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Abstract: Ambient air pollution and its exposure has been a worldwide issue and can increase the
possibility of health risks especially in urban areas of developing countries having the mixture of
different air pollution sources. With the increase in population, industrial development and economic
prosperity, air pollution is one of the biggest concerns in Pakistan after the occurrence of recent smog
episodes. The purpose of this study was to develop a land use regression (LUR) model to provide a
better understanding of air exposure and to depict the spatial patterns of air pollutants within the
city. Land use regression model was developed for Lahore city, Pakistan using the average seasonal
concentration of NO2 and considering 22 potential predictor variables including road network, land
use classification and local specific variable. Adjusted explained variance of the LUR models was
highest for post-monsoon (77%), followed by monsoon (71%) and was lowest for pre-monsoon (70%).
This is the first study conducted in Pakistan to explore the applicability of LUR model and hence will
offer the application in other cities. The results of this study would also provide help in promoting
epidemiological research in future.

Keywords: ambient air pollution; exposure assessment; Pakistan; land use regression; vehicle workshops

1. Introduction

The increase in number of road traffic and rapid growth of urbanization pose a
great health hazard for the surrounding environment and public health. Ambient air
pollution is an important environmental issue [1]. Based on global burden of death (GBD),
4.9 million deaths are attributed in the world because of air pollution exposure [2]. Air
pollution is one of the biggest concerns in the modern era because of improvement in the
lifestyle, which requires more energy and exploration of resources, putting pressure on the
generation of toxic air pollutants in the atmosphere. The emission of these air pollutants
affect both climate and human health [3,4]. Studies have mentioned the effects of air
pollution on human health, such as cardiovascular, respiratory and chronic diseases [5,6].
One of the Swedish cohort studies reports that exposure to long term air pollution may
cause diabetes [7]. Poor air quality is a serious issue in developing countries because of
overpopulation, urbanization and industrialization [8].

Pakistan is a South Asian country having a population crossing the figure of
200 million [9]. The rapid increase in the population and unplanned urbanization with
the recent development in the industrial units, has worsened the condition of ambient air
in the country [10,11]. Transportation is another source of air pollution emitting 25 times
more carbon monoxide (CO) and carbon dioxide (CO2), and 3.5 times higher sulfur dioxide
(SO2) as compared to the automobiles in the United States [12]. Pakistan is the second,
among the top 10 polluted countries in the world accounting 22,000 premature deaths and
163,432 disability-adjusted life years (DALYS) lost [13]. A study conducted in the cities
of Pakistan (Islamabad, Lahore, Rawalpindi) reported the levels of nitrogen oxides (NOx)
and particulate matter (PM10) higher than WHO guidelines [14]. Pakistan Environmental
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Protection Agency (Pak-EPA) has monitored the level of NO2 in different cities of Pakistan,
and estimated that maximum and minimum concentrations were 37.02 ppb and 14.61 ppb
in Karachi and Islamabad, whereas, another study found that the maximum and minimum
concentrations were 37.46 ppb and 2.48 ppb, respectively [14,15]. Urban air pollution costs
the country a loss of about Rs. 65 billion, from total annual loss to the environmental
damages which is Rs. 365 billion [13]. The financial loss occurs from morbidity and mor-
tality linked with cardiovascular and respiratory diseases, lower respiratory illness (LRI)
in children, however, if air pollution related problems are taken into consideration on
education, malnutrition and earnings, the financial loss could be higher [16].

Road traffic is classified as one of the reasons behind the deterioration of air quality
in urban areas [17]. Increase in the number of vehicles not only causes traffic congestion
and greenhouse gas emissions, but imposes significant health impacts, and is a source of
tropospheric ozone formation [18]. Different air pollutants are present in the atmosphere
of urban environment like particulate matter (PM), nitrogen dioxide (NO2), carbon monox-
ide and dioxide (CO and CO2) and ozone (O3), but the pollutant which correlates well
with traffic densities, and an important photochemical oxidant is nitrogen dioxide [19,20].
Nitrogen dioxide (NO2) has a major role for the generation of secondary air pollutants
(SAP) and its concentration is correlated with photochemical smog, acid deposition and
ozone variations [21,22]. After particulate matter, NO2 is the second most abundant and
dangerous air pollutant in Pakistan [14], therefore it is necessary to have the knowledge of
different types of pollution sources and the factors affecting the concentration of pollutant
within the city.

