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Abstract: This research presents a methodological process for selecting the most appropriate con-
struction technique for the reconstruction of housing after a seismic disaster in a rural and heritage
context. This process, which is applicable to a large part of the Andean region, incorporates sus-
tainability criteria to guarantee the economic, social and environmental balance of the intervention.
The methodology was developed on a case study: the Colca Valley in Arequipa, Peru. In 2016 an
earthquake affected this zone, where traditional unreinforced earthen buildings suffered serious dam-
age. The objective of this research focuses on comparing six traditional building techniques strongly
related to self-building: four techniques for adobe housing—reinforced with cane (CRA), wire mesh
(WMRA), geogrid (GRA) and halyard ropes (HRRA)—and two techniques for masonry buildings—
confined (CM) and reinforced (RM). For this purpose the authors used the Integrated Value Model
for Sustainable Assessment (MIVES), a Multiple Criteria Decision Analysis (MCDA) model used to
compare alternatives by assigning a “sustainability index” to each evaluated construction technique.
This research study includes two types of variables: quantitative, such as economy ($/m2) and
environmental impact (kgCO2/m2), among others, and qualitative, such as perception of safety,
respect for the urban image and popular knowledge. The research results show that reinforced adobe
techniques are a viable and competitive option, highlighting the cane reinforced adobe technique
(CRA), with a value of 0.714 in relation to industrialized materials such as masonry. This technique
has the same safety characteristics, but at almost half the price, with the additional advantage of using
traditional materials and construction methods, having less environmental impact and showing
better thermal performance in cold climates.

Keywords: evaluation; MCDA (Multiple Criteria Decision Analysis); MIVES (The Spanish Integrated
Value Model for Sustainable Assessment); reconstruction; index; sustainability

1. Introduction

From 1970 to 2020, earthquakes in developing countries caused 1,015,000 deaths,
affected 178,000,000 inhabitants and produced damages of 226 billion dollars [1]. This
latent problem requires the use of mechanisms that allow proper selection of construction
techniques that guarantee resilient housing, with an integrated approach for effective
implementation. There are successful experiences of reconstruction and damage assessment
in rural populations with heritage value located in seismic areas such as Peru, Italy [2],
Nepal [3], Indonesia [4] and Chile [5].

Since 2000, MCDA methods have gained importance in comparative evaluations of the
construction sector, where the nature of the variables is increasingly complex and requires
more rigorous decision-making methods in addition to adequate weighting criteria. These
type of holistic evaluations have been driven by the need to approach the building process
with a more comprehensive method; most of them are based on a life cycle assessment
(LCA) using tools such as Eco-Quantum (The Netherlands), ATHENA (Canada), EcoEffect
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(Sweden), LCA House (Finland) and ENVEST (United Kingdom), among others, which are
promoted by developed countries, use industrialized materials and are applied in urban
contexts [6]. Recent studies have tried to incorporate these evaluation methodologies in
developing countries to guarantee greater scientific rigor in the decision-making processes
in situations of special importance, such as post-disaster reconstruction. The challenge is
greater due to the difficult access to information and limited diffusion of these processes
in the academic and professional fields. Table 1 shows research projects in developing
countries that have used some MCDA methods for the selection of building techniques
based on various variables.

Table 1. MCDA in the construction sector in developing countries.

Year Country Author Research
Criteria

Ref.
Economy Environment Social Others

2020 Ethiopia Daget, Y. Industrialized housing systems X X [7]
2019 Peru Tarque, N Selecting reinforcement for masonry walls X X [8]
2019 Egypt Haroun, H. Reuse of heritage buildings X X X X [9]
2016 Malaysia Khoshnava, S. Classification of sustainable materials X X X [10]
2016 Iran Hosseini A. Technologies for post-disaster temporary housing X X [11]
2013 Brazil De Azevedo, R. Construction of apartment buildings X X X [12]
2007 South Africa Ugwu, O. Sustainability in the construction industry X X X X [13]

According to the National Institute of Statistics and Informatics (INEI) 2017 housing
census, in Peru, 31% of the population (9,765,000 inhabitants) still live in different types of
earthen housing, mostly adobe and mud wall (tapial) [14]. In Peru, 230,000 adobe housing
units were built from 1993 to 2017, almost 9500 houses per year [14], most of them without
technical advice. Masonry construction, as the most economical industrialized technique
in use, represented t55.8% of houses in the country in 2017 [14]. The confined masonry
type is most widely used in urban contexts, due to the fact that the population is closer to
the production centers and to the availability of qualified labor. Though there is a growing
expansion of masonry building systems in rural contexts, these do not necessarily have
the same possibilities and conditions as urban contexts. However, masonry remains the
construction material to which many humble people aspire, even among the 2.9% of the
total population (928,000 inhabitants) that still live in extreme poverty (daily income less
than $2) [15].

Certainly in Peru there is an interesting scientific literature on earth building con-
struction, mainly focused on the use and characterization of adobe, although also highly
focused on two specific aspects: an architectural point of view, considering historical
premises and/or urban determinants, and an engineering point of view, which very strictly
addresses structural and/or construction issues. This situation generates proposals with
a reduced range of action that leave aside decisive variables in the reconstruction pro-
cesses, such as the economy, community participation and access to materials, essential
requirements for contexts of special heritage value such as the Colca Valley. The use of
methodologies that systemically facilitate decision making in the construction sector in
Peru represent isolated cases [16], although their implementation is necessary in the public
housing programs, as stated by one of the objectives of the current national housing and
urban planning policy in Peru [17].

