Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review
Abstract
:1. Introduction
2. Different Heavy Metals and Their Toxicity
2.1. Arsenic
2.1.1. Mechanism of Arsenic Toxicity
2.1.2. Systemic Effects of Dietary Arsenic
2.2. Lead (Pb)
2.2.1. Lead Toxicity Mechanism
2.2.2. Dietary Effects of Lead on Kidney
2.3. Nickel (Ni)
2.3.1. Systemic Effects of Nickel
2.3.2. Chronic Bronchitis
2.4. Cadmium (Cd)
2.5. Chromium (Cr)
Effects of Chromium on Heart
2.6. Iron (Fe)
Normal Percentages of Iron
3. Heavy Metal Contaminants in Fruit and Vegetable Crops
3.1. Crops Contaminated with Heavy Metals
3.1.1. Rice
3.1.2. Wheat
3.2. Vegetables Contaminated with Heavy Metals
3.2.1. Potato
3.2.2. Tomato
3.2.3. Lettuce
3.2.4. Cabbage
3.2.5. Carrot
3.3. Fruits Contaminated with Heavy Metals
3.3.1. Avocado Pear
3.3.2. Orange
3.3.3. Pawpaw
3.3.4. Pineapple
4. Heavy Metal Toxicity Biomarkers
4.1. Types of Exposure Biomarkers
4.1.1. Internal Dose Biomarkers
4.1.2. Biologically Active Dose Biomarkers
4.2. Role of Biomarkers in the Molecular Detection of Adverse Effects
4.3. Biomarkers of Susceptibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Gan, C.; Ding, L.; Xiong, M.; Zhang, A.; Li, P. Maternal Inorganic Mercury Exposure and Renal Effects in the Wanshan Mercury Mining Area, Southwest China. Ecotoxicol. Environ. Saf. 2020, 189, 109987. [Google Scholar] [CrossRef] [PubMed]
- Afonne, O.J.; Ifediba, E.C. Heavy Metals Risks in Plant Foods–Need to Step up Precautionary Measures. Curr. Opin. Toxicol. 2020, 22, 1–6. [Google Scholar] [CrossRef]
- El-Kady, A.A.; Abdel-Wahhab, M.A. Occurrence of Trace Metals in Foodstuffs and Their Health Impact. Trends Food Sci. Technol. 2018, 75, 36–45. [Google Scholar] [CrossRef]
- Sanaei, F.; Amin, M.M.; Alavijeh, Z.P.; Esfahani, R.A.; Sadeghi, M.; Bandarrig, N.S.; Fatehizadeh, A.; Taheri, E.; Rezakazemi, M. Health Risk Assessment of Potentially Toxic Elements Intake via Food Crops Consumption: Monte Carlo Simulation-Based Probabilistic and Heavy Metal Pollution Index. Environ. Sci. Pollut. Res. 2021, 28, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Mahato, M.K.; Bhattacharjee, S.; Singh, A.K. Development of a New Noncarcinogenic Heavy Metal Pollution Index for Quality Ranking of Vegetable, Rice, and Milk. Ecol. Indic. 2020, 113, 106214. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Front. Phys. 2021, 9, 641481. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? Antibiotics 2021, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.; Miraz, S.M.; Khan, M.U.; Karekar, S.C.; Usman, M.; Khan, S.M.; Amin, U.; Rebezov, M.; Shariati, M.A.; Thiruvengadam, M. Heterologous Expression and Biophysical Characterization of a Mesophilic Tannase Following Manganese Nanoparticle Immobilization. Colloids Surf. B Biointerfaces 2021, 207, 112011. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, G.; Mao, L.; Bao, T.; Wen, W.; Wang, S.; Gomathi, T.; Gnanasundaram, N.; Rebezov, M.; Shariati, M.A.; Chung, I.-M.; et al. Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications. Appl. Sci. 2021, 11, 2172. [Google Scholar] [CrossRef]
- Ahmad, B.; Shireen, F.; Rauf, A.; Shariati, M.A.; Bashir, S.; Patel, S.; Khan, A.; Rebezov, M.; Khan, M.U.; Mubarak, M.S. Phyto-Fabrication, Purification, Characterisation, Optimisation, and Biological Competence of Nano-Silver. IET Nanobiotechnol. 2021, 15, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rebezov, M.B.; Assirzhanova, Z.B.; Dautova, A.; Derkho, M.A.; Meshcheryakova, G.V.; Gumenyuk, O.A. Control by the Accuracy of the Results of Studies for the Lead Content in Samples Applying the Microwave Laboratory System PLP-01M. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1047, 012188. [Google Scholar] [CrossRef]
- Rebezov, M.B.; Shariati, M.A.; Shinkarev, I.K.; Tarasova, A.A.; Zubkova, E.S. Results of Comparative Research Methods for Arsenic Content in Meat Samples of Broiler Chickens. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 052053. [Google Scholar] [CrossRef]
