A New Equation to Estimate Energy Expenditure Using Heart Rate in Children
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Instrument
2.2.1. Cosmed’s K4b2 (COSMED, Rome, Italy)
2.2.2. POLAR S810 (Polar Electro, Kempele, Finland)
2.2.3. The ActiGraph GT3X+ (ActiGraph Corp, Pensacola, FL, USA)
2.3. Study Protocol
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.; Durstine, J.L. Physical activity, exercise, and chronic diseases: A brief review. Sports Med. Health Sci. 2019, 1, 3–10. [Google Scholar] [CrossRef]
- Granger, E.; Di Nardo, F.; Harrison, A.; Patterson, L.; Holmes, R.; Verma, A. A systematic review of the relationship of physical activity and health status in adolescents. Eur. J. Public Health 2017, 27 (Suppl. 2), 100–106. [Google Scholar] [CrossRef] [Green Version]
- Byun, W.; Dowda, M.; Pate, R.R. Associations between screen-based sedentary behavior and cardiovascular disease risk factors in Korean youth. J. Korean Med. Sci. 2012, 27, 388–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Herman, K.M.; Hopman, W.M.; Sabiston, C.M. Physical activity, screen time and self-rated health and mental health in Canadian adolescents. Prev. Med. 2015, 73, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Sampasa-Kanyinga, H.; Hamilton, H.A.; Willmore, J.; Chaput, J.P. Perceptions and attitudes about body weight and adherence to the physical activity recommendation among adolescents: The moderating role of body mass index. Public Health 2017, 146, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.; Brand, S.; Feldmeth, A.K.; Holsboer-Trachsler, E.; Pühse, U.; Gerber, M. Increased self-reported and objectively assessed physical activity predict sleep quality among adolescents. Physiol. Behav. 2013, 120, 46–53. [Google Scholar] [CrossRef]
- Clark, S.L.; Denburg, M.R.; Furth, S.L. Physical activity and screen time in adolescents in the chronic kidney disease in children (CKiD) cohort. Pediatric Nephrol. 2016, 31, 801–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, K.H.; Treuth, M.; Hannan, P.; McMurray, R.; Ring, K.B.; Catellier, D.; Pate, R. Predicting energy expenditure from accelerometry counts in adolescent girls. Med. Sci. Sports Exerc. 2005, 37, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, M.R.; Rowlands, A.V.; Eston, R.G. Relationships between accelerometer-assessed physical activity and health in children: Impact of the activity-intensity classification method. J. Sports Sci. Med. 2009, 8, 136–143. [Google Scholar] [PubMed]
- García-Prieto, J.C.; Martinez-Vizcaino, V.; García-Hermoso, A.; Sánchez-López, M.; Arias-Palencia, N.; Fonseca, J.F.O.; Mora-Rodriguez, R. Energy Expenditure in Playground Games in Primary School Children Measured by Accelerometer and Heart Rate Monitors. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 467–474. [Google Scholar] [CrossRef]
- Lyden, K.; Kozey, S.L.; Staudenmeyer, J.W.; Freedson, P.S. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur. J. Appl. Physiol. 2011, 111, 187–201. [Google Scholar] [CrossRef]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Puyau, M.R.; Adolph, A.L.; Vohra, F.A.; Zakeri, I.; Butte, N.F. Prediction of activity energy expenditure using accelerometers in children. Med. Sci. Sports Exerc. 2004, 36, 1625–1631. [Google Scholar] [PubMed]
