Prediction Power of Logistic Regression (LR) and Multi-Layer Perceptron (MLP) Models in Exploring Driving Forces of Urban Expansion to Be Sustainable in Estonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Data Processing
2.3. Data Analysis
2.3.1. LULC Dynamics Model
2.3.2. LR Model
2.3.3. MLP Neural Network Analysis
2.3.4. Driving Factors Analysis
Dependent Variable
Independent Variables
Correlation Matrix
3. Results
3.1. LULC Dynamics Model Analysis
3.2. LR Model Results
3.3. MLP Neural Network Model Results
4. Discussion
4.1. LULC Changes for 28 Years in the Study Area
4.2. LR Model and Impacts of Proximity Factors on Urban Expansion
4.3. MLP Neural Network Model and Impacts of Proximity Factors on Urban Expansion
4.4. Towards Sustainable Urban Expansion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sultana, S.; Weber, J. The Nature of Urban Growth and the Commuting Transition: Endless Sprawl or a Growth Wave? Urban Stud. 2014, 51, 544–576. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All Countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Land-Cover Change Analysis in 50 Global Cities by Using a Combination of Landsat Data and Analysis of Grid Cells. Environ. Res. Lett. 2014, 9, 2000–2010. [Google Scholar] [CrossRef]
- Rungskunroch, P.; Yang, Y.; Kaewunruen, S. Does High-Speed Rail Influence Urban Dynamics and Land Pricing? Sustainability 2020, 12, 3012. [Google Scholar] [CrossRef] [Green Version]
- Dahal, K.R.; Benner, S.; Lindquist, E. Analyzing Spatiotemporal Patterns of Urbanization in Treasure Valley, Idaho, USA. Appl. Spat. Anal. Policy 2016, 11, 205–226. [Google Scholar] [CrossRef]
- Mozaffaree Pour, N.; Oja, T. Urban Expansion Simulated by Integrated Cellular Automata and Agent-Based Models; An Example of Tallinn, Estonia. Urban Sci. 2021, 5, 85. [Google Scholar] [CrossRef]
- Castle, C.; Crooks, A. Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations. 2006. Available online: https://Discovery.Ucl.Ac.Uk/Id/Eprint/3342/1/3342.Pdf (accessed on 1 September 2006).
- Liying, G.; Daolong, W.; Jianjun, Q.; Ligang, W.; Yu, L. Spatio-Temporal Patterns of Land Use Change along the Bohai Rim in China during 1985–2005. J. Geogr. Sci. 2009, 19, 568–576. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change Detection Techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Qian, J.; Peng, Y.; Luo, C.; Wu, C.; Du, Q. Urban Land Expansion and Sustainable Land Use Policy in Shenzhen: A Case Study of China’s Rapid Urbanization. Sustainability 2016, 8, 16. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y. Towards Equitable and Sustainable Urban Space: Introduction to Special Issue on “Urban Land and Sustainable Development”. Sustainability 2016, 8, 804. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Zhou, T.; Sun, J.; Li, Y.; Li, W. Accelerated Urban Expansion in Lhasa City and the Implications for Sustainable Development in a Plateau City. Sustainability 2017, 9, 1499. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; He, S.; Huang, L.; Zheng, X.; Pan, Y.; Shahtahmassebi, A.R.; Shen, Z.; Yu, Z.; Wang, K. Assessing the Impacts of Chinese Sustainable Ground Transportation on the Dynamics of Urban Growth: A Case Study of the Hangzhou Bay Bridge. Sustainability 2016, 8, 666. [Google Scholar] [CrossRef] [Green Version]
- Grigorescu, I.; Kucsicsa, G.; Mitrică, B.; Mocanu, I.; Dumitrașcu, M. Driving Factors of Urban Sprawl in the Romanian Plain. Regional and Temporal Modelling Using Logistic Regression. Geocarto Int. 2021, 36, 1–27. [Google Scholar] [CrossRef]
- Hamilton, F.E.I.; Andrews, K.D.; Pichler-Milanovic, N. Transformation of Cities in Central and Eastern Europe: Towards Globalization; United Nations University Press: Tokyo, Japan, 2005; ISBN 9280811053. [Google Scholar]
- Cirtautas, M. Urban Sprawl of Major Cities in the Baltic States. Archit. Urban Plan. 2013, 7, 72–79. [Google Scholar] [CrossRef]