In this sense, this research project focuses on reconstruction scenarios in rural popu-
lated centers susceptible to being affected by seismic events. The objective is to develop an
agile tool that allows systematizing the selection of the most suitable building system for
the reconstruction of housing in the Colca Valley, a mechanism that could be extrapolated
to a large part of the Peruvian Andean rural area. The main contribution is that the tool
unifies variables of the qualitative and quantitative type in a single index that facilitates de-
cision making, in addition to making a contribution to the scarce existing research projects
regarding the selection of building techniques in rural contexts in the Andean region.

This article is structured as follows. Section 1 presents the introduction. Section 2
defines the methodology to build the evaluation framework for Section 3, which analyzes
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the case study and presents the selection of the alternatives for reconstruction. Section 4
describes the proposed evaluation model, and Section 5 illustrates the application and the
analysis of the case study results.

2. Methodology

Given the complexity of the research, which encompasses quantitative and qualitative
variables, the Integrated Value Model for a Sustainable Evaluation (MIVES) was chosen.
This methodology, in comparison with others, allows systematizing of the information
in relatively simple steps and supported by important tools such as value functions and
the weighting of variables by groups of experts; this allows for objective evaluations and
decision making using a more comprehensive approach. Furthermore, its tree-structured
model and its simple implementation make MIVES especially suitable for communicating
results to non-experts.

MIVES is a decision support methodology that allows for obtaining a single index
and comparative studies, transferring the different characteristics of the objects to a series
of homogeneous and quantifiable parameters that facilitate the selection [18]. The process
is based on disaggregating the different evaluation parameters, defining a model that is
capable of being weighted for each of the alternatives in a dimensionless magnitude that
will be called the “Sustainability Index”.

The use of this method has been successful in the selection of various construction
alternatives, such as types of concrete columns [19], reinforcing fibers [20], wooden struc-
tures [21], selection of building systems for schools [22], sports spaces [23] and underground
pipe systems [24]. It has also been used for the evaluation of post-disaster housing so-
lutions such as the location of temporary housing [25] and the sustainability of self-help
housing [26]. Figure 1 shows the process diagram.
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The process is divided into two stages. The first is to define the alternatives for
reconstruction for subsequent evaluation using the “boundary conditions” as a selection
tool; these are the minimum technical requirements that the alternatives must meet. The
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definition of the boundary conditions is followed by their economic, environmental and
social characterization.

The second stage consists of applying the evaluation model, which includes the
following: development of the tree of requirements (P1), establishing the requirements,
criteria and indicators; weighting and assignment of relative weights (P2), involving experts
who establish the level of importance of the variables; assignment of function value (P3),
allowing the comparison between indicators with different units of measurement and
incorporating statistical parameters; quantification and evaluation of the indicators (P4),
which, with the help of the value function, allows for the establishment of a dimensionless
variable with a range from 0.00 to 1.00 for each constructive alternative, which we call the
“Sustainability index”.

3. Case Study

The case study of this research is the possible reconstruction scenarios based on the
selection of the most suitable building system for the Ichupampa district in the Colca Valley
in southern Peru. This area was affected by an earthquake of magnitude 5.2 on the Richter
scale (Figure 2), which caused the collapse of 390 houses and left another 1224 uninhabitable
and caused four fatalities and 68 injuries throughout the Colca Valley [27].
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Figure 2. Consequences of the earthquake in the Colca Valley in 2016. Source: Google maps and ©ENCUENTRO.

In Peru, national and regional bodies lack methodological tools that guarantee an
objective and integrated selection of building systems for housing projects. The selection,
in most cases, is based on economic profitability criteria, opting for industrialized materials
and systems such as confined or reinforced masonry, which in the popular imagination
are also considered “safer” and “more modern”. The local building tradition and the
socio-cultural and environmental aspects that should be implicit in this type of project are
usually ignored.

The scenario configures an uncertain future for these populated centers; if an appro-
priate system is not chosen, it would seriously endanger the equity value of houses. In
this sense, it is appropriate to illustrate the experiences of Sibayo (Figure 3) and Cabana-
conde (Figure 4), also located in the Colca Valley, which in past years took opposite paths
regarding the preservation of their traditional building techniques.
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Figure 4. SCENARIO B—CABANACONDE: the use of industrialized techniques without technical
assistance does not guarantee the structural safety of the houses, in addition to irreversibly damaging
the urban image. ©Matyas Rehak.