- Treuth, M.S.; Schmitz, K.; Catellier, D.J.; McMurray, R.G.; Murray, D.M.; Almeida, M.J.; Going, S.; Norman, J.E.; Pate, R. Defining accelerometer thresholds for activity intensities in adolescent girls. Med. Sci. Sports Exerc. 2004, 36, 1259–1266. [Google Scholar]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Ward, D.S.; Moorehead, S.M.; Watson, P.D.; Riner, W.; Burke, J.R. Validity of the computer science and applications (CSA) activity monitor in children. Med. Sci. Sports Exerc. 1998, 30, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Way, R.; Okely, A.D. Predictive validity of three ActiGraph energy expenditure equations for children. Med. Sci. Sports Exerc. 2006, 38, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Ceesay, S.M.; Prentice, A.M.; Day, K.C.; Murgatroyd, P.R.; Goldberg, G.R.; Scott, W.; Spurr, G.B. The use of heart rate monitoring in the estimation of energy expenditure: A validation study using indirect whole-body calorimetry. Br. J. Nutr. 1989, 61, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, J.F.; de Jong, A.S.; Visser, T.; Takken, T. Validation of the Actical and Actiheart monitor in ambulatory children with spina bifida. J. Pediatr. Rehabil. Med. 2013, 6, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Calabró, M.A.; Stewart, J.M.; Welk, G.J. Validation of pattern-recognition monitors in children using doubly labeled water. Med. Sci. Sports Exerc. 2013, 45, 1313–1322. [Google Scholar] [CrossRef]
- Harrell, J.S.; McMurray, R.G.; Baggett, C.D.; Pennell, M.L.; Pearce, P.F.; Bangdiwala, S.I. Energy costs of physical activities in children and adolescents. Med. Sci. Sports Exerc. 2005, 37, 329–336. [Google Scholar] [CrossRef]
- Eston, R.G.; Rowlands, A.V.; Ingledew, D.K. Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J. Appl. Physiol. 1998, 84, 362–371. [Google Scholar] [CrossRef]
- McLaughlin, J.E.; King, G.A.; Howley, E.T.; Bassett, D.R., Jr.; Ainsworth, B.E. Validation of the COSMED K4 b2 portable metabolic system. Int. J. Sports Med. 2001, 22, 280–284. [Google Scholar] [CrossRef]
- Gamelin, F.X.; Baquet, G.; Berthoin, S.; Bosquet, L. Validity of the polar S810 to measure R-R intervals in children. Int. J. Sports Med. 2008, 29, 134–138. [Google Scholar] [CrossRef]
- Lee, J.M.; Byun, W. Comparison of Wearable Trackers’ Ability to Estimate Sleep. Int. J. Environ. Res. Public Health 2018, 15, 1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Seo, M.W. Let’s Live Healthier: The Relationship between Suicidal Behavior and Physical Activity in an Age-, Gender-, and Body Mass Index-Matched Adults. Int. J. Environ. Res. Public Health 2020, 17, 8350. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Crouter, S.E.; Lee, J.M.; Dixon, P.M.; Gaesser, G.A.; Welk, G.J. Comparisons of prediction equations for estimating energy expenditure in youth. J. Sci. Med. Sport 2016, 19, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Ferrar, K.; Evans, H.; Smith, A.; Parfitt, G.; Eston, R. A systematic review and meta-analysis of submaximal exercise-based equations to predict maximal oxygen uptake in young people. Pediatric Exerc. Sci. 2014, 26, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G. Objective measurement of physical activity in youth: Current issues, future directions. Exerc. Sport Sci. Rev. 2001, 29, 32–36. [Google Scholar] [CrossRef]
- Trost, S.G.; Kerr, L.M.; Ward, D.S.; Pate, R.R. Physical activity and determinants of physical activity in obese and non-obese children. Int. J. Obes. 2001, 25, 822–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef]
- Yang, L.; Lu, K. Evaluation of physiological workload assessment methods using heart rate and accelerometry for a smart wearable system. Ergonomics 2019, 62, 694–705. [Google Scholar] [CrossRef] [Green Version]
- Hashiguchi, N.; Kodama, K.; Lim, Y. Practical Judgment of Workload Based on Physical Activity, Work Conditions, and Worker’s Age in Construction Site. Sensors 2020, 20, 3786. [Google Scholar] [CrossRef]
- Wang, R.; Blackburn, G.; Desai, M.; Phelan, D.; Gillinov, L.; Houghtaling, P.; Gillinov, M. Accuracy of Wrist-Worn Heart Rate Monitors. JAMA Cardiol. 2017, 2, 104–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dooley, E.E.; Golaszewski, N.M. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices. JMIR mHealth uHealth 2017, 5, e34. [Google Scholar] [CrossRef]