- Rebezov, M.B.; Shariati, M.A.; Artyukhova, S.I.; Kolosovskaya, I.I.; Trofimova, E.I. Comparative Analysis of Methods of Photoelectric Colorimetry and Stripping Voltammetry in Assessing the Content of Arsenic in Sea Bass Samples. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 052057. [Google Scholar] [CrossRef]
- Rebezov, M.B.; Kudryavtseva, T.M.; Meshcheryakova, G.V.; Derkho, M.A.; Shakirova, S.S.; Gumenyuk, O.A. Control of the Stability of the Results of Studies of Cadmium Content Using the Method of Additions in Cow’s Milk Samples. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 052051. [Google Scholar] [CrossRef]
- Cherkasova, E.I.; Rebezov, M.B.; Shariati, M.A.; Kharybina, M.M.; Muradova, Z.V. Monitoring the Stability of the Results of Studies of Chilled River Fish for Cadmium Content Using the Method of Additions. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 052060. [Google Scholar] [CrossRef]
- Abuova, A.B.; Rebezov, M.B.; Mukhamedyarova, L.G.; Shakirova, S.S.; Khaimuldinova, A.K.; Yermakhanova, F.R. Results of Studies of Wheat Bread for Lead Content Using the Additive Method. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 052050. [Google Scholar] [CrossRef]
- Rebezov, M.B.; Tretyak, L.N.; Solodov, S.A.; Galaev, A.V.; Korneev, I.N. Evaluation of the Use of the PLP-01M Microwave Laboratory System Using Working Samples to Control the Accuracy of the Results of Examining Product Samples for Lead Content. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1047, 012191. [Google Scholar] [CrossRef]
- Maksimiuk, N.N.; Rebezov, M.B.; Tretyak, L.N.; Varivoda, A.A.; Artyukhova, S.I.; Tolstoguzova, T.T. Application of the PLP-01M Microwave Laboratory System Using Control Samples to Assess the Accuracy of the Results of Studies of Cadmium Content. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1047, 012186. [Google Scholar] [CrossRef]
- Tretyak, L.N.; Rebezov, M.B.; Korablev, A.V.; Mikhaylova, T.M.; Voskanyan, E.A. Control by the Accuracy of the Results of Studies for the Cadmium Content in Samples Applying the Microwave Laboratory System PLP-01M. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1047, 012183. [Google Scholar] [CrossRef]
- Rebezov, M.B.; Shariati, M.A.; Ryskina, E.A.; Bogonosova, I.A.; Sepiashvili, E.N. Monitoring the Research Results on the Toxic Elements Content (Lead, Cadmium and Arsenic) in Food. IOP Conf. Ser. Earth Environ. Sci. 2020, 613, 012123. [Google Scholar] [CrossRef]
- Duruibe, J.; Oguwuegbu, M.O.C.; Egwurugwu, J. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Lambert, M.; Leven, B.A.; Green, R.M. New Methods of Cleaning up Heavy Metal in Soils and Water. Environ. Sci. Technol. Briefs Citiz. 2000, 1–3. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.2031&rep=rep1&type=pdf (accessed on 30 October 2021).
- Zykova, I.; Maksimuk, N.; Rebezov, M.; Kuznetsova, E.; Derkho, M.; Sereda, T.; Kazhibayeva, G.; Somova, Y.; Zaitseva, T. Interaction between Heavy Metals and Microorganisms during Wastewater Treatment by Activated Sludge. J. Eng. Appl. Sci. 2019, 14, 2139–2145. [Google Scholar]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Rafiq, M.; Bakhat, H.F.; Imran, M.; Abbas, T.; Bibi, I.; Dumat, C. Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences. In Enhancing Cleanup of Environmental Pollutants; Springer: Cham, Switzerland, 2017; pp. 97–140. [Google Scholar]
- Morais, S.; Costa, F.G.; de Lourdes Pereira, M. Heavy Metals and Human Health. Environ. Health Emerg. Issues Pract. 2012, 10, 227–245. [Google Scholar]
- Ametepey, S.T.; Cobbina, S.J.; Akpabey, F.J.; Duwiejuah, A.B.; Abuntori, Z.N. Health Risk Assessment and Heavy Metal Contamination Levels in Vegetables from Tamale Metropolis, Ghana. Int. J. Food Contam. 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Cheng, J.-P.; Wang, W.-H.; Jia, J.-P.; Zheng, M.; Shi, W.; Lin, X.-Y. Expression of C-Fos in Rat Brain as a Prelude Marker of Central Nervous System Injury in Response to Methylmercury-Stimulation. Biomed. Environ. Sci. 2006, 19, 67–72. [Google Scholar]
- Bottino, C.; Vázquez, M.; Devesa, V.; Laforenza, U. Impaired Aquaporins Expression in the Gastrointestinal Tract of Rat after Mercury Exposure. J. Appl. Toxicol. 2016, 36, 113–120. [Google Scholar] [CrossRef]