3.1. Alternatives for Reconstruction

According to the scenarios set out in Figures 3 and 4, two classes of building tech-
niques were considered: improved traditional techniques and industrialized techniques.
The former appeals to the concept of “Appropriate Technology” [28], allowing for the
revaluing of traditional techniques by incorporating technological advances at the scale
and need of the most disadvantaged populations, achieving a considerable improvement
over traditional adobe with a reduced investment. These techniques have already demon-
strated their experimental efficacy, which allowed their incorporation into the technical
standard E-080 of the National Building Regulations of Peru RNE [29], a pioneer in Latin
America. These Regulations recognize reinforced adobe as a safe and viable material,
provided that certain technical criteria are respected [30]. On the other hand, we have the
industrialized techniques (brick and concrete), which are increasingly used in rural areas
due to the desire of the new generations to have “safer” and “more modern” housing,
alluding to the idea of progress that is coming from nearby cities. These techniques are
included in the National Building Regulations, in standard E-070 of the RNE.

3.2. Boundary Conditions

Each constructive alternative must meet certain minimum technical requirements
(boundary conditions) in order to be included in the study. These requirements allow us to
significantly limit the scope of alternatives to evaluate. These conditions are as follows: (1)
it must have been approved by the National Building Regulations (RNE), thus validating
the structural characteristics and seismic capacity of the selected technique; and (2) it
must demonstrate use in large-scale reconstruction processes to show the feasibility of its
implementation. Table 2 identifies the main parameters of the building techniques that
exist in the local environment to which the selection criteria is applied. The alternatives
in adobe that met the required conditions were those reinforced with cane (CRA), wire
mesh (WMRA), geogrid (GRA) and halyard ropes (HRRA), which were validated by the
Technical Standard E-080. In addition, those using confined masonry (CM) and reinforced
masonry (RM) techniques were validated by the Technical Standard E-070 [31]. These
techniques are described below.

- Cane reinforced adobe (CRA) is a building system that uses open cane as horizontal
reinforcement and whole cane as vertical reinforcement in courses of mud mortar.
The vertical canes must be anchored to the foundation and the base beam [30].

- Wire mesh reinforced adobe (WMRA) is based on the placement of electro-welded
mesh on the surface of the walls, simulating confinement beams and columns in
adobe walls, to provide greater rigidity and avoid the separation of these by seismic
action [32].

- Geogrid reinforced adobe (GRA) uses a polypropylene mesh that is responsible for
confining the adobe blocks that are joined together by pieces of rope that go through
the wall and are placed in the mortar joints [30].
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- Halyard rope reinforced adobe (HRRA) is a system of synthetic ropes that wrap the
walls vertically and horizontally, forming a mesh that confines the walls of the house
and prevents them from collapsing [30].

Table 2. The techniques chosen for evaluation with MIVES are shaded.

Material Technique Acronyms Year
Introduced

Boundary Conditions
Refs.

RNE Code Experience

Earthen
Construction

Simple Adobe SA 750 AC - Yes

Adobe
reinforced

with:

Canes CRA 1978 E-080 Yes [33,34]
Wire mesh WMRA 1997 E-080 Yes [33]

Geogrid GRA 2007 E-080 Yes [33,34]
Halyard ropes HRRA 2015 E-080 Yes [33]

Tire-straps TSRA 2011 - - [35]
Steel profiles SPRA 2005 - - [36]

Reinforced concrete RARC 2011 - - [37]

Prefabricated Quincha PQ 1984 - Yes [34,38]

Masonry Confined masonry CM 1982 E-070 Yes [39]
Reinforced masonry RM 1986 E-070 Yes [40]

− Confined masonry (CM) uses reinforced concrete columns and beams around its
perimeter; the concrete is poured after the setting of walls, which are generally made
of fired clay bricks [31].

− Reinforced Masonry (RM) uses steel rods distributed vertically and horizontally and
integrated by concrete of fluid consistency, which the different components acting
together to resist the efforts. In Figure 5 the different techniques described are shown
schematically [31].
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3.3. Characterization of Techniques

Figure 6 presents the detailed characteristics of each of the selected building techniques,
based on economic, environmental and social indicators. These data will be used for
developing the requirements tree that allows comparison and evaluation of the selected
building techniques.
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3.3.1. Economic Indicators—R1

• Manufacturing and assembly—€/m2 (I1): we analyzed popular housing modules
already executed in Peru, formulated by institutions with experience in reconstruction
issues such as PUCP ( Pontifical Catholic University of Peru), COPASA (Cooperation
for the Sustainable Development Process of Arequipa), GIZ (German Agency for
Technical Cooperation), SDC (The Swiss Agency for Development and Cooperation-
SDC), JICA (Japan International Cooperation Agency) and PNVR (National Rural
Housing Program), among others. In order to have more comparable data, we took as a
criterion the cost per m2 of useful area, since adobe walls have a thickness of 0.40 m and
masonry thickness is 0.15 m. The cost includes basic finishes such as wall plastering
and wood carpentry, which as a whole are not significant in proportion to the structural
elements. The cost options in the reinforced adobe houses range from €197.5/m2, if
using halyard ropes, to € 225.4/m2, if using wire mesh reinforcement. We observed
similar values in the case of cane reinforcement, with a value of € 212.5/m2, and the
geogrid reinforcement, with a value of € 215.3/m2; however, if cane reinforcement
were more accessible, the value would drop considerably. In the case of confined
masonry, the value is € 370.5/m2, practically double the value of reinforced adobe.
Reinforced masonry has a value of € 307.9/m2; its cost is lower than that of confined
masonry, because it does not require reinforced concrete elements such as columns
and confinement beams (Table 3).