- Tammaru, T.; Leetmaa, K.; Silm, S.; Ahas, R. Temporal and Spatial Dynamics of the New Residential Areas around Tallinn. Eur. Plan. Stud. 2009, 17, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Palang, H.; Peil, T. Mapping Future through the Study of the Past and Present: Estonian Suburbia. Futures 2010, 42, 700–710. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.; Liu, B.; Li, Z.; Jin, G. Impacts of Grain-for-Green and Grain-for-Blue Policies on Valued Ecosystem Services in Shandong Province, China. Adv. Meteorol. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The Dynamics of Urban Expansion and Its Impacts on Land Use/Land Cover Change and Small-Scale Farmers Living near the Urban Fringe: A Case Study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Lin, Y.P.; Hong, N.M.; Wu, P.J.; Lin, C.J. Modeling and Assessing Land-Use and Hydrological Processes to Future Land-Use and Climate Change Scenarios in Watershed Land-Use Planning. Environ. Geol. 2007, 53, 623–634. [Google Scholar] [CrossRef]
- Cheng, J.; Masser, I. Urban Growth Pattern Modeling: A Case Study of Wuhan City, PR China. Landsc. Urban Plan. 2003, 62, 199–217. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Fang, C. The Varying Driving Forces of Urban Expansion in China: Insights from a Spatial-Temporal Analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, H.; Liu, K.; Wu, Q. Research on the Influence of Site Factors on the Expansion of Construction Land in the Pearl River Delta, China: By Using GIS and Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 366–373. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.; Zhan, B. A Comparison of Urban Growth and Their Influencing Factors of Two Border Cities: Laredo in the US and Nuevo Laredo in Mexico. Appl. Geogr. 2017, 79, 223–234. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving Land-Use Change Modeling by Integrating ANN with Cellular Automata-Markov Chain Model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef] [PubMed]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. Improving the Capability of an Integrated CA-Markov Model to Simulate Spatio-Temporal Urban Growth Trends Using an Analytical Hierarchy Process and Frequency Ratio. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 65–78. [Google Scholar] [CrossRef]
- Akın, A.; Sunar, F.; Berberoğlu, S. Urban Change Analysis and Future Growth of Istanbul. Env. Monit Assess 2015, 187, 506. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Chouhan, P. Modeling Spatial Determinants of Urban Expansion of Siliguri a Metropolitan City of India Using Logistic Regression. Model. Earth Syst. Environ. 2020, 6, 2317–2331. [Google Scholar] [CrossRef]
- Reimets, R.; Uuemaa, E.; Oja, T.; Sisas, E.; Mander, Ü. Urbanisation-Related Landscape Change in Space and Time along Spatial Gradients near Roads: A Case Study from Estonia. Landsc. Res. 2015, 40, 192–207. [Google Scholar] [CrossRef]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forkuor, G.; Cofie, O. Dynamics of Land-Use and Land-Cover Change in Freetown, Sierra Leone and Its Effects on Urban and Peri-Urban Agriculture—A Remote Sensing Approach. Int. J. Remote Sens. 2011, 32, 1017–1037. [Google Scholar] [CrossRef]
- Salghuna, N.N.; Rama Chandra Prasad, P.; Asha Kumari, J. Assessing the Impact of Land Use and Land Cover Changes on the Remnant Patches of Kondapalli Reserve Forest of the Eastern Ghats, Andhra Pradesh, India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 419–429. [Google Scholar] [CrossRef]
- Conedera, M.; Del Biaggio, A.; Seeland, K.; Moretti, M.; Home, R. Residents’ Preferences and Use of Urban and Peri-Urban Green Spaces in a Swiss Mountainous Region of the Southern Alps. Urban For. Urban Green. 2015, 14, 139–147. [Google Scholar] [CrossRef]
