) guarantee the minimum social
distance, which contributes to the spread of the virus, and the mobility level (e.g., quantity
of trips/day) is an indirect measure of social interactions (activities to be carried out) [12–16].
For instance, Cartenì et al. [13] observed, for the Italian case study, how new COVID-19
cases in a day are positively related to the trips occurring three weeks before, concluding
that this “threshold of 21 days could be considered as a sort of positivity detection time”
and “longer than the incubation time because of possible delays between contagion and
detection caused, for example, by the significant percentage of tests that prove false negative
to COVID-19 or by the fraction of people who, although infected, are asymptomatic and/or
initially show only mild symptoms, and therefore do not resort to health care”.

In addition to the direct causes, many authors have started to investigate the context
factors that indirectly influence the spread of COVID-19, including meteorological and
air quality ones. These could be related to both “long-term” and “short-term” people’s
exposition. With respect to meteorological parameters, several studies have observed a
short-term effect due to temperature and/or relative humidity, which positively (indirectly)
influence the diffusion of COVID-19 [16–24]. For example, a negative linear correlation
between the average temperature and the number of confirmed cases was observed in many
countries [18–20], suggesting an increase in the transmission rate for the coldest regions.

Among the main context factors which indirectly accelerate the diffusion of the COVID-
19 pandemic are the air quality and the pollution (e.g., particulate matter concentrations).
Overall, many studies have observed a direct correlation between long-term exposure
to outdoor air pollution (e.g., high PM concentrations) with increased risk of respiratory
disease [25–28]. This means that people living in areas with a higher pollution (long-
term exposition) have developed a probably chronic inflammatory stimulus which may
contribute to more COVID-19 cases and/or deaths [23,29–33].

Furthermore, air pollutants, together with specific climatic conditions, may contribute
to a longer permanence of the virus in the air, favoring also a short-term effect of the
coronavirus diffusion. Indeed, the air can be a vehicle through which microbial agents
move around the environment before their inhalation [34]. The air is mainly composed
by gases, including carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), sulfur
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dioxides (SO2), some gaseous forms of metals, and micro(nano)particles. Among these,
PM “contains microscopic solids or liquid droplets that are so small that they can be
inhaled and cause serious health problems” [35]. PM10 and PM2.5, as well as the associated
microorganisms that reach the lungs (especially those with sizes smaller than 2.5 microns),
can be inhaled, allowing the virus to cause infections [36]. This phenomenon can both
increase the minimum safety distance between people to avoid the contagion (social
distance) and allow the virus to stay suspended in the air for longer time, increasing the risk
of its inhaling. On this topic, many authors have observed a positive correlation between
PM short-term exposition and health problems including the COVID-19 one [28,32,36–41].
Precisely, a positive correlation between PM concentrations and the diffusion of the COVID-
19 was also observed by several researchers [11,37,42], suggesting that PM allow making
easier the transport of the virus at greater distances than those considered in a “direct”
people-to-people transmission.

Among the main quantitative methods proposed in the literature for estimating both
the characteristics and the key variables influencing the spread of the COVID-19, there
are models and indices/tests. The former includes mainly multi-variable mathematical
equations that allow estimating the spread of the COVID-19 as a function of some (main)
independent variables. For example, this is the case of the spatially explicit model of the
COVID-19 spread in Italy, proposed by [10], which explicitly links the daily numbers of
newly hospitalized COVID-19 cases to mobility habits, the timing of infection seeding,
mobility restrictions, and social distancing. Reference [12] proposes a multivariable linear
regression model estimating the daily new COVID-19 cases at a provincial scale as a
function of socio-economic (e.g., population), geographical (e.g., population density and
south of the country dummy variable), and transportation (e.g., rail transport accessibility)
variables. These tools have the advantage of better describing the multitude of the main
variables influencing the spread of the virus and the ability to perform scenario analyses to
evaluate possible epidemic trajectories (trends) under, for example, different containment
policies and/or transmission rates evolution hypothesis [9]. By contrast, these models
require many detailed input variables, which are not always easily available (e.g., data on
social distancing, uncertainty in epidemiological reporting, and imported infections from
outside the national boundaries) for the size of the application case study (e.g., regional
and/or provincial scale) and for the simulation time period (e.g., day by day data). The
second estimation methods (the ones applied in this research) are the test estimations; these
are mainly statistical correlation indices, allowing the evaluation of whether one or more
variables are correlated to the coronavirus infections. These methods do not have the ability
to describe all the main causes (variables) influencing the spread of COVID-19 but are
mainly used as a preliminary quantitative evaluation (e.g., before a model estimation) to
assess whether some (e.g., less impacting) context variables may be correlated to the virus
spread. For example, within this purpose, several researchers have estimated correlation
tests between climate variables (e.g., temperature, relative humidity, and air quality) and
COVID-19 cases [17,21,25].