• Access to the material (I2): for each construction technique we calculated the distance
in km from the town of Ichupampa, the one most affected by the 2016 earthquake, to
the closest material distribution point. The geogrid, the wire mesh and the concrete
blocks for reinforced masonry are the most difficult materials to obtain because they
must be brought from the city of Arequipa (200 km distance). The canes are brought
from the lower valleys (50 km) and the halyard ropes are sold in most hardware stores
in the populated centers of the Colca Valley. Brick and concrete can be purchased in
Chivay, capital of the province (15 km), but they have costs above the national average
for being brought from the city of Arequipa (Table 3).

• Execution time (I3): the time required in man-hours (MH) to execute 10 m2 of wall
was established as the unit cost analysis for each construction technique. Of the
reinforced adobe techniques, the WMRA requires 10.9 MH because it needs a concrete
complement in the corners; the HRRA requires 9.2 MH because it needs more manual
work in the placement of the ropes and knots; the CRA requires 8.7 MH and the GRA
requires 8.4 MH, which are comparatively shorter times because the placement of the
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canes and geogrid is faster and more practical. The confined masonry technique, CM,
requires 22.6 MH due to the placement of formworks for the confinement of columns
and beams; the reinforced masonry technique, RM, needs 15.1 MH, less time than in
the CM, because it does not require confinement elements in the reinforced concrete
(beams and columns) (Table 3).

Table 3. Evaluation of economic indicators.

Technique
Manufacturing and Assembly Access to the

Material Execution Time

Authors Useful
Area (m2) €/m2 * Supplier km Man Hours, MH

(10 m2 of Wall)

A
do

be
R

ei
nf

or
ce

d
w

it
h:

Wire mesh—WMRA CARITAS 33.0 225.4 € [34] Arequipa 200 10.9 ** [41]
Canes—CRA CARITAS, JICA 34.0 212.5 € [34,41] Pedregal 50 8.7 [41]
Geogrid—GRA GIZ-COSUDE, CARE 1-PUCP 34.1 215.3 € [34] Arequipa 200 8.4 [42]
Halyard Ropes—HRRA GIZ-COSUDE, CARE-PUCP 34.0 197.5 € [34] Ichupampa 5 9.2 ** [41]

Confined masonry—CM MVCS 2 34.0 370.5 € [43,44] Chivay 15 22.6 [45]
Reinforced masonry—RM MVCS 25.0 307.9 € [43] Arequipa 200 15.1 [46]

* Prices to 2020. ** Own calculation, from reference bibliography. 1 CARE is a humanitarian organization fighting global poverty. 2 Ministry
of Housing, Construction and Sanitation.

3.3.2. Environmental Indicators—R2

• Carbon footprint (I4): the unit of measure kg CO2/m2, equivalent to kg of CO2 for
the construction of 1 m2 of wall, was used for each of the six techniques. Confined
masonry has a value of 301 kg CO2/m2 because it requires industrialized materials
such as fired clay brick and concrete (cement plus aggregate), both with a high CO2
emission, especially from clinker, the main component of cement. Reinforced masonry
reaches a value of 455 kg CO2/m2 by using steel rods that require a high CO2 value for
production. Adobe reinforced with canes consists of natural materials; thus, the CO2
emitted during its production is considered as null, with only the emission from the
adobe production considered (74 kg CO2/m2). Wire mesh (electro-welded) is manufac-
tured from low-alloy steel and presents a considerably high energy consumption in its
production process (96 kg CO2/m2). The biaxial geogrid is made with high molecular
weight and high tenacity polypropylene that provides high passive load resistance
(79 kg CO2/m2). Finally, the halyard rope has nylon as its main component, which
is a synthetic polymer that belongs to the group of polyamides; being a petroleum
derivative, it has an impact on the environment (82 kg CO2/m2) (Table 4).

• Thermal conductivity (I5): the Colca Valley is over 3000 m high, requiring construction
materials to withstand the intense cold in this area, especially between June and
August, with temperatures reaching −4 ◦C [47]. The economic conditions of this area
prevent the use of heating or additional insulating materials, so the adoption of a
suitable enclosure material is in many cases the only protection against the effects of
the weather. The unit of measure of thermal conductivity, W/mK, is used for the main
materials of each construction technique [48]. In this regard, the four reinforced adobe
techniques reached a similar value of 0.46 W/mK, which is basically attributed to
the adobe units because the contribution of the reinforcement elements is considered
thermally negligible. Confined masonry has a value of 1.04 W/mK, and reinforced
masonry has a value of 0.91 W/mK (Table 4).

• Recyclability of material (I6): once the life cycle of a building is completed, it is impor-
tant to establish the proportion (%) of material that can be recycled or reincorporated
into a production cycle. The higher the recycling percentage is, the lower the im-
pact on the environment, due, among other factors, to the lower amount of energy
required to produce new construction materials from extraction and processing of
raw materials. In the case of adobe, according to the study carried out by E. Vargas
(2020) [49], 80% recycling capacity is reached due to the physical properties of the earth
of being easily reintroduced into the production cycles and, in this sense, generating
low residue levels. In the case of confined masonry, the percentage is 23%, because
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brick requires more complex processes for recycling. Reinforced masonry reaches 44%;
simple grinding can produce light aggregate (Table 4).