- Dongre, N.N.; Suryakar, A.N.; Patil, A.J.; Ambekar, J.G.; Rathi, D.B. Biochemical Effects of Lead Exposure on Systolic & Diastolic Blood Pressure, Heme Biosynthesis and Hematological Parameters in Automobile Workers of North Karnataka (India). Indian J. Clin. Biochem. 2011, 26, 400–406. [Google Scholar]
- Wang, J.; Zhu, H.; Yang, Z.; Liu, Z. Antioxidative Effects of Hesperetin against Lead Acetate-Induced Oxidative Stress in Rats. Indian J. Pharmacol. 2013, 45, 395. [Google Scholar] [PubMed] [Green Version]
- Boskabady, M.H.; Tabatabai, S.A.; Farkhondeh, T. Inhaled Lead Affects Lung Pathology and Inflammation in Sensitized and Control Guinea Pigs. Environ. Toxicol. 2016, 31, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Strużyńska, L.; Dąbrowska-Bouta, B.; Koza, K.; Sulkowski, G. Inflammation-like Glial Response in Lead-Exposed Immature Rat Brain. Toxicol. Sci. 2007, 95, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Wang, M.; Tian, T.; Lin, S.; Xu, P.; Zhou, L.; Dai, C.; Hao, Q.; Wu, Y.; Zhai, Z.; et al. The Effect of Hexavalent Chromium on the Incidence and Mortality of Human Cancers: A Meta-Analysis Based on Published Epidemiological Cohort Studies. Front. Oncol. 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Pavesi, T.; Moreira, J.C. Mechanisms and Individuality in Chromium Toxicity in Humans. J. Appl. Toxicol. 2020, 40, 1183–1197. [Google Scholar] [CrossRef]
- Schutte, R.; Nawrot, T.S.; Richart, T.; Thijs, L.; Vanderschueren, D.; Kuznetsova, T.; Van Hecke, E.; Roels, H.A.; Staessen, J.A. Bone Resorption and Environmental Exposure to Cadmium in Women: A Population Study. Environ. Health Perspect. 2008, 116, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Liu, H.-D.; Gong, Z.; Yu, X.; Hou, X.-B.; Xie, D.-D.; Zhu, X.-B.; Li, H.-W.; Tang, J.-Y.; Xu, Y.-F.; et al. Cadmium Is a Potent Inhibitor of PPM Phosphatases and Targets the M1 Binding Site. Sci. Rep. 2013, 3, 2333. [Google Scholar] [CrossRef] [Green Version]
- Fay, M.J.; Alt, L.A.; Ryba, D.; Salamah, R.; Peach, R.; Papaeliou, A.; Zawadzka, S.; Weiss, A.; Patel, N.; Rahman, A.; et al. Cadmium Nephrotoxicity Is Associated with Altered MicroRNA Expression in the Rat Renal Cortex. Toxics 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Pi, H.; Xu, S.; Reiter, R.J.; Guo, P.; Zhang, L.; Li, Y.; Li, M.; Cao, Z.; Tian, L.; Xie, J. SIRT3-SOD2-MROS-Dependent Autophagy in Cadmium-Induced Hepatotoxicity and Salvage by Melatonin. Autophagy 2015, 11, 1037–1051. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, D.M.; Budd, A.J.; Gwilt, D.J. Massive Acute Arsenic Poisoning. Anaesthesia 1991, 46, 288–290. [Google Scholar] [CrossRef]
- Yu, L.; Luo, Y.; Liao, B.; Xie, L.; Chen, L.; Xiao, S.; Li, J.; Hu, S.; Shu, W. Comparative Transcriptome Analysis of Transporters, Phytohormone and Lipid Metabolism Pathways in Response to Arsenic Stress in Rice (Oryza sativa). New Phytol. 2012, 195, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Xu, W.; Zhang, J.; Chen, M.; Martin, F.L.; Xia, Y.; Liu, L.; Dong, S.; Zhu, Y.-G. Urinary Metabolic Biomarkers Link Oxidative Stress Indicators Associated with General Arsenic Exposure to Male Infertility in a Han Chinese Population. Environ. Sci. Technol. 2013, 47, 8843–8851. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xu, Y.; Xu, C.; Shu, Y.; Ma, S.; Lu, C.; Mo, X. Associations between Mercury Exposure and the Risk of Nonalcoholic Fatty Liver Disease (NAFLD) in US Adolescents. Environ. Sci. Pollut. Res. 2019, 26, 31384–31391. [Google Scholar] [CrossRef] [PubMed]
- Kuivenhoven, M.; Mason, K. Arsenic (Arsine); StatPearls Publishing LLC.: Treasure Island, FL, USA, 2019. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Finnegan, P.; Chen, W. Arsenic Toxicity: The Effects on Plant Metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Kumar, D.; Sahu, A.P. Arsenic in the Environment: Effects on Human Health and Possible Prevention. J. Environ. Biol. 2007, 28, 359. [Google Scholar] [PubMed]
