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Abstract: Trading systems are essential in promoting global food security. With the growing propor-
tion of global food consumption obtained through international trade, the global food trade pattern
has become increasingly complex over recent years. This study constructed a weighted global grain
network using the trade data of 196 countries in 2000 and 2018 to explore the structure and evolution
based on the complex network theory. We established that the global grain network was scale-free.
There was significant heterogeneity among nodes, and the heterogeneity of the out-degree was greater
than that of the in-degree. The global grain network has a significant core-periphery structure, with
the United States, Japan, Mexico, Egypt, South Korea, and Colombia as the core countries. Thereafter,
by applying the quadratic assignment procedure model to explore the driving factors of the global
grain network, we established that geographical distance had a positive impact on the food trade
patterns in 2000 and 2018. This differs from the classical gravity model theory. Furthermore, grain
trade had significant “boundary effects”; economic gaps, resource endowment, and regional free
trade agreements had a positive impact on the evolution of the grain trade network, whereas cultural
similarity and political differences had a negative impact on the grain trade network pattern.

Keywords: grain trade network; influencing factors; the QAP model

1. Introduction

Factors such as rapid global population growth, climate change, frequent occurrence of
large-scale natural disasters, and economic recession have caused significant uncertainties
in the balance of food supply and demand; food security is currently facing global risks and
challenges and will continue to do so for a long time [1–3]. Due to the unbalanced spatial
distribution of grain production, global grain production mismatches spatial consumption.
Therefore, the international grain trade has become an important way to adjust the regional
imbalance in grain supply and demand [4,5]. The trading system is essential in promoting
global food security by making the international food system more efficient and responsive
to sudden shocks that might threaten food security [6,7]. Additionally, it provides a buffer
against local variability of food resources because regions can import when they have a
deficit and export when they have a surplus [8]. Trade can help address undernutrition
by raising incomes, discounting food, and increasing the diversity of food available for
consumption. However, global trade can expose countries to external supply shocks and
degrade the environment [7].

The rate and scale of food trade have significantly increased over the past several
decades [9]. Furthermore, the trade of agricultural products has increased significantly over
the past decades [10], and cereal exports have increased from 79 to 480 Mt since 1961 [11].
With the increasing scale of the global food trade and the number of intricate links between
countries, the global food trade network has been shaped. These interconnections may

Sustainability 2022, 14, 245. https://doi.org/10.3390/su14010245 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14010245
https://doi.org/10.3390/su14010245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5420-2909
https://doi.org/10.3390/su14010245
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14010245?type=check_update&version=2


Sustainability 2022, 14, 245 2 of 17

continue to increase as population growth increases the caloric demand, and greater
affluence drives changes in consumption patterns [12–14].

The food trade network is a complex system that involves hundreds of countries and
thousands of complex trade relationships. In this vast connected network, every country
has direct or circuitous ties with other countries, which means that the food security of
each country is linked. It is widely recognized that the stability of food trade networks is
crucial in global food security.

Complex network models provide snapshots of the international trading system, en-
abling us to fully understand international trade. Additionally, it provides an approach to
simulate the international trading system from multi-dimensional and dynamic perspec-
tives by analyzing the dynamic process of each country’s entry or withdrawal from the
food trade market, the establishment or breakdown of trade relations, and the change in
trade volumes. We can reveal the evolution of international trade from a global perspective
and explain the interaction between countries using complex network analysis (CNA) tools.

This study attempted to use CNA to characterize and analyze the evolution of global
grain trade network patterns. Therefore, we adopted the quadratic assignment procedure
(QAP) model to explore the evolution mechanism of the global grain network and explain
it from the aspects of geographical distance, economic gap, cultural similarity, political
attributes, and regional free trade agreements. The remainder of this paper is organized as
follows. Section 2 reviews previous studies on international trade networks and the drivers
of trade flows. Section 3 introduces the research design and data sources. Sections 4 and 5
focus on empirical analysis and provide a reasonable explanation of the results. The
conclusions and implications for further research are discussed in Section 6.

2. Literature Review

The use of CNA to study international trade systems has become a novel research
direction. Serrano and Boguná [15] first introduced complex networks into international
trade relations, and proved that the trade relations between countries were in accordance
with the typical characteristics of complex networks including scale-free distribution,
small-world characteristics, and high clustering coefficients. Fagiolo et al. [16] studied the
topological characteristics of the world trade network using the weighted network method.
Subsequently, scholars have studied the energy trade [17,18], mineral resources trade [19],
manufacturing trade [20], and agricultural products trade [7,8,21] networks, using trade
volume, trade value or value added, and input–output value as weights to construct types
of weighted trade network models.