Given the application of the correlation test method, the conjecture investigated in
this paper was that urban air quality in terms of PM concentrations has impacted on the
diffusion of COVID-19 with respect to two aspects: (i) a long-term effect, in the sense
that people living in areas with a higher level of PM pollution have developed a probably
chronic inflammatory stimulus which may have contributed to more COVID-19 cases; (ii)
a short-term effect, in the sense that the daily new COVID-19 cases are directly related
to the PM concentrations measured in the day in which the contagions occur (e.g., PM
suspended in mid-air as a carrier for the virus), and this time-deferred correlation analysis
is the main originality of this research. Precisely, the hypothesis discussed in this research
is that the daily number of certified cases of coronavirus is correlated to the average PM
concentrations observed several days before (short-term effect), and this is higher for the
areas with a higher average seasonal (yearly) PM concentrations, as a measure of prolonged
exposure to a polluted environment (long-term effect). To the authors’ knowledge, this
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issue (the correlation of the daily coronavirus cases with the air quality of the day in
which the contagions occurs) has not been investigated elsewhere and could significantly
contribute to better clarify the context variables that influence the diffusion of the virus, also
helping the proper definition of the restrictive/mitigative measures for cities and people.

The application case study took place in 13 of the main Italian cities located from north
to south of the country. The proposed case study is suitable for the aim of this research,
because Italy was the first European country to experience mass contagion of coronavirus,
starting from the first outbreak. Furthermore, by May 2020 the first wave of the diffusion
of the virus had almost stopped, resulting final and consolidated monitoring data (health,
air quality, and mobility) based on the estimation analysis was performed. It was possible
to analyze the huge quantities of detailed contagion data (on a daily basis), air quality
measures (both PM10 and PM2.5), and population trips (mobility) observed at an urban
scale and for a long time period (before, during, and after the first long lockdown), in
addition to the effects of specific restrictive policies adopted by the Italian Government.

To perform the aim of the research, a correlation analysis was performed to verify the
hypothesis, according to which the number of certified cases of coronavirus in a day is
directly correlated to the PM concentrations measured several days before. Furthermore,
the correlation between daily PM concentrations and mobility trips was also investigated
to confirm, as well known in the literature, that PM is mainly produced (emitted) by road
vehicles at an urban scale (secondary aim of the research). Finally, the correlation between
the daily COVID-19 new cases and the mobility trips performed several days before was
also tested. Estimates were made through both parametric (e.g., Pearson’s r coefficient) and
nonparametric (e.g., Spearman’s ρ, Kendall’s τ, Goodman and Kruskal’s γ, and Somers’
D) correlation coefficients. The estimates performed in this research should be considered
as some exploratory context variables impacting the health emergency and do not aim
to identify all the main variables that have influenced the COVID-19 spread, for which a
multivariables model should be estimated.

The paper is organized as follows. Section 2 is Materials and Methods; Section 3
describes and argues the main results and discussion. Finally, conclusions are reported in
Section 4.

2. Materials and Methods

As stated above, the aim of the paper was to verify the influence of urban PM concen-
trations within the diffusion of COVID-19 in Italy. To perform this aim, the following open
source database were considered for the estimates:

• the daily COVID-19 new cases sourced from the Italian Ministry of Health (2020) [43];
• the Italian national census data from ISTAT (2020) [44];
• the PM10 and PM2.5 concentrations measured by the Italian Regional Environmental

Protection Agency (ARPA, 2020) at an urban scale [45];
• the COVID-19 mobility observatory of the Italian Transport Ministry (2020), collecting

daily trips at an urban scale [46].