- Chowdhury, U.K.; Biswas, B.K.; Chowdhury, T.R.; Samanta, G.; Mandal, B.K.; Basu, G.C.; Chanda, C.R.; Lodh, D.; Saha, K.C.; Mukherjee, S.K. Groundwater Arsenic Contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 2000, 108, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, D.G. Chronic Arsenic Toxicity & Human Health. Indian J. Med. Res. 2008, 128, 436–447. [Google Scholar]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, Oxidative Stress and Human Disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Patlolla, A.K.; Centeno, J.A. Invited Reviews: Carcinogenic and Systemic Health Effects Associated with Arsenic Exposure—A Critical Review. Toxicol. Pathol. 2003, 31, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Patlolla, A.K.; Tchounwou, P.B. Cytogenetic Evaluation of Arsenic Trioxide Toxicity in Sprague–Dawley Rats. Mutat. Res. Toxicol. Environ. Mutagen. 2005, 587, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Landolph, J.R. Molecular and Cellular Mechanisms of Transformation of C3H/10T 1/2 Cl 8 and Diploid Human Fibroblasts by Unique Carcinogenic, Nonmutagenic Metal Compounds. Biol. Trace Elem. Res. 1989, 21, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Barrett, J.C.; Tsutsui, T. Transformation by Inorganic Arsenic Compounds of Normal Syrian Hamster Embryo Cells into a Neoplastic State in Which They Become Anchorage-Independent and Cause Tumors in Newborn Hamsters. Int. J. Cancer 2002, 99, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Banu, B.S.; Danadevi, K.; Jamil, K.; Ahuja, Y.R.; Rao, K.V.; Ishaq, M. In Vivo Genotoxic Effect of Arsenic Trioxide in Mice Using Comet Assay. Toxicology 2001, 162, 171–177. [Google Scholar] [CrossRef]
- Hartmann, A.; Speit, G. Comparative Investigations of the Genotoxic Effects of Metals in the Single Cell Gel (SCG) Assay and the Sister Chromatid Exchange (SCE) Test. Environ. Mol. Mutagen. 1994, 23, 299–305. [Google Scholar] [CrossRef]
- Trouba, K.J.; Wauson, E.M.; Vorce, R.L. Sodium Arsenite-Induced Dysregulation of Proteins Involved in Proliferative Signaling. Toxicol. Appl. Pharmacol. 2000, 164, 161–170. [Google Scholar] [CrossRef]
- Zhao, C.Q.; Young, M.R.; Diwan, B.A.; Coogan, T.P.; Waalkes, M.P. Association of Arsenic-Induced Malignant Transformation with DNA Hypomethylation and Aberrant Gene Expression. Proc. Natl. Acad. Sci. USA 1997, 94, 10907–10912. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guyton, K.Z.; Gorospe, M.; Xu, Q.; Lee, J.C.; Holbrook, N.J. Differential Activation of ERK, JNK/SAPK and P3/CSBP/RK Map Kinase Family Members during the Cellular Response to Arsenite. Free Radic. Biol. Med. 1996, 21, 771–781. [Google Scholar] [CrossRef]
- Soignet, S.L.; Frankel, S.R.; Douer, D.; Tallman, M.S.; Kantarjian, H.; Calleja, E.; Stone, R.M.; Kalaycio, M.; Scheinberg, D.A.; Steinherz, P.; et al. United States Multicenter Study of Arsenic Trioxide in Relapsed Acute Promyelocytic Leukemia. J. Clin. Oncol. 2001, 19, 3852–3860. [Google Scholar] [CrossRef]
- Murgo, A.J. Clinical Trials of Arsenic Trioxide in Hematologic and Solid Tumors: Overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist 2001, 6, 22–28. [Google Scholar] [CrossRef]
- Seol, J.G.; Park, W.H.; Kim, E.S.; Jung, C.W.; Hyun, J.M.; Kim, B.K.; Lee, Y.Y. Effect of Arsenic Trioxide on Cell Cycle Arrest in Head and Neck Cancer Cell Line PCI-1. Biochem. Biophys. Res. Commun. 1999, 265, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Alemany, M.; Levin, J. The Effects Of Arsenic Trioxide (As2O3) On Human Megakaryocytic Leukemia Cell Lines With a Comparison of Its Effects on Other Cell Lineages. Leuk. Lymphoma 2000, 38, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Graham-Evans, B.; Cohly, H.H.; Yu, H.; Tchounwou, P.B. Arsenic-Induced Genotoxic and Cytotoxic Effects in Human Keratinocytes, Melanocytes and Dendritic Cells. Int. J. Environ. Res. Public Health 2004, 1, 83–89. [Google Scholar] [CrossRef]
- Stevens, J.J.; Graham, B.; Walker, A.M.; Tchounwou, P.B.; Rogers, C. The Effects of Arsenic Trioxide on DNA Synthesis and Genotoxicity in Human Colon Cancer Cells. Int. J. Environ. Res. Public Health 2010, 7, 2018–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yedjou, C.G.; Tchounwou, P.B. Modulation of P53, c-Fos, RARE, Cyclin A, and Cyclin D1 Expression in Human Leukemia (HL-60) Cells Exposed to Arsenic Trioxide. Mol. Cell. Biochem. 2009, 331, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.; Yedjou, C.G.; Tchounwou, P.B. Cytotoxicity and Oxidative Stress in Human Liver Carcinoma Cells Exposed to Arsenic Trioxide (HepG2). Met. Ions Biol. Med. 2008, 10, 583–587. [Google Scholar]