Different models and techniques are available, and have been used to access and model
the air pollution concentration, such as dispersion models (DM), chemistry transport model
(CTM) and other techniques like inverse distance weighting (IDW), ordinary kriging (OK),
machine learning (ML), but the problem lies with the application of these models and
techniques, is the high demand of data requirement, costs and the complexity [23–25]. The
issue lies with the applicability of interpolation techniques is the assumption that variation
in the pollution is dependent on the distance between the sites, which may lead to error
in estimating pollution [26]. In contrast, land use regression (LUR) model has gained the
attention as an easy and effective approach, to provide spatial distributions of air pollutants
at intra-urban scale built on a specific number of monitoring sites and predictor variables
values, gathered by geographic information system (GIS), [27,28], providing a reliable
solution for air pollution exposure assessment for a developing country like Pakistan [29].

LUR is a statistical method of air pollution modeling. It is commonly used to estimate
variations in air pollutant concentrations for population exposure assessment. The tech-
nique links spatially heterogeneous air quality measurements with geospatial predictors.
LUR models provide a comparatively robust method for spatial prediction, while having a
lower sampling effort compared to geo-statistical models and a lower data requirement
than dispersion models [30].

LUR model incorporates air pollutants data, geographic predictors such as land use,
population density and road traffic network data around the monitoring points and after
multiple linear regression, it provides spatial annual or seasonal pollution level, at un-
monitored locations [31]. The model provides a simple and cost-effective method for air
pollution exposure assessment at regional and intra-urban level by substituting expensive
dispersion models [30,32].

Recently, LUR model is mostly applied in developed countries in North America and
Europe, and the exposure assessment of different air pollutants have been successfully
conducted [33–36]. Still, developed countries remain the focus of conducting air pollution
studies related to exposure assessment and its health effects [37]. Therefore, it is necessary
to have studies related to exposure from air pollution, which can be helpful for epidemi-
ological evidences in developing country conditions [38], having air pollution-related
health problems.
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Challenges and constraints in the development of LUR models in these situations,
includes inadequate availability of GIS data, emissions from air pollution sources not
well interrelated and deficiency of routine monitoring concentration data. Pollutant’s
concentration data gained from the national monitoring locations are used to characterize
the air pollution of the entire city which would lead to evaluation error in public air
pollution exposure [39]. It would be meaningful to perform LUR studies to explore the
performance of model, thus an efficient and economical air pollutant concentration model
can be obtained.

To address the need of air pollution exposure assessment, this study will explore
the applicability of LUR model to predict spatial variation of NO2 for Lahore, Pakistan
in which emission sources include local industries, household fuel use and automobiles.
This would not only provide the evidence of developing LUR models for different air
pollutants in Pakistan, but also offer important application of exposure assessment with
high representativeness. This study will provide a basic systematic LUR method to promote
the wider use in other cities of Pakistan.

The aim of the present study was to develop an LUR model based on seasonal variation
(pre-monsoon (April, May and June), monsoon (July, August), post-monsoon (September,
October and November)) of NO2 concentration for Lahore city due to the lack of exposure
data. To have the knowledge of different pollution variables effect on the concentration
of pollutant for each season, and to depict its spatial distribution, LUR was applied in
Pakistan, which will also provide the long-term epidemiological studies in air pollution in
future. It is necessary to compare the three period models for better understanding of local
emission sources and the effect of different potential predictor variables for each season.

2. Materials and Methods
2.1. Study Area

Lahore is the second largest city in Pakistan after Karachi and known as the capital of
Punjab province. It has an area of 1772 km2 and population is 11.13 million based on 2017
census [9]. Lahore is at 74◦19′45.75” longitude, 31◦34′55.36” latitude, at an elevation of
217 m above sea level with a semi-arid climate and yearly precipitation of 628.8 mm. The
average humidity is 39.8% and the main wind direction is north. The lowest and highest
temperature in the city is between 19.8 and 40.4 ◦C with a yearly average of 30.16 ◦C [15].
The country’s oldest and longest road known as Grand Trunk (GT) road passes through the
city, considered a source of pollution and causing higher levels of air pollutants throughout
the year. The study area and sampling locations are shown (Figure 1).

2.2. Air Pollution Data

The seasonal average concentration data of nitrogen dioxide (NO2) were obtained from
a previous study [40]. Fifteen field surveys were conducted for NO2 on the periodic basis
and the samples were collected, analyzed and the results were managed. The concentration
of NO2 was estimated using the diffusion tubes, and the sampling time was bi-weekly,
recording the start and end time of the exposure. The sampling campaign was conducted
during the year of 2006 from April to November, dividing the sampling work into three
phases (pre-monsoon, monsoon and post-monsoon). From the available data, 18 different
monitoring stations and their respective concentration data were gathered (Table S1).
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Figure 1. Location of the study area.