Furthermore, with the aim of describing all necessary elements for the repetitive
and reproducible nature of science, the following main estimation characteristics and
hypothesis were performed:

• The territorial (zonal) aggregation level consists in 13 main Italian cities located from
north to south of the country and reported in Figure 1. Both large and medium–small
size cities were considered, with populations ranging from 150 thousand to 3 million
inhabitants. Furthermore, the northern cities are those with higher PM concentrations
(pollution), with a colder and wetter climate; the cities in the south, instead, and
especially those located on the coast have a warmer climate with a lower average
seasonal PM pollution (see results in Figure 2);

• The analysis time period considered ranged from 1 February to 15 August 2020, which
is the period of the first wave of the virus spreading in Italy, from the first case of
coronavirus in the Province of Milan up to the end of its diffusion with less than
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five hundred daily new cases at a national level. Within this time period, a “high
COVID-19 period” from 9 March to 15 June 2020 was identified, which matches with
the implementation of the national lockdown (for about 70 consecutive days) and in
which a higher number of daily new cases was observed during the first wave (see
results in Figures 3 and 4);

• The relationship among air pollution, mobility habits and daily new COVID-19 cases
was assessed, and a correlation analyses was performed. Pearson’s, Spearman’s,
Kendall’s, Goodman’s, and Somers’ correlation tests were applied. Often, there are
differences in the same dataset applications between the estimation of both parametric
and nonparametric indices. Pearson’s r correlation coefficient produces values often
greater than the nonparametric ones, and the Spearman’s ρ indices are highest among
notparametric measures [47]. Therefore, when multiple correlation indices are applied
to the same dataset, differences in estimation results must be expected in this sense.
Furthermore, Somers’ D is one of the main nonparametric indices often used to test
the cause–effect relation of two phenomena;

• For a proper correlation analyses, the daily COVID-19 cases must be related with the
PM concentrations (mobility trips) measured several days before. i.e., the day when
the infection occurred. To estimate the most representative number of “days before”
that influenced the daily COVD-19 cases, many thresholds were tested in terms of
correlation indices estimation ranging from 0 to 40 days.

 
 

 Figure 1. The Italian cities considered in the application case study (source: processing starting from [44]).



Sustainability 2021, 13, 4553 6 of 17Sustainability 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 2. Results of PM10 and PM2.5 measures within the main Italian cities from 1 February to 15 August 2020 (source: 
processing starting from [45]). 

3. Results and Discussion 
The estimation results relative to the average PM10 and PM2.5 concentrations meas-

ured within the main Italian cities (Figures 3 and 4) and during the overall time period (1 
February–15 August 2020) showed that the most polluted cities were Rome, Milan, Turin, 
Naples, Bologna, and Venice, with an average PM10 (PM2.5) concentration ranging between 
20 (13) and 29 (18) μg/m3 (Figure 2). Within this time period, the impact of the national 
lockdown (about 2.5-month long) was also quantified in terms of PM concentration re-
duction at an urban scale. The results, reported in Table 1, showed that the lockdown 
mobility restrictions produced a significant improvement in air quality with average re-
ductions of PM10 and PM2.5 concentrations of about 15%, and higher values of PM reduc-
tion were found in the cities commonly most polluted (e.g., 25% of the PM10 reduction and 
27% of the PM2.5 reduction for Milan; 35% of the PM10 reduction and and 42% of the PM2.5 

reduction for Turin). This result is consistent with those observed in several studies world-
wide, which measured significant reductions in PM pollution during the lockdown [48–
58]. For example, Menut et al. observed in Europe an average PM concentrations reduc-
tion ranging from 5% to 15% [53]; Kanniah et al. measured a PM reduction in Asia ranging 
from 23% to 32% [52]; Hashim et al. observed a PM decrease ranging from 8% to 15% [54]; 
while in India, Singh et al. measured, during the lockdown, PM reductions from 40% to 
60% [58]. 