- Matschullat, J. Arsenic in the Geosphere—A Review. Sci. Total Environ. 2000, 249, 297–312. [Google Scholar] [CrossRef]
- Zaw, M.; Emett, M.T. Arsenic Removal from Water Using Advanced Oxidation Processes. Toxicol. Lett. 2002, 133, 113–118. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Ngalame, N.N.; Tokar, E.J.; Person, R.J.; Xu, Y.; Waalkes, M.P. Aberrant MicroRNA Expression Likely Controls RAS Oncogene Activation during Malignant Transformation of Human Prostate Epithelial and Stem Cells by Arsenic. Toxicol. Sci. 2014, 138, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Ataei, N.; Aghaei, M.; Panjehpour, M. Evidences for Involvement of Estrogen Receptor Induced ERK1/2 Activation in Ovarian Cancer Cell Proliferation by Cadmium Chloride. Toxicol. Vitr. 2019, 56, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Liu, W.; Cooper, K.L.; Qin, X.-J.; de Souza Bergo, P.L.; Hudson, L.G.; Liu, K.J. Inhibition of Poly (ADP-Ribose) Polymerase-1 by Arsenite Interferes with Repair of Oxidative DNA Damage. J. Biol. Chem. 2009, 284, 6809–6817. [Google Scholar] [CrossRef] [Green Version]
- Dash, M.; Dey, A.; Chattopadhyay, S. Mitigation of Arsenic Driven Utero-Ovarian Malfunction and Changes of Apoptotic Gene Expression by Dietary NAC. Ecotoxicol. Environ. Saf. 2020, 199, 110675. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, U.; Hussain, S.; Anjum, S.A.; Abbas, F.; Tanveer, M.; Noor, M.A.; Tang, X. Alterations in Growth, Oxidative Damage, and Metal Uptake of Five Aromatic Rice Cultivars under Lead Toxicity. Plant Physiol. Biochem. 2017, 115, 461–471. [Google Scholar] [CrossRef]
- Iyer, S.; Sengupta, C.; Velumani, A. Lead Toxicity: An Overview of Prevalence in Indians. Clin. Chim. Acta 2015, 451, 161–164. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Wang, Y.; Yan, C.; Liu, X. Impact of Low Blood Lead Concentrations on IQ and School Performance in Chinese Children. PLoS ONE 2013, 8, e65230. [Google Scholar] [CrossRef] [Green Version]
- Obeng-Gyasi, E.; Roostaei, J.; Gibson, J.M. Lead Distribution in Urban Soil in a Medium-Sized City: Household-Scale Analysis. Environ. Sci. Technol. 2021, 55, 3696–3705. [Google Scholar] [CrossRef]
- Wang, C.-L.; Chuang, H.-Y.; Ho, C.-K.; Yang, C.-Y.; Tsai, J.-L.; Wu, T.-S.; Wu, T.-N. Relationship between Blood Lead Concentrations and Learning Achievement among Primary School Children in Taiwan. Environ. Res. 2002, 89, 12–18. [Google Scholar] [CrossRef]
- Roy, A.; Bellinger, D.; Hu, H.; Schwartz, J.; Ettinger, A.S.; Wright, R.O.; Bouchard, M.; Palaniappan, K.; Balakrishnan, K. Lead Exposure and Behavior among Young Children in Chennai, India. Environ. Health Perspect. 2009, 117, 1607–1611. [Google Scholar] [CrossRef]
- Ogunseitan, O.A.; Smith, T.R. The Cost of Environmental Lead (Pb) Poisoning in Nigeria. Afr. J. Environ. Sci. Technol. 2007, 1, 27–36. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M.; Marshall, F. Heavy Metal Contamination of Soil and Vegetables in Suburban Areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, N.C.; Hatzidaki, E.G.; Belivanis, S.; Tzanakakis, G.N.; Tsatsakis, A.M. Lead Toxicity Update. A Brief Review. Med. Sci. Monit. 2005, 11, RA329–RA336. [Google Scholar] [PubMed]
- Najeeb, U.; Ahmad, W.; Zia, M.H.; Zaffar, M.; Zhou, W. Enhancing the Lead Phytostabilization in Wetland Plant Juncus Effusus L. through Somaclonal Manipulation and EDTA Enrichment. Arab. J. Chem. 2017, 10, S3310–S3317. [Google Scholar] [CrossRef] [Green Version]
- Yongsheng, W.; Qihui, L.; Qian, T. Effect of Pb on Growth, Accumulation and Quality Component of Tea Plant. Procedia Eng. 2011, 18, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Charkiewicz, A.E.; Backstrand, J.R. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef]
- Brochin, R.; Leone, S.; Phillips, D.; Shepard, N.; Zisa, D.; Angerio, A. The Cellular Effect of Lead Poisioning and Its Clinical Picture. Management 2014, 8, 1–8. [Google Scholar]