- Byun, W.; Lee, J.M.; Kim, Y.; Brusseau, T.A. Classification Accuracy of a Wearable Activity Tracker for Assessing Sedentary Behavior and Physical Activity in 3-5-Year-Old Children. Int. J. Environ. Res. Public Health 2018, 15, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.; Kim, Y.; Byun, W.; Suk, J.; Lee, J.M. Comparison of a Wearable Tracker with Actigraph for Classifying Physical Activity Intensity and Heart Rate in Children. Int. J. Environ. Res. Public Health 2019, 16, 2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Støve, M.P.; Holm, R.S.; Kjaersgaard, A.S.; Duncker, K.; Jensen, M.R.; Larsen, B.T. Measurement latency significantly contributes to reduced heart rate measurement accuracy in wearable devices. J. Med. Eng. Technol. 2020, 44, 125–132. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 75) | Calibration Group (n = 50) | Cross Validation Group (n = 25) | |||
---|---|---|---|---|---|---|
Boys (n = 54) | Girls (n = 21) | Boys (n = 33) | Girls (n = 17) | Boys (n = 21) | Girls (n = 4) | |
Age (year) | 11.01 ± 1.06 | 11.49 ± 0.73 | 10.88 ± 1.11 | 11.47 ± 0.87 | 11.14 ± 1.01 | 11.50 ± 0.58 |
Height (cm) | 141.80 ± 6.69 | 144.16 ± 3.96 | 140.48 ± 6.89 | 143.17 ± 6.21 | 143.12 ± 6.48 | 145.15 ± 1.70 |
Weight (kg) | 38.04 ± 5.93 | 44.60 ± 10.18 | 38.36 ± 5.99 | 41.71 ± 9.98 | 37.71 ± 5.87 | 47.50 ± 10.38 |
BMI (kg·m−2) | 18.90 ± 2.46 | 21.45 ± 4.84 | 19.45 ± 2.85 | 20.29 ± 4.38 | 18.34 ± 2.07 | 22.61 ± 5.30 |
Variables | VO2 (mL·kg·min−1) | EE (kcal∙min−1) | HR (beats·min−1) | VM (counts·min−1) | |
---|---|---|---|---|---|
Resting | Boy | 6.17 ± 1.55 | 1.12 ± 0.38 | 89.80 ± 11.94 | 114.48 ± 207.47 |
Girl | 5.51 ± 1.49 | 1.06 ± 0.27 | 91.17 ± 12.00 | 276.64 ± 217.46 | |
2 km/h | Boy | 11.67 ± 2.57 | 2.00 ± 0.62 | 108.28 ± 17.79 | 1529.96 ± 459.20 |
Girl | 10.84 ± 2.93 | 1.92 ± 0.63 | 105.23 ± 12.47 | 1415.19 ± 660.47 | |
4 km/h | Boy | 20.85 ± 4.36 | 3.66 ± 1.08 | 123.66 ± 11.97 | 2604.21 ± 735.84 |
Girl | 19.75 ± 4.68 | 3.68 ± 1.14 | 128.18 ± 10.25 | 2718.88 ± 750.96 | |
6 km/h | Boy | 31.27 ± 1.08 | 5.52 ± 1.54 | 151.21 ± 15.29 | 4017.14 ± 851.98 |
Girl | 32.21 ± 5.66 | 6.08 ± 1.68 | 159.21 ± 13.69 | 4490.49 ± 1116.59 | |
8 km/h | Boy | 42.24 ± 8.39 | 7.46 ± 1.80 | 173.27 ± 16.51 | 6710.95 ± 1504.27 |
Girl | 42.46 ± 7.14 | 7.99 ± 2.04 | 178.16 ± 11.42 | 6888.26 ± 1387.56 |
Parameter | Heart Rate Equation | Vector Magnitude Equation | ||
---|---|---|---|---|
Coefficients (95% CI) | Standard Error | Coefficients (95% CI) | Standard Error | |
Intercept | −13.761 (−17.120 to −10.402) | 1.705 | −1.033 (−4.379 to 2.313) | 1.698 |
Gender | −0.461 (−0.787 to −0.135) | 0.165 | −0.200 (−0.536 to 0.136) | 0.171 |
Age (year) | 0.242 (0.061 to 0.424) | 0.092 | −0.186 (−0.372 to 0.000) | 0.094 |
Height (cm) | 0.023 (−0.006 to 0.052) | 0.015 | −0.002 (−0.032 to 0.028) | 0.015 |
Weight (kg) | 0.075 (0.052 to 0.099) | 0.012 | 0.117 (0.093 to 0.141) | 0.012 |
Heart Rate (beat/min) | 0.069 (0.065 to 0.073) | 0.002 | ||
Vector Magnitude | 0.001 (0.001–0.001) | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Park, J.-H.; Seo, M.-W.; Kang, S.-K.; Lee, J.-M. A New Equation to Estimate Energy Expenditure Using Heart Rate in Children. Sustainability 2021, 13, 5092. https://doi.org/10.3390/su13095092
Lee M, Park J-H, Seo M-W, Kang S-K, Lee J-M. A New Equation to Estimate Energy Expenditure Using Heart Rate in Children. Sustainability. 2021; 13(9):5092. https://doi.org/10.3390/su13095092
Chicago/Turabian StyleLee, Mihyun, Jeong-Hui Park, Myong-Won Seo, Seoung-Ki Kang, and Jung-Min Lee. 2021. "A New Equation to Estimate Energy Expenditure Using Heart Rate in Children" Sustainability 13, no. 9: 5092. https://doi.org/10.3390/su13095092
APA StyleLee, M., Park, J. -H., Seo, M. -W., Kang, S. -K., & Lee, J. -M. (2021). A New Equation to Estimate Energy Expenditure Using Heart Rate in Children. Sustainability, 13(9), 5092. https://doi.org/10.3390/su13095092