Figure 2. Results of PM10 and PM2.5 measures within the main Italian cities from 1 February to 15 August 2020 (source:
processing starting from [45]).

3. Results and Discussion

The estimation results relative to the average PM10 and PM2.5 concentrations mea-
sured within the main Italian cities (Figures 3 and 4) and during the overall time period
(1 February–15 August 2020) showed that the most polluted cities were Rome, Milan, Turin,
Naples, Bologna, and Venice, with an average PM10 (PM2.5) concentration ranging between
20 (13) and 29 (18) µg/m3 (Figure 2). Within this time period, the impact of the national
lockdown (about 2.5-month long) was also quantified in terms of PM concentration reduc-
tion at an urban scale. The results, reported in Table 1, showed that the lockdown mobility
restrictions produced a significant improvement in air quality with average reductions of
PM10 and PM2.5 concentrations of about 15%, and higher values of PM reduction were
found in the cities commonly most polluted (e.g., 25% of the PM10 reduction and 27% of the
PM2.5 reduction for Milan; 35% of the PM10 reduction and and 42% of the PM2.5 reduction
for Turin). This result is consistent with those observed in several studies worldwide,
which measured significant reductions in PM pollution during the lockdown [48–58]. For
example, Menut et al. observed in Europe an average PM concentrations reduction ranging
from 5% to 15% [53]; Kanniah et al. measured a PM reduction in Asia ranging from 23%
to 32% [52]; Hashim et al. observed a PM decrease ranging from 8% to 15% [54]; while in
India, Singh et al. measured, during the lockdown, PM reductions from 40% to 60% [58].
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Table 1. Average PM10 and PM2.5 concentrations measured within the main Italian cities (source: [45]).

Area of Italy City

High COVID-19 Period
(9 March 2020–15 June 2020)

Non-High COVID-19 Period
(1 February 2020–8 March 2020

and 16 June 2020–15 August 2020)
Percentage Variation

PM10
(µg/m3)

PM2.5
(µg/m3)

PM10
(µg/m3)

PM2.5
(µg/m3)

PM10
(%)

PM2.5
(%)

Nord

Milan 23 15 31 20 –25% –27%
Turin 22 13 34 22 –35% –42%
Genoa 18 11 20 12 –8% –12%

Bologna 18 11 23 14 –24% –24%
Venice 24 n.a. 32 n.a. –25% n.a.

Center

Rome 27 18 30 18 –9% 1%
Florence 17 10 21 12 –18% –13%

Prato 19 10 22 12 –14% –14%
Livorno 18 9 22 10 –17% –6%

Sud/Island

Naples 25 14 29 15 –16% –6%
Foggia 20 12 18 12 11% –1%

Palermo 21 n.a. 24 n.a. –13% n.a.
Cagliari 22 14 26 15 –15% –10%

As mentioned, one of the main aims of the research was to perform a correlation
analysis to verify the hypothesis, according to which the number of certified cases of
coronavirus in a day is directly related with the particulate matter (PM10 and PM2.5)
concentrations measured several days before. To estimate the most representative number
of “days before” that influences the daily COVID-19 cases, many thresholds were tested in
terms of correlation indices estimation, demonstrating that 21 days before (ranging from 18
to 26 days, function of the city considered) was on average the best time period to reproduce
the data observed (see results in Table 2). This result is also qualitatively observable from
Figure 5, in which it may be seen that the daily coronavirus cases shifted three weeks
backward (left axis of Figure 5) and a similar trend of the daily PM concentrations was
reproduced (right axis of Figure 5).
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Figure 5. Example of estimation results: daily PM10 concentrations, observed COVID-19 cases/day, and COVID-19
cases/day shifted 21 days backward (Venice, Italy).