Table 4. Assessment of environmental indicators.

Technique
Waste Thermal Comfort Emissions

% of Material
Recyclability

Thermal Conductivity
(W/mK) Carbon Footprint kg CO2/m2

of Wall Partial

A
do

be
R

ei
nf

or
ce

d
W

it
h:

Wire mesh—WMRA * 80% [49] 0.46 [50,51] Low alloy steel ** 22 [52]
96Adobe wall 74 [53]

Canes—CRA * 80% [49] 0.46 [50,51] Reeds ** 0 [52]
74Adobe wall 74 [53]

Geogrid—GRA * 80% [49] 0.46 [50,51] Polypropylene ** 5 [52]
79Adobe wall 74 [53]

Halyard ropes—HRRA * 80% [49] 0.46 [50,51] Nylon ** 8 [52]
82Adobe wall 74 [53]

Confined masonry—CM 23% [49] 1.04 [53] Solid brick 301 [53] 301

Reinforced masonry—RM 44% [49] 0.91 [53] Precast concrete + 2% steel
455 [52]

455455 [52]

* The value of adobe without reinforcement is considered because the contribution of the reinforcement elements is thermally negligible.
** Own calculation, based on the physical properties of the material and its CO2 emission per kg of reinforcement material.

3.3.3. Social Indicators—R3

Given the qualitative nature of these indicators, fieldwork was carried out through
surveys with multiple-choice questions (Figure 7) and workshops in Ichupampa (Figure 8),
the district that was most affected by the 2016 Colca Valley earthquake. According to the
INEI (National Institute of Statistics and Informatics of Peru), the population of this district
in 2019 was 572 inhabitants [54]. A sample (n) of 82 surveys for this population had a
95% confidence level, whose development is explained in Equation (1) [55]; the results are
described in indicators I7, I9 and I10.

n =
N × Z2

a × p× q
d2 × (N − 1) + Z2

a × p× q
(1)

n = Sample size (number of surveys)
N = Population size
Z = Confidence level
p = Probability of success, or expected proportion
q = Probability of failure
d = Precision (maximum permissible error in terms of proportion)

• Knowledge of the technique (I7): 100% of those surveyed stated that they knew the
confined masonry technique because it is one of the most widely used and widespread
techniques, while in terms of reinforced masonry only 26% of those surveyed knew
about it. Of the adobe reinforcement techniques, the best known was the wire mesh
technique with 33% of respondents knowing of it (several housing modules were
built after the 2001 earthquake), followed by reinforcement with canes with 29% and
geogrid with 24%. The halyard ropes technique had only 6% recognition, as it is the
most recent to be introduced and still has very little diffusion. Additionally, 80% of the
population stated that they had participated in the construction of at least one adobe
house, but they stated that this tradition is being lost because the new generation has
greater resources and gives preference to masonry construction (Table 5).

• Ease of construction (I8): this factor measures the level of complexity in the construc-
tion process of each reinforcement technique and the feasibility of it being replicated
by the inhabitants, in self-building processes, with minimal training and the use of
simple tools. For measuring between the cost of unskilled labor and the cost of total
labor, we used a ratio; data were obtained from the housing modules already analyzed
in Table 5. Under this analysis, the reinforcement with halyard ropes requires 50.46%,
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reinforcement with canes 49.30%, reinforcement with wire mesh 42.41%, and with
geogrid 41.42%. In confined masonry this value reaches 31.25%, and for reinforced
masonry 15.30%. The more complex the technique, the higher the ratio of specialized
labor, which logically also implies a higher economic cost (Table 5).

• Perception of safety (I9): a chromatic scale was used with a ranking range from 1 to 10
(with 1 being very bad and 10 very good) for measuring this variable and for a better
understanding of the method by the surveyed population. The confined masonry
reached, according to the perception of safety that the respondents showed, a value
of 8.40, and the reinforced masonry reached value of 7.50. In the case of reinforced
adobe, the technique with wire mesh reached a value of 6.50; cane, 6.30; geogrid, 6.90;
halyard ropes, 5.90. This shows greater confidence in masonry techniques compared
to reinforced adobe constructions, which is explained by the growing fear generated
by the collapse of adobe housing after the 2016 earthquake. However, it must be
remembered that these houses did not have the proper structural reinforcement
(Table 5).

• Identification (I10): this indicator measures the level of identification of the population
with each construction technique and how they believe it contributes wealth and
heritage value to their district. A total of 90% of those surveyed consider that their
town has an important heritage value, and 88% attribute it to the traditional buildings
(housing and churches). Under these criteria, on a ranking scale from 1 to 10 (1 being
very bad and 10 very good), confined masonry reaches a value of 3.3, reinforced
masonry reaches a value of 3.0, and adobe constructions in general reach a value of 8.0.
The adult population shows greater attachment to traditional buildings, while young
people feel identify more with industrialized techniques such as masonry (Table 5).
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Table 5. Results of social indicators.