The complex network theory provides a scientific and effective method for analyz-
ing trade flows between countries, and indicators such as network density, clustering
coefficients, and average distance can be used to explore the scale and structure charac-
teristics of trade networks. Shutters and Rachata [22], Cai and Song [23] as well as Wang
et al. [24] studied the characteristics and evolutionary trends of global agricultural trade
networks based on complex network methods. They established that the global agricultural
trade network was becoming increasingly diversified and complicated. It presents a “core-
periphery” structure at the regional level, and presents a closed, unbalanced, diversified,
and multi-polar development trend at the national level. Through the analysis of indicators
such as degree, intensity, and proximity centralities, we can explore the role and status of
each country as a trading nation. Fan et al., Chen et al., Nuss et al., and Nie et al. [25–28]
showed that France, the United States, Canada, the Netherlands, South Africa, and the
United Kingdom were the core countries in the global food trade network, playing a crucial
role in the global food trade network. In addition, we can use module and cluster analyses
to divide trade communities, revealing the relationship between countries. Nie et al. [28]
detected the five big trade communities as well as various small groups in the global food
trade network. Each group was integrated with time change segmentation and differen-
tiation evolution characteristics of the restructuring. Although these studies help us to
understand the structural and topological characteristics of the international trade network,
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they do not address the influencing factors of the food trade network, and very little about
the formation mechanism of the food trade network is known.

In addition, other scholars have discussed the economic incentives and drivers of trade
flows. Geographical distance is an important factor affecting trade between economies [29].
Based on the gravity model, Anderson and Wincoop [30] established that trade volume
was inversely proportional to the geographical distance, and the shorter the geographical
distance between economies, the greater the trade volume. Regional free trade agreements
(RTA) are important means for economies to promote economic integration and eliminate
trade barriers, shaping the global trade pattern [31]. White [32] and Shi [33] demonstrated
that cultural differences increase trade costs and inhibit the development of international
trade. According to Feng et al. [34], economic attributes are important factors affecting trade
relations among economies and determining international trade patterns. In addition, land
proximity, tariff barriers, and monetary policies have important effects on trade flows [35].
These studies help to understand the factors that influence trade flows, but they assumed
that trade between countries was independent and used gravity models to estimate the
determinants of bilateral trade in services. Generally, the food trade relationship between
countries is not a simple binary relationship formed with the development of globalization,
but a complex and interdependent relationship [36]. The conventional gravity model
cannot be used to estimate the complex relationships of trade networks.

Based on the above studies, this study used the data of the grain trade relations of
196 countries or regions in 2000 and 2018. First, CNA was used to characterize and analyze
the evolution of the pattern of the global grain trade network. Thereafter, based on the
assumption of the interdependence of service trade, the quadratic assignment procedure
(QAP) model was used to analyze the factors affecting the evolution of the global grain
network, which not only deals with the interdependence between each other, but also
avoids the problem of systemic structural autocorrelation. A significant contribution of
this study was to explore the evolution process and mechanism of global grain networks
from the perspectives of resource endowment, geographical distance, economic attributes,
political attributes, cultural attributes, and regional free trade agreements.

3. Materials and Methods
3.1. The Analysis Framework: Factors Affecting International Grain Trade

Resources endowment. Endowment of natural resources is the basic condition for the
formation of a global grain production pattern. The uneven distribution of global natural
resources such as water and land leads to a spatial imbalance in grain production patterns,
which further promotes the formation of food trade and exchange.

Geographical proximity. Geographical distance is an important factor affecting trade
between economies. Geographical distance is an important variable in conventional trade
models. The premise of an economic entity connection is geographical proximity, which
can significantly reduce transaction costs. Studies by Anderson [37] and Wincoop [30]
demonstrated that the volume of trade is inversely proportional to the geographical dis-
tance. Because grain is a bulky commodity, the distance and transportation convenience
directly affect the trade volume between two countries [38].

Adjacent land. McCallum [39] established that the adjacent land border made the
trade volume between Canadian provinces much larger than that between Canada and
the United States, known as the famous “border puzzle.” The emergence of the “border
puzzle” phenomenon makes more scholars regard the contiguity of land as a crucial factor in
measuring trade costs. Kimura [40] and Lee [41], as well as Gani and Clemes [42] established
that a common geographical boundary could not only reflect the geographical distance
between economies, but also better capture their geospatial relationships [43]. Therefore, in
addition to geographical distance, a common land border is considered a crucial factor in
measuring trade cost, which is used as a proxy variable of geographical distance.