- Gavrilidis, A.A.; Niță, M.R.; Onose, D.A.; Badiu, D.L.; Năstase, I.I. Methodological Framework for Urban Sprawl Control through Sustainable Planning of Urban Green Infrastructure. Ecol. Indic. 2019, 96, 67–78. [Google Scholar] [CrossRef]
- Kim, Y.; Newman, G.; Güneralp, B. A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models. Land 2020, 9, 246. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Li, C.; Zhong, C.; Chen, X. An Investigation on Shenzhen Urban Green Space Changes and Their Effect on Local Eco-Environment in Recent Decades. Sustainability 2021, 13, 12549. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y.; Ranagalage, M. Modeling the Drivers of Urban Land Use Changes in Lusaka, Zambia Using Multi-Criteria Evaluation: An Analytic Network Process Approach. Land Use Policy 2020, 92, 104441. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N.; Divigalpitiya, P. Analyzing the Driving Factors Causing Urban Expansion in the Peri-Urban Areas Using Logistic Regression: A Case Study of the Greater Cairo Region. Infrastructures 2019, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Zhang, L.; Keshtkar, H.; Haack, B.N.; Rijal, S.; Zhang, P. Land Use/Land Cover Dynamics and Modeling of Urban Land Expansion by the Integration of Cellular Automata and Markov Chain. ISPRS Int. J. Geo Inf. 2018, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhan, J.; Yan, H.; Wu, F.; Deng, X. Evaluation of the Impacts of Land Use on Water Quality: A Case Study in the Chaohu Lake Basin. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- McGrane, S.J. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: A Review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of Urbanization on Land Use/Cover Changes and Its Probable Implications on Local Climate and Groundwater Level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Bhat, P.A.; ul Shafiq, M.; Mir, A.A.; Ahmed, P. Urban Sprawl and Its Impact on Landuse/Land Cover Dynamics of Dehradun City, India. Int. J. Sustain. Built Environ. 2017, 6, 513–521. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Pan, W.; Chen, Y.; Wang, X. Urban Expansion and Its Influencing Factors in Natural Wetland Distribution Area in Fuzhou City, China. Chin. Geogr. Sci. 2012, 22, 568–577. [Google Scholar] [CrossRef]
- Xu, E.; Chen, Y. Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology. Sustainability 2019, 11, 4953. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhao, J.; Thinh, N.X.; Xi, Y. Assessment of the Effects of Urban Expansion on Terrestrial Carbon Storage: A Case Study in Xuzhou City, China. Sustainability 2018, 10, 647. [Google Scholar] [CrossRef] [Green Version]
- Zubair, O.A.; Ji, W.; Weilert, T.E. Modeling the Impact of Urban Landscape Change on Urban Wetlands Using Similarityweighted Instance-Based Machine Learning and Markov Model. Sustainability 2017, 9, 2223. [Google Scholar] [CrossRef] [Green Version]
- Ustaoglu, E.; Williams, B. Determinants of Urban Expansion and Agricultural Land Conversion in 25 EU Countries. Environ. Manag. 2017, 60, 717–746. [Google Scholar] [CrossRef]
- Musa, S.I.; Hashim, M.; Reba, M.N.M. A Review of Geospatial-Based Urban Growth Models and Modelling Initiatives. Geocarto Int. 2017, 32, 813–833. [Google Scholar] [CrossRef]
- Traore, A.; Watanabe, T. Modeling Determinants of Urban Growth in Conakry, Guinea: A Spatial Logistic Approach. Urban Sci. 2017, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Tan, R.; Kong, X.; Zhou, J. Analysis of the Driving Forces of Urban Expansion Based on a Modified Logistic Regression Model: A Case Study of Wuhan City, Central China. Sustainability 2019, 11, 2207. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.; Heppenstall, A.; Omrani, H.; Saadi, I.; Cools, M.; Teller, J. Modelling Built-up Expansion and Densification with Multinomial Logistic Regression, Cellular Automata and Genetic Algorithm. Comput. Environ. Urban Syst. 2018, 67, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Majedi, H.; Monavari, S.M.; Alesheikh, A.A.; Zarkesh, M.K. Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran. Sustainability 2016, 8, 810. [Google Scholar] [CrossRef] [Green Version]