Technique Participation Acceptance

Knowledge of
the Technique

Ease of Construction
(% of Unqualified Labor Force)

Perception of Safety
(1 to 10)

Identification
(1 to 10)

A
do

be
re

in
fo

rc
ed

w
it

h:

Wire mesh—WMRA 33% * 42.41% [34] 6.50 * 8.00 *
Canes—CRA 29% * 49.30% [34,41] 6.30 * 8.00 *
Geogrid—GRA 24% * 41.42% [34] 6.90 * 8.00 *
Ropes—HRRA 6% * 50.46% [34] 5.90 * 8.00 *

Confined masonry—CM 100% * 31.25% [44,56] 8.40 * 3.30 *
Reinforced masonry—RM 26% * 15.30% [56] 7.50 * 3.00 *

* Results of surveys.

4. Evaluation Model

A structured process is proposed that, supported by the MIVES methodology, allows
us to obtain a “Sustainability Index”, with a ranking range from 0.00 to 1.00 for each of the
building techniques.

For this purpose, the weighted sum of each of the value functions assigned to each indi-
cator was made, thus obtaining a final dimensionless value that allows merging qualitative
and quantitative variables, as well as facilitating the comparison of results.

The stages of this model are detailed in the following sections.

4.1. Development of the Tree of Requirements (P1)

A branched diagram was used to integrates the main and most discriminative aspects
to be studied and to group the requirements, criteria and indicators of the evaluation
model responding to the following: economic criteria, such as cost and construction times;
environmental criteria, such as emissions, percentage of waste and thermal comfort; and
social criteria, such as community participation and acceptance by the population. In
Figure 9, the final structure and the components of the requirements tree is presented.

4.2. Weighting and Assignment of Relative Weights (P2)

This section involves experts in recognized fields, who through interviews and surveys
established the criteria and indicators to be developed as well as the respective weighting,
using the direct percentage allocation method established in MIVES, which ranges from
0% to 100% according to the level of importance of the variables.

This part of the process is very important because it ensures greater objectivity in
the evaluation and decision making. Table 6 shows the list of experts consulted, who
were classified based on three areas of expertise: (1) construction systems, with a focus on
applied research related to reinforced adobe or structural masonry; (2) rural housing, with
experience in the execution and implementation of low-cost housing projects; (3) heritage,
with participation of specialists in the conservation and promotion of buildings that fit into
the surrounding natural and cultural landscape.
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Table 6. List of specialists consulted for the structure and weighting of the requirements tree.

Field Expert Speciality Years of Experience

Building systems

BS1 Post-disaster earthquake-resistant housing: adobe and masonry 30
BS2 Structural safety of reinforced and unreinforced masonry 15
BS3 Earthquake-resistance for social and sustainable housing 30
BS4 Unconventional building materials 25

Rural housing

RH1 Participatory technology transfer for the Andean region. 25
RH2 Design and construction with participatory methods. 20
RH3 Technology transfers for low-cost housing 18
RH4 Construction with earth and other natural materials 20

Heritage H1 Consultant in the development of heritage building regulations 30
H2 Consultant for the UNESCO Heritage Committee 20

As a result, the requirements tree is obtained with the necessary weightings at the
level of requirements, criteria and indicators, as shown in Figure 9. At the requirements
level, the economic factor is the most important, with 39%; this is likely due to the high
poverty rates and vulnerability in the Andean region and is broken down into costs (65%)
and associated times (35%). This is followed by the environmental aspect, which reaches a
value of 28%, driven by the need for thermal comfort (49%) to face the low temperatures
that the region supports in the winter months. The level of emissions reaches a value of
25% and the generated waste, 26%. Finally, the social aspect, with 33%, is divided into
community participation (57%) and acceptance (43%).

4.3. Assignment of Function Value (P3)

The value function can range from a quantification of a variable or attribute to a
dimensionless variable range, between 0.00, which reflects the minimum satisfaction
(Smin), and 1.00, which reflects the maximum satisfaction (Smax). The main objective of the
methodology is to be able to compare the evaluations of the indicators with different units
of measure [57].
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For example, it is about being able to compare variables of the same type: time, cost,
temperature, indicators quantified by attributes, etc. In this way, a weighted sum of the
different valuations of each of the indicators can be made. The value function used is
defined by five parameters, which, by varying them, allow obtaining all kinds of shapes:
S, concave, convex, or linear; see Table 7 and Figure 10. The parameters that define the
type of function are Ki, Ci, Xmax, Xmin, and Pi (Equation (2)). The value of B is calculated
starting from the five previous values (Equation (3)) [58].

Vind = B.

[
1− e−Ki×(

X−Xmin
Ci

)
Pi
]

(2)

B =

[
1− e−Ki×(

Xmax−Xmin
Ci

)
Pi
]−1

(3)

where [58]:
Xmin is a value in the abscissas, whose ranking is equal to zero (in the case of increasing

value functions).
Xmax is the abscissa of the indicator that generates a value equal to 1 (in the case of

increasing value functions).
X is the abscissa of the evaluated indicator (variable for each alternative),
Pi is the shape factor that defines whether the curve is concave, convex, straight or

S-shaped. Concave curves are obtained for values of Pi < 1, convex or “S-shaped” if Pi > 1
and linear curves for Pi = 1. In addition, it roughly determines the slope of the curve at the
point of coordinate inflection (Ci, Ki),

Ci approaches the abscissa of the inflection point,
Ki approaches the ordinate of the inflection point, and
B is a factor that allows the function to remain in the value range from 0 to 1. This

factor is defined by Equation (2).