2.3. Potential Predictor Variables

For the development of LUR models, 22 potentially predictor variables were selected.
The selected predictor variables were grouped into 4 main categories: road length, land
use, distance variable, geographic location of monitoring stations and divided into 18 sub-
categories (Table 1). Road length describes the length of different types of roads (primary,
secondary, tertiary and trunk) and the values were calculated in the buffers of 25, 50, 100,
300, 500 and 1000 m, whereas land use represents the 9 types of land use classification
(residential, commercial, educational area, etc.), and the area of each specific classification
was calculated in the buffers of 100, 300, 500 and 1000 m around the monitoring stations.
Further, the distance variable describes the distance of each station to the nearby local
specific variable (vehicle maintenance workshop). Finally, the geographic information
includes the elevation of monitoring stations in meters above the sea level and longitude
and latitude, respectively.
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Table 1. Brief description of potential predictor variables and ‘a priori’ definitions.

Variable Name
(Unit) Variable Type Symbol Used Buffer Size (m) Input Rationale A Priori a

road length (m)

Length of:

25, 50, 100, 300,
500, 1000

Road length is directly
associated with traffic

density, causing
pollutant emission

from traffic

Primary road PR +

Secondary road SR +

Tertiary road TR +

Residential road RR +

Trunk road TRR +

land use (m2)

Area of:

100, 300, 500, 1000

Different classification
of land use generates

different variety of
pollutants or

transportation
activities

Residential area LURA +

Commercial area LUCA +

Educational area LUEA +

Hospital area LUHA +

Park area LUPA -

Recreational area LURCA -

Religious area LUREA +

Health facility area LUHFA +

Industrial area LUIA +

distance variable
(m−1, m−2)

Workshop distance
to monitoring

locations
DV 25, 50, 100, 300,

500, 1000

Vehicle maintenance
workshops emits

pollutant emissions
+

geographic
location (m,

decimal degrees)

Elevation Elev. NA NA

Latitude Lat. NA NA

Longitude Long. NA NA
a a priori definition based on the definition used in the ESCAPE study [41].

Geographic information system (GIS) shapefiles were obtained from the local depart-
ment (Urban Unit), and GIS analysis for the extraction of potential predictor variables were
performed using ArcGIS ver. 10.2, following the ESCAPE [41] procedure. The buffer radii
were selected based on the previous studies ranging from 25, 50, 100, 300, 500 and 1000 m
for road network, and ranges from 100, 300, 500 and 1000 m for land use data. All the
predictor variables values were extracted using these buffer radii (Table 1).

Specific Local Data Survey (SLDS)

For the collection of local specific data, such as vehicle maintenance workshops
(VMW), a survey was conducted around the monitoring stations, and the locations of the
VMW were manually geocoded, noted the longitude and latitude with a GPS device, and
then imported to google earth. Survey was helpful in determining the locations of the
VMW. There were 198 VMW that were selected in this study because they were present at
the time of sampling year. Inverse distance and inverse squared distance were calculated
for distance variable [41].

2.4. Land Use Regression Model Development

The average concentrations of seasonal variations, the predictor variables including
GIS parameters and local specific data for 18 monitoring stations, were used for the
development of LUR model. The average concentration was used as dependent variable,
whereas all other variables were as independent. Linear regression models were established
using forward step regression approach [34]. Following the European Study of Cohorts
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for Air Pollution Effects (ESCAPE) methodology, a priori definition was assigned to each
variable type, based on the assumption of air pollution dynamics, e.g., increase in the length
of road would increase the traffic emissions (positive direction), while park area would
decrease the concentration because of the absorption effect of plants (negative direction).
Positive direction of effect was given to the local specific source, e.g., VMW, considered as
a point pollution source [42].

For the development of the model, univariate regression analysis was performed with
all potential predictor variables. The factor provided the maximum adjusted explained
variance (R2) was selected, keeping in mind that the direction of effect was as pre-defined.
The left over variables were included in the model based on the four criteria: (1) the
direction of effect of the variable was as pre-defined; (2) predictor variables already present
in the model, keep their original direction of effect; (3) the p-values of all the variables were
below 0.1; (4) the variation inflation factor (VIF) of the predictor variables were considered
acceptable if less than 5 [41]. To evaluate the influence of each season, models were
developed for each season using measured concentrations for each sampling campaign
(i.e., pre-monsoon, monsoon and post-monsoon).