- Nong, Y.; Du, Q. Urban Growth Pattern Modeling Using Logistic Regression. Geo Spat. Inf. Sci. 2011, 14, 62–67. [Google Scholar] [CrossRef]
- Rahnama, M.R.; Wyatt, R. Projecting Land Use Change with Neural Network and GIS in Northern Melbourne for 2014–2050. Aust. Geogr. 2021, 52, 149–170. [Google Scholar] [CrossRef]
- Rahnama, M.R. Simulation of Land Use Land Cover Change in Melbourne Metropolitan Area from 2014 to 2030: Using Multilayer Perceptron Neural Networks and Markov Chain Model. Aust. Plan. 2021, 57, 36–49. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (Lcm) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Fattah, M.A.; Morshed, S.R.; Morshed, S.Y. Multi-Layer Perceptron-Markov Chain-Based Artificial Neural Network for Modelling Future Land-Specific Carbon Emission Pattern and Its Influences on Surface Temperature. SN Appl. Sci. 2021, 3, 359. [Google Scholar] [CrossRef]
- Sardar, P.; Samadder, S.R. Understanding the Dynamics of Landscape of Greater Sundarban Area Using Multi-Layer Perceptron Markov Chain and Landscape Statistics Approach. Ecol. Indic. 2021, 121, 106914. [Google Scholar] [CrossRef]
- Saadani, S.; Laajaj, R.; Maanan, M.; Rhinane, H.; Aaroud, A. Simulating Spatial–Temporal Urban Growth of a Moroccan Metropolitan Using CA–Markov Model. Spat. Inf. Res. 2020, 28, 609–621. [Google Scholar] [CrossRef]
- Mondal, B.; Chakraborti, S.; Das, D.N.; Joshi, P.K.; Maity, S.; Pramanik, M.K.; Chatterjee, S. Comparison of Spatial Modelling Approaches to Simulate Urban Growth: A Case Study on Udaipur City, India. Geocarto Int. 2020, 35, 411–433. [Google Scholar] [CrossRef]
- Losiri, C.; Nagai, M.; Ninsawat, S.; Shrestha, R.P. Modeling Urban Expansion in Bangkok Metropolitan Region Using Demographic-Economic Data through Cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain Models. Sustainability 2016, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, D. Urban Growth Simulation of Atakum (Samsun, Turkey) Using Cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain Models. Remote Sens. 2015, 7, 5918–5950. [Google Scholar] [CrossRef] [Green Version]
- Cole, B.; Smith, G.; Balzter, H. Acceleration and Fragmentation of CORINE Land Cover Changes in the United Kingdom from 2006–2012 Detected by Copernicus IMAGE2012 Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 107–122. [Google Scholar] [CrossRef]
- Cieślak, I.; Biłozor, A.; Szuniewicz, K. The Use of the CORINE Land Cover (CLC) Database for Analyzing Urban Sprawl. Remote Sens. 2020, 12, 282. [Google Scholar] [CrossRef] [Green Version]
- Garcia-López, M.À. All Roads Lead to Rome … and to Sprawl? Evidence from European Cities. Reg. Sci. Urban Econ. 2019, 79, 103467. [Google Scholar] [CrossRef] [Green Version]
- Grigorescu, I.; Kucsicsa, G.; Popovici, E.A.; Mitrică, B.; Mocanu, I.; Dumitraşcu, M. Modelling Land Use/Cover Change to Assess Future Urban Sprawl in Romania. Geocarto Int. 2021, 36, 721–739. [Google Scholar] [CrossRef]
- Mozaffaree Pour, N.; Oja, T. A Comparative analysis of “urban expansion” using remotely sensed data of CORINE land cover and global human settlement layer in Estonia. In Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management, Prague, Czech Republic, 7–9 May 2020; SCITEPRESS–Science and Technology Publications: Prague, Czech Republic, 2020; pp. 143–150. [Google Scholar]
- Oueslati, W.; Alvanides, S.; Garrod, G. Determinants of Urban Sprawl in European Cities. Urban Stud. 2015, 52, 1594–1614. [Google Scholar] [CrossRef] [Green Version]
- All-Free-Download.Com. Available online: https://All-Free-Download.Com/Free-Vector/Download/World-Countries-Map-Vector_120211.html (accessed on 22 November 2021).