To test the applicability of the Pearson’s r parametric correlation index, the occurrence
of the basic theoretical assumptions was tested for the dataset considered, concluding
that the linearity between the variables was verified, while the hypothesis of the normal
distribution of the phenomena, tested through the application of the q–q plot, was almost
always verified. For this reason, to strengthen the validity of the research results, in addition
to the Pearson’s r index, also nonparametric estimates were performed (Spearman’s ρ,
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Kendall’s τ(b), Goodman and Kruskal’s γ, and Somers’ D), for which all the application
basic assumptions were verified.

For the correlation analyses, the length of the time period considered spans from 9
March to 15 June 2020 when the daily infection curves reached its lowest point (Figures 3
and 4). Furthermore, the other time periods were also tested but not reported for brevity,
because they did not produce significant differences in estimation results.

Estimations results (Figure 6 and Table 2) showed a positive correlation between PM10
(PM2.5) concentrations and daily new COVID-19 cases shifted 21 day backward. This
correlation was greater for the cities with a higher average seasonal PM concentration
(red and yellow dots in Figure 6), meaning that the prolonged exposure to a polluted
environment (long-term effect) could impact the spread of the COVID-19 pandemic. These
results are more evident, for example, in Milan and Turin with an average seasonal PM10
(PM2.5) concentrations of about 30 (18) µg/m3 (the higher of the panel), which had a
positive correlation with daily COVID-19 cases ranging between 0.5 and 0.7, according to
the Pearson’s and Spearman’s estimations. This long-term correlation effect, as discussed
in the introduction, is consistent with different papers dealing with this topic [23,29–33].

Overall, no appreciable differences between the estimated PM10 indices and those
estimated for PM2.5 were observed.

Finally, estimations results (Table 2) showed that, coherently with the evidence in
the literature [47], Pearson’s r correlation coefficients were always greater than the others,
while Spearman’s ρ values were higher among the nonparametric measures.
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Table 2. Estimation results: correlation coefficient between PM10 (PM2.5) concentrations (µg/m3) and daily new COVID-19
cases shifted 21 days backward.

Macro Area City
Optimal

Traslation
Threshold (Days)

Pearson’s r Spearman’s ρ Kendall’s τ(b) Goodman’s γ Somers’ D

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Nord

Milan 25 0.62 0.66 0.58 0.61 0.36 0.38 0.39 0.42 0.39 0.42
Turin 24 0.54 0.54 0.46 0.51 0.31 0.34 0.35 0.39 0.35 0.39
Genoa 18 0.27 0.41 0.21 0.21 0.12 0.13 0.13 0.15 0.13 0.15

Bologna 19 0.44 0.53 0.49 0.54 0.31 0.31 0.34 0.38 0.34 0.38
Venice 24 0.53 n.a. 0.56 n.a. 0.34 n.a. 0.42 n.a. 0.42 n.a.

Center

Rome 19 0.33 0.31 0.38 0.34 0.24 0.19 0.28 0.25 0.28 0.25
Florence 21 0.40 0.58 0.41 0.53 0.23 0.30 0.30 0.39 0.30 0.39

Prato 19 0.35 0.33 0.36 0.40 0.20 0.16 0.26 0.20 0.26 0.20
Livorno 19 0.39 0.14 0.30 0.16 0.19 0.10 0.20 0.12 0.20 0.12

Sud/Island

Naples 23 0.14 0.27 0.21 0.30 0.14 0.15 0.15 0.22 0.15 0.22
Foggia 18 0.11 0.21 0.20 0.31 0.13 0.13 0.13 0.22 0.13 0.22

Palermo 26 0.12 n.a. 0.20 n.a. 0.13 n.a. 0.17 n.a. 0.17 n.a.
Cagliari 22 0.18 0.47 0.29 0.58 0.18 0.28 0.19 0.33 0.19 0.33

The second correlation analyse performed was the relationships between daily PM
concentrations and mobility trips. The estimations results (Figure 7 and Table 3) showed
a positive correlation between road traffic (mobility trips) and PM pollution, confirming
that PM is mainly produced (emitted) by the road vehicles at an urban scale, as reported in
the literature. This phenomenon is most evident for the cities structurally more polluted
(red and yellow dots in Figure 7), for which high levels of PM concentrations are mainly
produced by road networks with high traffic congestion. This occurs, for example, for
Milan and Turin which have a positive high correlation index between road traffic and
PM concentration than those less polluted cities (e.g., Pearson’s correlation values equal
to 0.6–0.7).