2.5. Model Performance Evaluation and Mapping

To evaluate the performance of the developed model, leave-one-out cross validation
(LOOCV) method was used, in which each site was consecutively omitted from the model
and the model was developed using n _ 1 site, n being the total number of sites [43]. The
process was repeated for each site, and the mean difference obtained from linear regression
between measured and predicted values for the left-out sites, based on adjusted R2 and
root mean square error (RMSE). This was determined using JMP software version 13.2.1
(Japan), using the ESCAPE procedure [41].

For the evaluation of spatial autocorrelation, Moran’s I was calculated on the residuals
of the final model and the results were explained by Z-score values. Grid dimensions of
500 m ∗ 500 m were used, and 8172 grids were created by ArcGIS ver. 10.2 and the spatial
distribution of predicted NO2 concentration were done by using developed models on the
relevant grids.

3. Results
3.1. Variation of Measured NO2 Concentration

The seasonal variation (pre-monsoon, monsoon, post-monsoon) of measured nitrogen
dioxide concentration showed in (Table 2). The descriptive statistics of concentration
showed that the lowest concentration (47.74 ppb) was observed in summer (pre-monsoon),
and the highest concentration (91.75 ppb) was seen in winter days (post-monsoon).

Table 2. Measured and predicted NO2 levels.

Time Period
Measured NO2 (ppb) Predicted NO2 (ppb)

Mean (S.D) a Range b Mean (S.D) a Range b

pre-monsoon 68.34 (7.29) [47.74; 77.48] 65.71 (7.00) [57.71; 78.56]

monsoon 73.91 (7.18) [53.66; 83.70] 71.89 (7.54) [60.07; 84.30]

post-monsoon 79.01 (7.46) [60.19; 91.75] 76.67 (7.85) [64.02; 89.70]

Abbreviations: a Mean (standard deviation), b [min; max].

3.2. Variation of Predicted NO2 Concentration

The seasonal variation (pre-monsoon, monsoon, post-monsoon) of predicted nitrogen
dioxide concentration is shown in (Table 2). A similar trend was shown in the predicted
concentration as compared to measured concentration, which showed that the lowest
concentration (57.71 ppb) was observed in summer (pre-monsoon), and the highest concen-
tration (89.70 ppb) was seen in winter days (post-monsoon). The scatter plots of measured
vs. predicted values of NO2 showed in the (Figure 2).
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Figure 2. Scatter plots showing the measured vs. predicted values of NO2 (pre-monsoon, monsoon and post-monsoon).

3.3. LUR Models

Final LUR models for seasonal variation of NO2 were presented in (Tables 3–5). The
adjusted R2 and overall fit of LOOCV of LUR models were described in (Table 6).

Table 3. Summary of final land use regression model predicting NO2.

Time Period Variable Coefficient t VIF

pre-monsoon

Intercept 57.7146 28.95 -

Tertiary road length within 50 m 2.1 × 10−1 2.25 1.12

Residential area within 100 m 4 × 10−4 2.50 1.16

Distance variable within 300 m 1.3 × 10−3 2.26 1.05

Table 4. Summary of final land-use regression model predicting NO2.

Time Period Variable Coefficient t VIF

monsoon

Intercept 60.0727 25.18 -

Tertiary road length within 100 m 8.08 × 10−2 1.71 1.31

Residential area within 100 m 5 × 10−4 2.94 1.45

Hospital area within 1000 m 5 × 10−5 0.90 1.15

Distance variable within 300 m 1.9 × 10−3 3.26 1.27
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Table 5. Summary of final land-use regression model predicting NO2.

Time Period Variable Coefficient t VIF

post-monsoon

Intercept 63.0076 20.81 -

Secondary road length within 1000 m 7 × 10-4 0.96 1.17

Tertiary road length within 300 m 8.8 × 10-3 0.96 1.15

Residential area within 100 m 5 × 10-4 2.38 1.28

Distance variable within 300 m 2.2 × 10−3 3.26 1.22

Table 6. Adjusted R2 of LUR model and overall fit of LOOCV.

Time Period Model Performance Evaluation LOOCV

Adj-R2 RMSE (ppb) R2 RMSE (ppb)

pre-monsoon 0.7 4.35 0.6 6.11

monsoon 0.71 4.09 0.5 6.19

post-monsoon 0.77 3.87 0.57 6.34
Abbreviations: RMSE, root mean square error; LOOCV, leave-one-out cross validation.