- Taylor, M.P.; Winder, C.; Lanphear, B.P. Eliminating Childhood Lead Toxicity in Australia: A Call to Lower the Intervention Level. Med. J. Aust. 2012, 197, 493. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, N.; Mathew, B.B.; Jatawa, S.; Tiwari, A. Lipid Peroxidation: Mechanism, Models and Significance. Int. J. Curr. Sci. 2012, 3, 29–38. [Google Scholar]
- Flora, S.J.S.; Mittal, M.; Mehta, A. Heavy Metal Induced Oxidative Stress & Its Possible Reversal by Chelation Therapy. Indian J. Med. Res. 2008, 128, 501. [Google Scholar]
- Mathew, B.B.; Tiwari, A.; Jatawa, S.K. Free Radicals and Antioxidants: A Review. J. Pharm. Res. 2011, 4, 4340–4343. [Google Scholar]
- Kianoush, S.; Balali-Mood, M.; Mousavi, S.R.; Moradi, V.; Sadeghi, M.; Dadpour, B.; Rajabi, O.; Shakeri, M.T. Comparison of Therapeutic Effects of Garlic and D-Penicillamine in Patients with Chronic Occupational Lead Poisoning. Basic Clin. Pharmacol. Toxicol. 2012, 110, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Ghorbe, F.; Boujelbene, M.; Makni-Ayadi, F.; Guermazi, F.; Kammoun, A.; Murat, J.C.; Croute, F.; Soleilhavoup, J.P.; El Feki, A. Effect of Chronic Lead Exposure on Kidney Function in Male and Female Rats: Determination of a Lead Exposure Biomarker. Arch. Physiol. Biochem. 2001, 109, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Missoun, F.; Slimani, M.; Aoues, A. Toxic Effect of Lead on Kidney Function in Rat Wistar. Afr. J. Biochem. Res. 2010, 4, 021–027. [Google Scholar]
- Muntner, P.; He, J.; Vupputuri, S.; Coresh, J.; Batuman, V. Blood Lead and Chronic Kidney Disease in the General United States Population: Results from NHANES III. Kidney Int. 2003, 63, 1044–1050. [Google Scholar] [CrossRef] [Green Version]
- Mudgal, V.; Madaan, N.; Mudgal, A.; Singh, R.B.; Mishra, S. Effect of Toxic Metals on Human Health. Open Nutraceuticals J. 2010, 3, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Shi, X.; Castranova, V.; Ding, M. Occupational Toxicology of Nickel and Nickel Compounds. J. Environ. Pathol. Toxicol. Oncol. 2009, 28, 177–208. [Google Scholar] [CrossRef]
- Zambelli, B.; Ciurli, S. Nickel and Human Health. Interrelat. Essent. Met. Ions Hum. Dis. 2013, 13, 321–357. [Google Scholar]
- McGregor, D.B.; Baan, R.A.; Partensky, C.; Rice, J.M.; Wilbourn, J.D. Evaluation of the Carcinogenic Risks to Humans Associated with Surgical Implants and Other Foreign Bodies—A Report of an IARC Monographs Programme Meeting. Eur. J. Cancer 2000, 36, 307–313. [Google Scholar] [CrossRef]
- Seilkop, S.K.; Oller, A.R. Respiratory Cancer Risks Associated with Low-Level Nickel Exposure: An Integrated Assessment Based on Animal, Epidemiological, and Mechanistic Data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef]
- Diwan, B.A.; Kasprzak, K.S.; Rice, J.M. Transplacental Carcinogenic Effects of Nickel (II) Acetate in the Renal Cortex, Renal Pelvis and Adenohypophysis in F3447/NCr Rats. Carcinogenesis 1992, 13, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Ottolenghi, A.D.; Haseman, J.K.; Payne, W.W.; Falk, H.L.; MacFarland, H.N. Inhalation Studies of Nickel Sulfide in Pulmonary Carcinogenesis of Rats. J. Natl. Cancer Inst. 1975, 54, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Sunderman Jr, F.W. Mechanisms of Nickel Carcinogenesis. Scand. J. Work. Environ. Health 1989, 15, 1–12. [Google Scholar] [CrossRef]
- Al-Rikaby, A.A. Hematologic Evaluation and Histopathological Alteration of Nickel Nitrate Exposure in Male Rabbits. Ann. Romanian Soc. Cell Biol. 2021, 25, 1307–1319. [Google Scholar]
- Alina, M.; Azrina, A.; Mohd Yunus, A.S.; Mohd Zakiuddin, S.; Mohd Izuan Effendi, H.; Muhammad Rizal, R. Heavy Metals (Mercury, Arsenic, Cadmium, Plumbum) in Selected Marine Fish and Shellfish along the Straits of Malacca. Int. Food Res. J. 2012, 19, 135–140. [Google Scholar]
- Bernard, A. Cadmium & Its Adverse Effects on Human Health. Indian J. Med. Res. 2008, 128, 557. [Google Scholar]
- Chakraborty, S.; Dutta, A.R.; Sural, S.; Gupta, D.; Sen, S. Ailing Bones and Failing Kidneys: A Case of Chronic Cadmium Toxicity. Ann. Clin. Biochem. Int. J. Lab. Med. 2013, 50, 492–495. [Google Scholar] [CrossRef]