Table 7. Showing the different types of value functions.

Increasing Function

Function C K P

Lineal C ≈ Xmin ≈0 ≈1

Convex Xmin + Xmax−Xmin
2 < C < Xmin <0.5 >1

Concave Xmin < C < Xmin + Xmax−Xmin
2 >0.5 <1

S-shaped Xmin + Xmax−Xmin
5 < C < Xmin + (Xmax − Xmin) ∗ 4

5 0.2/0.8 >1
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Below, Equations (2) and (3) are developed, taking as an example indicator I1—
manufacture and assembly, whose value is a function of decreasing curve S.

Value = B.
[

1− e−0.5×( X−500
250 )

3
]

B =

[
1− e−0.5×( 500−o

250 )
3
]−1

where X is the answer to the evaluated indicator (manufacturing and assembly cost per
m2); Ki = 0.5 approaches the ordinate of the inflection point; Xmax = € 500/m2 is the
maximum value of the abscissa in the range of the alternatives of the evaluated indicator;
Ci = € 250/m2 is the inflection point in the abscissa; Pi = 1 is the shape factor of a straight
curve; B is the value that maintains the function in the range from 0 to 1. This factor
B is defined in Equation (2), where: Ki = 0.5; Xmax = € 500/m2; Xmin = € 0/m2 is the
minimum value of the abscissa in the range of the alternatives of the evaluated indicator;
Ci = € 500/m2; Pi = 3. Figure 11 shows the development of this value function.
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For example, in the case of HRRA, if you have an indicator of € 197.46/m2, which,
evaluated in Figure 11, gives a Vi1 of 0.60, then this value will be weighted average with
the other indicators to obtain the “Sustainability Index” for the HRRA, as explained in
Section 4.4.

Table 8 shows the value functions for each of the indicators. It should be mentioned
that the type of function selected is adapted to the particular characteristics of each vari-
able. The following were proposed: four S functions, because the variation in satisfaction
(value in the ordinate) is appreciated more clearly in the central values; five linear func-
tions, to consider values from 0% to 100%, which generate a change in equal proportion
without influencing the position of the abscissa; one convex function, since satisfaction
increases or decreases much more when the increase or decrease of the indicator variable
is closer to the Xmax values. In Appendix A the characteristics of each value function are
graphically detailed.

4.4. Quantification and Evaluation (P4)

The calculation of the “Sustainability Index” is a process that requires the following
steps [59]:

− Value of the indicators is obtained from the value function and the quantification of
the indicator for each alternative. The quantification of the alternative is the abscissa
of the point of the value function, whose ordinate is the value of the indicator for the
alternative studied. It is shown in the example in Figure 12.

− Value of the criteria is obtained from the value of the indicators belonging to the same
criterion multiplied by their respective weights (Equation (4)).

− Value of the requirements is the sum of the values of the criteria belonging to that
same requirement multiplied by their weights (Equation (5)).
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− Value Index is determined by adding the value of the requirements multiplied by
their weights (Equation (6)).

Table 8. Parameters of the value functions for each indicator.

Indicator Units Function Xmin Xmax C K P

I1 Manufacturing and assembly Euro/m2 S-Decr 500 0 250 0.5 3

I2 Access to the material km S-Decr 300 0 150 0.5 3

I3 Execution time Man-Hours S-Decr 40 0 20 0.5 3

I4 Carbon footprint kg CO2/m2 S-Decr 600 0 300 0.5 3

I5 % of material recyclability % Linear 0 100 90 0.01 1

I6 Thermal conductivity W/mK Convex 1.2 0 1.08 0.5 0.5

I7 Knowledge of the technique Survey (%) Linear 0 100 10 0.01 1

I8 Ease of construction % of unskilled labor Linear 0 100 10 0.01 1

I9 Perception of safety Survey (%) Linear 0 10 1 0.01 1

I10 Identification Survey (%) Linear 0 10 1 0.01 1

VCriterion =
n

∑
i=1

VIndicator ×Wi (4)

VRequirement =
n

∑
i=1

VCriterion ×Wi (5)

Indicator valueAlternative =
n

∑
i=1

Requirement×Wi (6)Sustainability 2021, 13, x FOR PEER REVIEW 15 of 22 
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Next, as an example, the calculation of the Sustainability index for the HRRA is developed:

ECONOMIC− R1 = 0.39〈0.65 ∗ [0.56 ∗V1 + 0.44 ∗V2] + 0.35 ∗ [1.00 ∗V3]〉 = 0.315
ENVIRONMENT − R2 = 0.28〈0.25 ∗ [1.00 ∗V4] + 0.26 ∗ [1.00 ∗V5] + 0.49 ∗ [1.00 ∗V6]〉 = 0.238

SOCIAL− R3 = 0.33〈0.57 ∗ [0.48 ∗V7 + 0.52 ∗V8] + 0.43 ∗ [0.53 ∗V9 + 0.47 ∗V10]〉 = 0.156
Sustainability Index for the HRRA = 0.709

5. Analysis of Results

With the help of the MIVES software, the evaluation is carried out, and the different
requirements, criteria and indicators are unified in a single index. Table 9 summarizes
the results of the “Sustainability Index” for each construction technique. As explained in
the previous section, the rankings for each indicator, criteria and requirements are broken
down. Below, in Table 9, the ranking for each constructive alternative is detailed.
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Table 9. Rating indicators for obtaining Sustainability Index.