3.3.1. Pre-Monsoon Model

In the final model, three significant factors were identified, including length of tertiary
road within 50-m buffer, area of residential within 100-m buffer and distance variable within
300-m buffer. All the three influencing predictor variables were found to be positively
associated, showing increase in the concentration of NO2. VIF was less than 5.

The adjusted R2 and RMSE were 0.70 and 4.35 ppb. The LOOCV R2 and LOOCV
RMSE were 0.60 and 6.11 ppb, respectively. Results of residual spatial autocorrelation
analysis were presented in (Table 7). The Z-score was 0.70, the pattern appears to be
random which shows the consistency with the hypothesis of spatial error independence.

Table 7. Spatial autocorrelation results of LUR model residuals.

Time Period Moran’s Index z-Score p-Value

pre-monsoon 0.02 0.70 0.48

monsoon −0.04 0.11 0.91

post-monsoon −0.09 −0.29 0.77

3.3.2. Monsoon Model

Four influencing factors were entered in the final model, including tertiary road length
within 100-m buffer, residential area within 100-m buffer, hospital area within 1000-m buffer
and distance variable within 300-m buffer. All the four influencing predictor variables were
found to be positively associated, showing the increase in the concentration of NO2. VIF
were less than 5.

The adjusted R2 and RMSE were 0.71 and 4.09 ppb. The LOOCV R2 and LOOCV
RMSE were 0.50 and 6.19 ppb, respectively. Results of residual spatial autocorrelation
analysis were presented in (Table 7). The Z-score was 0.11, the pattern appears to be
random, showing the consistency with the hypothesis of spatial error independence.



Sustainability 2021, 13, 4933 10 of 15

3.3.3. Post-Monsoon Model

In the final model, four influencing factors were identified, including secondary road
length within 1000-m buffer, length of tertiary road within 300-m buffer, area of residential
within 100-m buffer and the distance variable within 300-m buffer. All the four influencing
factors were found to be positively associated with the NO2 concentration. VIF was less
than 5.

The adjusted R2 and RMSE were 0.77and 3.87 ppb. The LOOCV R2 and LOOCV RMSE
were 0.57 and 6.34 ppb, respectively. Results of residual spatial autocorrelation analysis
were presented in (Table 7). The Z-score was −0.29, the pattern appears to be random,
showing the consistency with the hypothesis of spatial error independence.

LUR models showed moderate to good variance for all the seasons. Adjusted ex-
plained variance of the LUR models was highest for post-monsoon (77%), followed by
monsoon (71%) and was lowest for pre-monsoon (70%). As for the overall fit of LOOCV,
the R2 was highest for pre-monsoon (61%), followed by post-monsoon (57%) and was the
lowest for monsoon (50%).

3.4. Spatial Characteristics and Regression Maps of Predicted NO2

The maps of seasonal variation of predicted NO2 were done using 8172 uniformly
distributed grids for the Lahore city (Figure 3A–C). Higher concentration was observed
around the roads almost during all the seasons, indicating road traffic as a source of
pollution while, lower concentration was seen around the sub-urban areas where the road
network was not so strong, having open spaces and agricultural land (Figure S1).

 

2 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(A) 

Figure 3. Cont.



Sustainability 2021, 13, 4933 11 of 15

 

3 

 
(B) 

 
(C) 

 
 
 
 
 

Figure 3. Regression mapping of predicted concentration ((A) pre-monsoon, (B) monsoon, (C)
post-monsoon).
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4. Discussion

Land use regression model has been applied in the developed countries, but still there
is lack of application of LUR model in developing countries [37,44]. To the best of our
knowledge, this is the first attempt to apply LUR model in Pakistan’s urban area setting
for a city, although LUR has been used in Pakistan at a national level for ambient PM2.5
exposure [29]. LUR models were developed for seasonal variation (pre-monsoon, monsoon
and post-monsoon) mean concentration of NO2 pollutant, based on the collected data of
18 monitoring locations in the Lahore city, Pakistan. The final developed LUR models
performed well, showing the reliability with high accuracy and spatial heterogeneity.

Previous LUR models in the literature have showed the values of R2 ranging from
lowest (0.41) in the startup model to highest (0.73) in the final model, achieving an R2 of
0.68 for the winter model and 0.59 for the summer model [45]. The study conducted in Xian,
China reported that the value of R2 was greater than 0.8, indicating that the heating season
had the best simulation effect [46]. The study conducted in Nanjing, China reported the R2

value of 0.7 for NO2 model [39]. The LUR models developed in this study, shows that the
values of R2 (0.5–0.61), like other studies conducted in the literature, thus indicating that
it is feasible to develop these models for developing countries and can use for exposure
assessment studies. The values of the model R2 was close to the LOOCV R2, showing the
robustness of the LUR models for all the seasons [44].