- Ghani, A.G.A. Effect of Chromium Toxicity on Growth, Chlorophyll and Some Mineral Nutrients of Brassica Juncea L. Egypt. Acad. J. Biol. Sci. H Bot. 2011, 2, 9–15. [Google Scholar]
- Abebe, W.; Mozaffari, M.S. Vascular Reactivity Changes in Glucose-Intolerant Rat. J. Cardiovasc. Pharmacol. 2007, 50, 590–597. [Google Scholar] [CrossRef]
- Welch, C.M.; Hyde, M.E.; Nekrassova, O.; Compton, R.G. The Oxidation of Trivalent Chromium at Polycrystalline Gold Electrodes. Phys. Chem. Chem. Phys. 2004, 6, 3153–3159. [Google Scholar] [CrossRef]
- Kelly, W.F.; Ackrill, P.; Day, J.P.; O’Hara, M.; Tye, C.T.; Burton, I.; Orton, C.; Harris, M. Cutaneous Absorption of Trivalent Chromium: Tissue Levels and Treatment by Exchange Transfusion. Occup. Environ. Med. 1982, 39, 397–400. [Google Scholar] [CrossRef]
- Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Anton, S.D.; Morrison, C.D.; Cefalu, W.T.; Martin, C.K.; Coulon, S.; Geiselman, P.; Han, H.; White, C.L.; Williamson, D.A. Effects of Chromium Picolinate on Food Intake and Satiety. Diabetes Technol. Ther. 2008, 10, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Cefalu, W.T.; Hu, F.B. Role of Chromium in Human Health and in Diabetes. Diabetes Care 2004, 27, 2741–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielicka, A.; Bojanowska, I.; Wisniewski, A. Two Faces of Chromium-Pollutant and Bioelement. Pol. J. Environ. Stud. 2005, 14, 5–10. [Google Scholar]
- Albretsen, J. The Toxicity of Iron, an Essential Element. Vet. Med. 2006, 101, 82. [Google Scholar]
- Ul Islam, E.; Yang, X.; He, Z.; Mahmood, Q. Assessing Potential Dietary Toxicity of Heavy Metals in Selected Vegetables and Food Crops. J. Zhejiang Univ. Sci. B 2007, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health Risk Assessment of Heavy Metals via Dietary Intake of Foodstuffs from the Wastewater Irrigated Site of a Dry Tropical Area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Al-Othman, Z.A.; Ali, R.; Al-Othman, A.M.; Ali, J.; Habila, M.A. Assessment of Toxic Metals in Wheat Crops Grown on Selected Soils, Irrigated by Different Water Sources. Arab. J. Chem. 2016, 9, S1555–S1562. [Google Scholar] [CrossRef] [Green Version]
- Suttle, J. Symposium Introduction: Enhancing the Nutritional Value of Potato Tubers. Am. J. Potato Res. 2008, 85, 266. [Google Scholar] [CrossRef]
- Narin, I.; Tuzen, M.; Sari, H.; Soylak, M. Heavy Metal Content of Potato and Corn Chips from Turkey. Bull. Environ. Contam. Toxicol. 2005, 74, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, E.; Atsan, E.; Polat, T.; Kara, K. Variation in Heavy Metal Concentrations of Potato (Solanum Tuberosum L.) Cultivars. J. Anim. Plant Sci. 2011, 21, 235–239. [Google Scholar]
- Bempah, C.K.; Kwofie, A.B.; Tutu, A.O.; Danutsui, D.; Bentil, N. Assessing the Potential Dietary Intake of Heavy Metals in Some Selected Fruits and Vegetables from Ghanaian Markets. Elixir Pollut. 2011, 39, 4921–4926. [Google Scholar]
- Radwan, M.A.; Salama, A.K. Market Basket Survey for Some Heavy Metals in Egyptian Fruits and Vegetables. Food Chem. Toxicol. 2006, 44, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Sobukola, O.P.; Adeniran, O.M.; Odedairo, A.A.; Kajihausa, O.E. Heavy Metal Levels of Some Fruits and Leafy Vegetables from Selected Markets in Lagos, Nigeria. Afr. J. Food Sci. 2010, 4, 389–393. [Google Scholar]
- Ihesinachi, K.; Eresiya, D. Evaluation of Heavy Metals in Orange, Pineapple, Avocado Pear and Pawpaw from a Farm in Kaani, Bori, Rivers State Nigeria. J. Issues ISSN 2014, 2360, 8803. [Google Scholar]
- Mussali-Galante, P.; Tovar-Sánchez, E.; Valverde, M.; Rojas Del Castillo, E. Biomarkers of Exposure for Assessing Environmental Metal Pollution: From Molecules to Ecosystems. Rev. Int. Contam. Ambient. 2013, 29, 117–140. [Google Scholar]
- Nordberg, G.F. Biomarkers of Exposure, Effects and Susceptibility in Humans and Their Application in Studies of Interactions among Metals in China. Toxicol. Lett. 2010, 192, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Poirier, M.C. Chemical-Induced DNA Damage and Human Cancer Risk. Nat. Rev. Cancer 2004, 4, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Mutti, A. Use of Intermediate End-Points to Prevent Long-Term Outcomes. Toxicol. Lett. 1995, 77, 121–125. [Google Scholar] [CrossRef]