Global Ranking of Techniques

Requirement Economic
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The techniques that achieved the highest “Sustainability Index” were those of re-
inforced adobe, due to its lower cost, low environmental impact and constructive ease,
led by the reinforcement with canes (CRA) with a value of 0.714, followed closely by
reinforcement with halyard ropes (HRRA) with an index of 0.709. In third place was the
reinforcement with geogrid (GRA), which reached a value of 0.620, followed closely by
the reinforcement with wire mesh (WMRA), with an index of 0.607. Masonry techniques
obtained a lower ranking due to their higher construction costs, higher CO2 emissions in
their production and low thermal performance against cold. However, the local population
widely accepted them because they see in them as a “safer” and “more modern” alternative.
The confined masonry CM achieved an index of 0.475, and the reinforced masonry had
a value of 0.361. Figure 13 shows the sustainability index based on the 3 requirements:
economic, environmental and social; the contribution of each one in the final score is
appreciated comparatively.
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Figure 13. Results of the three requirements: economic, environmental and social. Software MIVES.

For the economic requirement, the ranking associated with reinforced adobe construc-
tion costs is considerably lower than RM and CM. Reinforced adobe techniques have the
advantage of using local materials and reinforcements are easily accessible, except for
GRA. The RM and CM use industrialized materials that have to be purchased in the city of
Arequipa (200 km). Finally, the reinforced adobe techniques are faster to execute because
they do not require formwork or setting periods as in the case of RM and CM.

Regarding the environment requirement, reinforced adobe techniques have a lower
carbon footprint due to the use of local materials, better thermal performance against
cold and a great recycling capacity. CM and RM, due to their industrial nature, require
higher energy consumption, which translates into higher emissions, little recycling capacity
and a thermal behavior less appropriate for cold climates. At the level of reinforcement
techniques, the more industrialized the material, the lower its availability and the greater
its impact on the environment.

For the social requirement, the population recognizes the value of adobe as a symbol
of identity. In addition, the reinforced adobe techniques allow a greater participation
of unskilled labor. Industrialized techniques, RM and CM, obtained better ranking in
perception of safety; in the knowledge of the technique, RM is the best known by the
population due to its wide dissemination in recent years.

Figure 14 shows the main attributes and weaknesses of each construction technique,
based on 10 indicators. The CRA and HRRA stand out for their thermal conductivity and
execution time, but their weakest point is their lack of diffusion among the population. The
GRA and WMRA have their ranking decreased due to the distance in access to the material.
CA shows a high level of diffusion among the population but has high construction costs.
RM is a technique of rapid execution, but it requires skilled labor as well as being the most
polluting technique.
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Figure 14. Evaluation of the indicators and calculation of the sustainability index.

This article presents an evaluation of construction techniques under a sustainability
approach; the structural aspect was not addressed because it was implicit in the techniques
already approved by the National Building Regulations of Peru. This strategy allowed
concentrating efforts on the analysis of economic, environmental and social variables,
which have been little studied in systemic evaluation processes like this one. However,
future lines of research could explore the structural aspect in greater depth by conducting
experimental and quantitative studies.

6. Conclusions

− The MIVES methodology demonstrated its effectiveness in the development of multi-
criteria decision processes for the case study. The new decision-making tool could be
applied in other contexts of the Andean rural area, adapting the requirements tree
structure and updating the weighting of the criteria involved.

− From the evaluation carried out, the reinforced adobe technique achieved the highest
score due to its affordable cost, low environmental impact and ease of construction.
The leader in this category was reinforcement with canes (CRA), with a value of 0.714,
followed closely by reinforcement with halyard ropes (HRRA), with an index of 0.709.
In third place was reinforcement with geogrid (GRA), which reached a value of 0.620,
followed closely by reinforcement with wire mesh (WMRA), with an index of 0.607.
Masonry techniques have a lower value for having higher construction costs, higher
CO2 emissions in their production and low thermal performance against the cold;
however, they are widely accepted by the local population, who see in them as a safer
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and more modern alternative. The confined masonry (CM) achieves an index of 0.475,
followed by the reinforced masonry, with a value of 0.361.

− These research results show that reinforced adobe techniques are a viable and compet-
itive option with respect to masonry because they meet the same safety characteristics
but at almost half the price, with the additional advantages of using traditional
materials and construction methods, producing less environmental impact, using a
reduced amount of embodied energy, producing fewer emissions associated with
transportation, and having better thermal performance in cold climates.

− Industrialized techniques such as confined and reinforced masonry would be a viable
option in towns close to distribution centers, preferably less than 50 km away, which
ensures that the equity value of their environment is not endangered and where
qualified labor is available.
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