- Liu, Y.; Luo, T.; Liu, Z.; Kong, X.; Li, J.; Tan, R. A Comparative Analysis of Urban and Rural Construction Land Use Change and Driving Forces: Implications for Urban-Rural Coordination Development in Wuhan, Central China. Habitat Int. 2015, 47, 113–125. [Google Scholar] [CrossRef]
- Pontius, R.G.; Cheuk, M.L. A Generalized Cross-Tabulation Matrix to Compare Soft-Classified Maps at Multiple Resolutions. Int. J. Geogr. Inf. Sci. 2006, 20, 1–30. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of Logistic Regression, Markov Chain and Cellular Automata Models to Simulate Urban Expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Eastman, J.R. IDRISI Selva Manual; Clark Labs-Clark University: Worcester, MS, USA, 2012; pp. 1–324. [Google Scholar]
- Eastman, J.R. TerrSet Geospatial Monitoring and Modeling System. In TerrSet Tutorial; Clark Labs-Clark University: Worcester, MS, USA, 2016. [Google Scholar]
- Saeedi Razavi, B. Predicting the Trend of Land Use Changes Using Artificial Neural Network and Markov Chain Model (Case Study: Kermanshah City). Res. J. Environ. Earth Sci. 2014, 6, 215–226. [Google Scholar] [CrossRef]
- Silva, L.P.; Xavier, A.P.C.; da Silva, R.M.; Santos, C.A.G. Modeling Land Cover Change Based on an Artificial Neural Network for a Semiarid River Basin in Northeastern Brazil. Glob. Ecol. Conserv. 2020, 21, e00811. [Google Scholar] [CrossRef]
- Gibson, L.; Münch, Z.; Palmer, A.; Mantel, S. Future Land Cover Change Scenarios in South African Grasslands—Implications of Altered Biophysical Drivers on Land Management. Heliyon 2018, 4, e00693. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, H.; Shi, T. Modeling and Predictive Mapping of Soil Organic Carbon Density in a Small-Scale Area Using Geographically Weighted Regression Kriging Approach. Sustainability 2020, 12, 9330. [Google Scholar] [CrossRef]
- Siddiqui, A.; Siddiqui, A.; Maithani, S.; Jha, A.K.; Kumar, P.; Srivastav, S.K. Urban Growth Dynamics of an Indian Metropolitan Using CA Markov and Logistic Regression. Egypt. J. Remote Sens. Space Sci. 2018, 21, 229–236. [Google Scholar] [CrossRef]
- Samarüütel, A.; Selvig, S.S.; Holt-Jensen, A. Urban Sprawl and Suburban Development around Pärnu and Tallinn, Estonia. Nor. Geogr. Tidsskr. 2010, 64, 152–161. [Google Scholar] [CrossRef]
- Muhamad Nor, A.N.; Abdul Aziz, H.; Nawawi, S.A.; Muhammad Jamil, R.; Abas, M.A.; Hambali, K.A.; Yusoff, A.H.; Ibrahim, N.; Rafaai, N.H.; Corstanje, R.; et al. Evolution of Green Space under Rapid Urban Expansion in Southeast Asian Cities. Sustainability 2021, 13, 12024. [Google Scholar] [CrossRef]
Independent Variables | Explanation |
---|---|
Independent variable 1 (X1) | distance from near cities |
Independent variable 2 (X2) | distance from the core of cities: Tallinn and Tartu |
Independent variable 3 (X3) | distance from green urban areas |
Independent variable 4 (X4) | distance from industrial or commercial units |
Independent variable 5 (X5) | distance from airport |
Independent variable 6 (X6) | distance from sport and leisure facilities |
Independent variable 7 (X7) | distance from main roads |