- Watson, W.P.; Mutti, A. Role of Biomarkers in Monitoring Exposures to Chemicals: Present Position, Future Prospects. Biomarkers 2004, 9, 211–242. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E. Special Issue on the 20th Anniversary of the Comet Assay. Mutat. Res./Rev. Mutat. Res. 2009, 1, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Timbrell, J.A. Biomarkers in Toxicology. Toxicology 1998, 129, 1–12. [Google Scholar] [CrossRef]
- Pavanello, S.; Clonfero, E. Biological Indicators of Genotoxic Risk and Metabolic Polymorphisms. Mutat. Res. Mutat. Res. 2000, 463, 285–308. [Google Scholar] [CrossRef]
- Ki, J.-S.; Raisuddin, S.; Lee, K.-W.; Hwang, D.-S.; Han, J.; Rhee, J.-S.; Kim, I.-C.; Park, H.G.; Ryu, J.-C.; Lee, J.-S. Gene Expression Profiling of Copper-Induced Responses in the Intertidal Copepod Tigriopus japonicus Using a 6K Oligochip Microarray. Aquat. Toxicol. 2009, 93, 177–187. [Google Scholar] [CrossRef]
- Cullen, M.R.; Redlich, C.A. Significance of Individual Sensitivity to Chemicals: Elucidation of Host Susceptibility by Use of Biomarkers in Environmental Health Research. Clin. Chem. 1995, 41, 1809–1813. [Google Scholar] [CrossRef]
Toxic Metals | Organ Toxicity | Disrupted Macromolecule/Mechanism of Action | Refs |
---|---|---|---|
Mercury (Hg) | CNS injuries Renal dysfunction GI ulceration Hepatotoxicity | Aquaporin mRNA reduction Glutathione peroxidase inhibition Increased c-fos expression ROS production Enzyme inhibition Thiol binding (GSH conjugation) | [1,29,30] |
Lead (Pb) | CNS injury Hematological changes (anemia) Pulmonary dysfunction GI colic Liver damage Reduced pulmonary function Cardiovascular dysfunction | Enhanced levels of inflammatory cytokines: IL-1β, TNF-α, and IL-6 in the CNS Increased serum ET-1, NO, and EPO levels Inactivation of δ-ALAD and ferrochelatase (inhibition of heme biosynthesis) Reduced GSH, SOD, CAT, and GPx levels | [31,32,33,34] |
Chromium (Cr) | Kidney dysfunction GI disorders Dermal diseases Increased occurrence of cancers, including bladder, kidneys, lungs, larynx, testicular, bone, and thyroid | DNA damage Genomic instability Oxidative stress and ROS generation | [35,36] |
Cadmium (Cd) | Degenerative bone disease Kidney dysfunction Liver damage Lung injuries GI disorders Metabolic syndromes associated with Zn and Cu Cancer | miRNA expression dysregulation Apoptosis Endoplasmic reticulum stress Cd-MT absorption by the kidneys Dysregulation of Ca, Zn, and Fe homeostasis Low serum PTH levels ROS generation Altered phosphorylation cascades | [37,38,39,40] |
Arsenic (As) | Cardiovascular dysfunction CNS injury Skin and hair changes Liver damage GI discomfort | Alterations in neurotransmitter homeostasis Uncoupler of oxidative phosphorylation (inhibition of ATP formation) Damaged capillary endothelium Thiol binding (GSH conjugation) | [41,42,43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Ali Shah, S.M.; et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability 2022, 14, 161. https://doi.org/10.3390/su14010161
Munir N, Jahangeer M, Bouyahya A, El Omari N, Ghchime R, Balahbib A, Aboulaghras S, Mahmood Z, Akram M, Ali Shah SM, et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability. 2022; 14(1):161. https://doi.org/10.3390/su14010161
Chicago/Turabian StyleMunir, Naveed, Muhammad Jahangeer, Abdelhakim Bouyahya, Nasreddine El Omari, Rokia Ghchime, Abdelaali Balahbib, Sara Aboulaghras, Zahed Mahmood, Muhammad Akram, Syed Muhammad Ali Shah, and et al. 2022. "Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review" Sustainability 14, no. 1: 161. https://doi.org/10.3390/su14010161
APA StyleMunir, N., Jahangeer, M., Bouyahya, A., El Omari, N., Ghchime, R., Balahbib, A., Aboulaghras, S., Mahmood, Z., Akram, M., Ali Shah, S. M., Mikolaychik, I. N., Derkho, M., Rebezov, M., Venkidasamy, B., Thiruvengadam, M., & Shariati, M. A. (2022). Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability, 14(1), 161. https://doi.org/10.3390/su14010161