Overall, no appreciable differences between the estimated PM10 indices and those
estimated for PM2.5 were observed for this correlation analyses.

Finally, the estimations results (Table 3) showed that Pearson’s r correlation coefficients
were always greater than the others, while Spearman’s ρ values were higher among the
nonparametric measures.

Finally, the correlation between the daily COVID-19 new cases and the mobility trips
performed several days before was also tested. As observed by Cartenì et al. [13], for a
proper correlation analyses, daily COVID-19 cases must be related with mobility trips
performed several days before, i.e., the day when the infection occurred. To estimate the
most representative number of “days before” that influenced the daily COVD-19 cases,
many thresholds were tested in terms of correlation indices estimation, revealing that
mobility trips measured on average 22 days before (ranging from 21 to 24 days, function of
the city considered) represented the best time period to reproduce the data observed (see
results in Table 2). This threshold is also coherent with those estimated by Cartenì et al. [13]
for the same country but at a national scale, where three weeks were the proper estimated
threshold for a better correlation between mobility trips and COVID-19 cases.
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Table 3. Estimation results: correlation coefficient between average daily road traffic and PM10 (PM2.5) concentrations
(µg/m3).

Macro
Area

City Pearson’s r Spearman’s ρ Kendall’s τb Goodman’s γ Somers’ D

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 PM10 PM2.5

Nord

Milan 0.61 0.58 0.37 0.33 0.24 0.22 0.25 0.22 0.25 0.22
Turin 0.67 0.64 0.44 0.43 0.28 0.28 0.29 0.28 0.29 0.28

Bologna 0.46 0.56 0.23 0.28 0.14 0.14 0.15 0.15 0.15 0.15
Venice 0.42 n.a. 0.24 n.a. 0.13 n.a. 0.13 n.a. 0.13 n.a.

Center

Rome 0.31 0.29 0.19 0.25 0.15 0.11 0.13 0.11 0.13 0.11
Florence 0.45 0.34 0.44 0.32 0.31 0.10 0.32 0.11 0.32 0.11

Prato 0.35 0.32 0.30 0.23 0.19 0.13 0.21 0.13 0.21 0.13
Livorno 0.39 0.22 0.31 0.20 0.20 0.11 0.23 0.10 0.23 0.10

Sud/Island
Naples 0.30 0.20 0.28 0.18 0.18 0.10 0.19 0.10 0.19 0.10
Palermo 0.36 n.a. 0.52 n.a. 0.35 n.a. 0.36 n.a. 0.36 n.a.
Cagliari 0.43 0.32 0.35 0.21 0.29 0.13 0.24 0.15 0.24 0.15

The estimation results showed that the correlation between the daily COVID-19
new cases and the mobility trips performed 22 days before ranged between 0.3 and 0.6;
furthermore, coherently with expectations, no appreciable difference between the city’s
level of mobility (proxy variable of traffic congestion level and/or size of the city) and the
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correlation strength (see the almost horizontal interpolating line in Figure 8) was observed.
Additionally, for this correlation analyses, Pearson’s r correlation coefficients were greater
than the others, followed by the Spearman’s ρ indices (Table 4).
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Table 4. Estimation results: correlation coefficient between average daily road traffic and daily new COVID-19 cases.

Macro Area City Optimal Traslation
Threshold (Days) Pearson’s r Spearman’s ρ Kendall’s τ(b) Goodman’s γ Somers’ D