Data collected from manually surveying the study area, proved helpful to increase
the performance of LUR models. Such type of survey can provide us the valuable specific
feature of potential predictor variables in the study area, that would improve the overall fit
of LUR model. In this study, vehicle maintenance workshops data were collected by doing
the manual survey of the study area, which can be a source of NO2, thus highlighting
the importance of culture or site-specific land use classes [47,48]. Distance to vehicle
maintenance workshop entered in the final models of all the seasons was found to be one
of the influencing factors for the source contribution to NO2.

Different potential predictor variables, entered in the final developed models, showed
that the different factors have influence on the pollutant concentrations, although same
predictor variables were used to develop the LUR models. The road network (road length)
was the influencing factor, with NO2 being known as the traffic-based air pollutant, showed
the positive association with the road length factor in the final LUR models for all the
seasons. The residential area seems to be another effective factor, showing a positive
association with the concentration of NO2. The reason was that people in the household
use the fuel-based generators for the electricity and combustion processes, and also because
people travel frequently around residential area, causing increase in the concentration of
NO2 due to vehicle exhaust emissions [49]. Distance variable also showed the contribution
in all the models, highlighting the importance of local automobile workshops in the
emission of NO2. Hospital area showed the contribution of NO2 from a generators facility
used in the vicinity of the hospital area, and local automobile workshop.

Electricity generation and its demand is a serious issue in developing countries, espe-
cially in Pakistan, which leads to the usage of fuel-based generators to produce electricity,
in the households and hospitals, causing an increase in the pollutant concentration. The
residential area also contributed as a source of NO2 pollution, due to the burning of fossil
fuels in the households, especially during the heating season (post-monsoon) resulting
in the highest concentration during all the seasons. Specific local data survey (SLDS)
was helpful in determining another factor, which was vehicle maintenance workshops,
surrounded around the roads and residence area, cause of increase in the concentration of
pollutant due to maintenance of vehicles.

The significant predictor variables identified in this study were like other studies
conducted previously, showing the length of roads and residential land area as common
influencing factor [50,51]. The study conducted in Taipei city, Taiwan also reflected that
the high concentrations attributed to road length, as one of the influencing factors and to
the dense road network [52]. Another study, also showed one of the influencing factors
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was major roads and traffic influence, included in the models for heating and non-heating
seasons [53]. The study conducted in Nanjing, China indicated that the residential area
within 100m and 5000m buffer, entered in the final model, proved to be a significant
predictor variable [39]. The developed models based on the influencing predictor variables
in this study comparable with the other studies conducted previously, supporting the LUR
models in the urban settings of Lahore, Pakistan.

Among the three seasons, predicted concentration regression maps showed the similar
spatial characteristics with high concentration in the city center, where the residential land
area is high due to the population. Next to residential area land feature, the maximum
concentration can be observed around the road network, which is mainly distributed in the
center and to the west part of the city. The vehicle maintenance workshops also surrounded
around the roads, and nearby the residential area and hospital area, showing the public
living nearby those areas could have a negative effect on their health, due to exposure to
the pollutants. Since NO2 pollutant concentration relates to traffic intensity and residential
area, this spatial distribution is reasonable.

There were some limitations in this study. The selected measurements sites may not
be able to capture the pollutant concentration distribution across the whole study area,
because these sites were mostly in the city area, and therefor lack the coverage resolution
of rural areas, which can be considered in the future studies. Although, NO2 concentration
related to the industrial emissions, but due to limited availability of industrial data, did not
enter in the final model, which can be considered by using the specific local data survey to
capture the industrial sites.

5. Conclusions

Land use regression models for seasonal variation of NO2 were developed based on
different predictor variables in Lahore, Pakistan. The R2 values showed the precision of our
generated models. This study has shown that the higher concentration can be seen around
the areas surrounded by roads, residential areas and vehicle maintenance workshops,
whereas lower concentration was observed around the parts of city, having not strong road
network. People living nearby such areas are more affected and exposed to air pollutants
which can increase the possibility of bad health outcomes. The developed models would
contribute more to the broader use of LUR models in Pakistan, and if connected with the
people’s health indicators, this research can be helpful in providing support to provide
epidemiological-based studies in the future.
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