Independent variable 8 (X8) | distance from agricultural land |
Independent variable 9 (X9) | distance from forest land |
Independent variable 10 (X10) | distance from existing residential areas |
Independent variable 11 (X11) | distance from water land |
Independent variable 12 (X12) | distance from wetlands |
LULC (Area (ha)) | 1990 | 2000 | 1990–2000 | 2006 | 2000–2006 | 2012 | 2006–2012 | 2018 | 2012–2018 | |
---|---|---|---|---|---|---|---|---|---|---|
Agriculture | Harju County | 129,773 | 128,236 | −1.18% | 126,001 | −1.74% | 121,786 | −3.34% | 122,060 | 0.22% |
Tartu County | 149,645 | 149,709 | 0.04% | 149,382 | −0.22% | 146,716 | −1.78% | 146,192 | −0.36% | |
Forest | Harju County | 260,771 | 260,709 | −0.02% | 259,786 | −0.35% | 260,478 | 0.27% | 259,281 | −0.46% |
Tartu County | 155,319 | 155,255 | −0.04% | 155,140 | −0.07% | 156,882 | 1.12% | 156,798 | −0.05% | |
Urban | Harju County | 22,804 | 24,362 | 6.83% | 27,231 | 11.78% | 29,971 | 10.06% | 30,548 | 1.92% |
Tartu County | 6984 | 6984 | 0.00% | 7255 | 3.88% | 7986 | 10.07% | 8346 | 4.51% | |
Water | Harju County | 4052 | 4060 | 0.20% | 4138 | 1.91% | 4191 | 1.29% | 4151 | −0.97% |
Tartu County | 4303 | 4303 | 0.00% | 4315 | 0.27% | 4365 | 1.16% | 4384 | 0.45% | |
Wetland | Harju County | 15,213 | 15,246 | 0.21% | 15,457 | 1.39% | 16,186 | 4.71% | 16,573 | 2.39% |
Tartu County | 18,681 | 18,681 | 0.00% | 18,840 | 0.86% | 18,983 | 0.76% | 19,211 | 1.20% |
1990 | 1990 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | Harju County | Urban | Agriculture | Forest | Wetland | Water | Total | 2018 | Tartu County | Urban | Agriculture | Forest | Wetland | Water | Total |
Urban | 20,930 | 6836 | 2680 | 12 | 89 | 30,548 | Urban | 6486 | 1638 | 222 | 0 | 0 | 8346 | ||
Agriculture | 568 | 118,614 | 2856 | 21 | 1 | 122,060 | Agriculture | 440 | 143,973 | 1770 | 10 | 0 | 146,192 | ||
Forest | 1178 | 4251 | 253,161 | 668 | 24 | 259,281 | Forest | 58 | 4034 | 152,586 | 120 | 0 | 156,798 | ||
Wetland | 0 | 70 | 1963 | 14,504 | 37 | 16,573 | Wetland | 0 | 0 | 692 | 18,517 | 2 | 19,211 | ||
Water | 128 | 2 | 111 | 8 | 3900 | 4151 | Water | 0 | 0 | 49 | 34 | 4301 | 4384 | ||
Total | 22,804 | 129,773 | 260,771 | 15,213 | 4052 | 432,612 | Total | 6984 | 149,645 | 155,319 | 18,681 | 4303 | 334,932 |
Independent Variables | Coefficients | |
---|---|---|
Harju County | Tartu County | |
Intercept | 1.51 | 1.18 |
X1 | −0.09 | −0.97 |
X2 | −1.27 | −3.48 |
X3 | 0.23 | −0.54 |
X4 | −0.92 | 1.26 |
X5 | −1.58 | 3.53 |
X6 | −0.59 | −0.21 |
X7 | −2.19 | −0.4 |
X8 | 0.81 | −2.74 |
X9 | −1.46 | −0.57 |
X10 | 1.17 | −1.85 |
X11 | −1.82 | −1.01 |
X12 | 0.89 | −0.34 |
Pseudo R2 | 0.36 | 0.43 |
ROC | 0.95 | 0.97 |
Independent Variables | Force Constant a Single Variable | Except One, Force Constant All Independent Variables | ||||
---|---|---|---|---|---|---|
Harju County | Tartu County | Harju County | Tartu County | |||
R2 | Influence Order | R2 | Influence Order | R2 | ||
With all variables | 0.04 | N/A | 0.02 | N/A | 0.0390 | 0.0217 |
X1 | 0.04 | 9 | 0.02 | 8 | 0.0009 | 0.0000 |