Nord

Milan 22 0.53 0.22 0.14 0.14 0.14
Turin 22 0.22 0.16 0.12 0.12 0.12

Bologna 23 0.56 0.35 0.24 0.25 0.25
Venice 22 0.34 0.21 0.15 0.11 0.11

Center

Rome 22 0.56 0.30 0.19 0.22 0.22
Florence 24 0.27 0.17 0.12 0.12 0.12

Prato 23 0.51 0.29 0.23 0.21 0.21
Livorno 23 0.52 0.23 0.23 0.23 0.23

Sud/Island
Naples 23 0.43 0.29 0.17 0.17 0.17

Palermo 24 0.55 0.35 0.31 0.26 0.26
Cagliari 21 0.31 0.15 0.16 0.15 0.15

As indicated before, one of the main limits of the correlation indices is their non-ability
in investigating the cause–effect relation between two phenomena (variables). To overcome
this limit with the aim to verify the cause–effect relation among daily COVID-19 cases
and PM concentration/mobility trips, the application of the Somers’ D nonparametric
index was performed. The estimation results (Tables 2–4) showed an average Somers’ D
value of about 0.2–0.3 as a function of the type of correlation and the panel of the cities,
allowing observing good cause–effect results. Finally, the “consistency” of this result has
been verified by comparing the results obtained in this research with those (comparable)
obtained in other case studies worldwide and discussed above. All these considerations
allow concluding that there is a reasonable probability that PM concentrations and mobility
habits are two of the causes in the spread of COVID-19 for the case study considered.

4. Conclusions

The proposed research concerns the interactions between COVID-19 and environment,
interfacing the virus transmission modes through outdoor air pollutants with the influence
of PM due to the human activities and habits in promoting the diffusion of the virus.
Transport system represents one of the main causes of air pollution in cities, and many
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studies suggested that PM could have influenced the virus outbreak, considering it as a
carrier for several chemicals and biologic pollutants (including the COVID-19 virus).

The data analyses performed for the current case study showed how the mobility
restrictions performed during the lockdown produced a significant increase in air quality
with an average reduction of PM10 and PM2.5 concentrations of about 15%, with maximum
reductions ranging between 25% and 42%. Furthermore, the correlation analyses performed
allowed measuring a positive correlation (stronger for the high polluted cities) between
daily COVID-19 cases and both daily PM concentrations and mobility trips measured about
three weeks before, when the contagion probably occurred. A direct and contemporary
correlation was also observed between PM concentrations and mobility trips, confirming
the common practices according to which the PM pollution in the cities is mainly produced
by the road traffic.

The findings highlighted in this research, also supported by the evidence of the
literature, concluded that PM concentrations and mobility habits could be considered as
potential early indicators of COVID-19 circulation in outdoor environments. Among the
limits of this research, there is the lack of quantitative evaluations about the reciprocal
weight that these two variables had within the spread of the virus (in addition to the other
context variables representative of the phenomenon), due to the quantitative estimation
method implemented.

The results obtained in this research are originals and concluded that the average
urban PM concentrations have significantly impacted both long-term and short-term effects
on the virus spread.

Overall, this paper poses significant ethical questions about proper urban and trans-
portation planning; the most polluted cities have not only worst welfare for their citizens
but, as highlighted in this research, could lead to a greater spread of current and fu-
ture respiratory and/or pulmonary health emergencies. The lesson to be learned by this
global pandemic will help planners to better preserve the air quality of our cities in the
post-COVID-19 era.

To the authors’ knowledge, the finding in this research (correlate the daily cases to air
quality in the day in which the contagions occurred) could contribute to better clarifying the
context variables that influence the diffusion of the virus and helping the proper definition
of the restrictive/mitigative measures for cities and peoples. The results obtained in this
research should be considered as preliminary and not exhaustive for evaluating all the
main context variables influencing the COVID-19 spread. Among the research perspectives,
there will be the estimation of a multivariable model aiming to evaluate daily COVID-19
cases/deaths as a function of some of the main context variables (e.g., population, exposure,
peak infectivity, infection associated with heavy symptoms, asymptomatic/mild symptom,
hospitalized cases, quarantine at home, and recovered/dead individuals), where mobility
and air quality measures (the ones discussed in this research) could contribute to better
describing the overall pandemic phenomena. Furthermore, other research perspectives
should also consider impact assessment analyses (e.g., cost–benefit vs. multicriteria [60–63])
of sustainable mobility policies, such as the electric mobility (e-mobility) and Mobility as a
Service (MaaS), in the “new normal” post-coronavirus era.
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