X2 | 0.03 | 2 | 0.01 | 1 (most influential) | 0.0031 | 0.0018 |
X3 | 0.03 | 3 | 0.01 | 2 | 0.0039 | 0.0012 |
X4 | 0.04 | 8 | 0.01 | 5 | 0.0015 | 0.0009 |
X5 | 0.03 | 5 | 0.02 | 12 (least influential) | 0.0025 | 0.0000 |
X6 | 0.05 | 12 (least influential) | 0.01 | 4 | 0.0000 | 0.0011 |
X7 | 0.03 | 4 | 0.01 | 3 | 0.0036 | 0.0012 |
X8 | 0.04 | 10 | 0.02 | 9 | 0.0021 | 0.0000 |
X9 | 0.03 | 6 | 0.02 | 11 | 0.0022 | 0.0000 |
X10 | 0.02 | 1 (most influential) | 0.02 | 6 | 0.0067 | 0.0004 |
X11 | 0.04 | 11 | 0.02 | 7 | 0.0000 | 0.0002 |
X12 | 0.04 | 7 | 0.02 | 10 | 0.0000 | 0.0000 |
Harju County | Tartu County | ||||
---|---|---|---|---|---|
Model | Variables Included | R2 | Model | Variables Included | R2 |
With constant variables | All variables | 0.0390 | With constant variables | All variables | 0.0217 |
Step1: X (6) | (1,2,3,4,5,7,8,9,10,11,12) | 0.0442 | Step1: X (5) | (1,2,3,4,7,6,8,9,10,11,12) | 0.0217 |
Step2: X (6,11) | (1,2,3,4,5,7,8,9,10,12) | 0.0467 | Step2: X (5,9) | (1,2,3,4,7,6,8,10,11,12) | 0.0217 |
Step3: X (6,11,8) | (1,2,3,4,5,7,9,10,12) | 0.0497 | Step3: X (5,9,12) | (1,2,3,4,7,6,8,10,11) | 0.0215 |
Step4: X (6,11,8,1) | (2,3,4,5,7,9,10,12) | 0.0477 | Step4: X (5,9,12,8) | (1,2,3,4,7,6,10,11) | 0.0211 |
Step5: X (6,11,8,1,12) | (2,3,4,5,7,9,10) | 0.0468 | Step5: X (5,9,12,8,1) | (2,3,4,7,6,10,11) | 0.0206 |
Step6: X (6,11,8,1,12,4) | (2,3,5,7,9,10) | 0.0466 | Step6: X (5,9,12,8,1,11) | (2,3,4,7,6,10) | 0.0186 |
Step7: X (6,11,8,1,12,4,9) | (2,3,5,7,10) | 0.0405 | Step7: X (5,9,12,8,1,11,10) | (2,3,4,7,6) | 0.0159 |
Step8: X (6,11,8,1,12,4,9,5) | (2,3,7,10) | 0.0307 | Step8: X (5,9,12,8,1,11,10,4) | (2,3,7,6) | 0.0107 |
Step9: X (6,11,8,1,12,4,9,5,2) | (3,7,10) | 0.0205 | Step9:X (5,9,12,8,1,11,10,4,6) | (2,3,7) | 0.0067 |
Step10: X (6,11,8,1,12,4,9,5,2,7) | (3,10) | 0.0129 | Step10:X (5,9,12,8,1,11,10,4,6,7) | (2,3) | 0.0038 |
Step11:X (6,11,8,1,12,4,9,5,2,7,3) | (10) | 0.0067 | Step11:X (5,9,12,8,1,11,10,4,6,7,3) | (2) | 0.0018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozaffaree Pour, N.; Oja, T. Prediction Power of Logistic Regression (LR) and Multi-Layer Perceptron (MLP) Models in Exploring Driving Forces of Urban Expansion to Be Sustainable in Estonia. Sustainability 2022, 14, 160. https://doi.org/10.3390/su14010160
Mozaffaree Pour N, Oja T. Prediction Power of Logistic Regression (LR) and Multi-Layer Perceptron (MLP) Models in Exploring Driving Forces of Urban Expansion to Be Sustainable in Estonia. Sustainability. 2022; 14(1):160. https://doi.org/10.3390/su14010160
Chicago/Turabian StyleMozaffaree Pour, Najmeh, and Tõnu Oja. 2022. "Prediction Power of Logistic Regression (LR) and Multi-Layer Perceptron (MLP) Models in Exploring Driving Forces of Urban Expansion to Be Sustainable in Estonia" Sustainability 14, no. 1: 160. https://doi.org/10.3390/su14010160
APA StyleMozaffaree Pour, N., & Oja, T. (2022). Prediction Power of Logistic Regression (LR) and Multi-Layer Perceptron (MLP) Models in Exploring Driving Forces of Urban Expansion to Be Sustainable in Estonia. Sustainability, 14(1), 160. https://doi.org/10.3390/su14010160