Differences in economic developments. Economies choose trade partners according to
the principle of homogenization, and those with similar levels of economic development are
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likely to trade with each other [44]. This can be explained by preference similarity theory. In
general, economies with similar levels of economic development have similar preferences,
and the demand for goods or services trade occur between these economies [45]. Moreover,
income levels affect the grain consumption structure. The food consumption structure
changes from a plant-based diet to a meat-based diet with an increase in income, and the
per capita food consumption increases. Therefore, countries with similar levels of economic
development also have similar food consumption preferences, and are more likely to trade
with each other.

Political differences. Political differences affect food trade in two aspects: the dif-
ferences in regulation, norms, and cognitive systems of national quality inspection will
significantly inhibit international trade, and institutional distance will further cause trade
friction, which is not conducive to the smooth development of bilateral trade and regional
trade cooperation [37]. Additionally, institutional factors affect the comparative advantage
and foreign trade pattern of a country by affecting the productivity among economies. Insti-
tutional factors such as economic freedom and government governance have a significant
impact on the bilateral trade of different products [46]. Because of the essential nature of
food crops, food trade has become an important aspect of cooperation, and the checks and
balances between countries. Food trade has gone beyond the scope of pure commerciality,
and become political [47], as its helps the global food trade system through the interaction
of politics, trade barriers, and national interest games.

Cultural similarities. As a bond to strengthen exchanges and understanding between
economies, culture is crucial in economic and trade development [48,49]. As the core
components of culture and the embodiment of cultural connotations, language, and re-
ligion can directly affect the way and cost of communication in international trade. The
new economic geography theory regards culture as an important economic intermediary
element, and believes that communication costs in international trade reflect linguistic
differences. A common language can reduce the communication cost between economies,
trade cognitive blind areas of both sides, and the cost of access to information to promote
export trade. In addition, countries with the same religious beliefs have similar cultural
backgrounds, which can promote the improvement of credit and reduce the resistance
caused by trade friction and trade barriers [50]. Thus, linguistic and religious relationships
between economies are valid proxy variables for cultural similarity.

Regional free trade agreement. RTAs are important means for economies to promote
economic integration and eliminate trade barriers [51,52]. The signing of formal regional
trade agreements between economies will have a significant trade creation effect, which
is beneficial to the development of their trade. Previous studies have demonstrated that
the conclusion of bilateral free trade agreements on agricultural products can effectively
eliminate the impact of negative factors, lead to high bilateral trade costs, help avoid tariff
peaks and bypass unwritten access rules, promote trade liberalization to encourage the free
circulation of agricultural products, improve bilateral economic and trade relations, and
expand trade flows [53,54].

Based on the above analyses, we propose the following hypotheses for the evolution
of the global grain network:

Hypothesis 1 (H1). Countries with significant differences in resource endowment are more likely
to trade with each other.

Hypothesis 2 (H2). Countries with similar levels of economic development are more likely to trade
with each other.

Hypothesis 3 (H3). Countries that are geographically closer or with common geographical bound-
aries are more likely to trade with each other.

Hypothesis 4 (H4). Countries with smaller system differences are more likely to trade with
each other.
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Hypothesis 5 (H5). Economies with a common cultural background such as language or religion
are more likely to trade with each other.

Hypothesis 6 (H6). Countries that sign the RTA are more likely to trade with each other.

3.2. Complex Network Analysis Method
3.2.1. Constructing the Global Grain Trade Network

This study constructed a global grain trade-weighted trade network based on the
import and export value of grain (USD). According to the complex network theory, the
global grain trade network is summarized as a weighted complex network: G = (V, E, W),
where V is the point set composed of grain trading countries or regions as network nodes;
E is the edge set composed of grain trade relations between countries or regions; and W is
the function set of trade quantity relations between countries. Suppose there are n nodes,
m lines, and the n nodes form a weight matrix of order N by n. M is less than or equal to
n × n as there is no connection between some nodes (i.e., no trade relationship). Weight
matrix Wt is given according to the following formula:

Wt
ij =


w11 w12 . . . w1n
w21 w22 . . . w2n
. . . . . . . . . . . .
wn1 wn2 . . . wnn

 (1)

3.2.2. Node Degree and Distribution of Node Degree

Node degree refers to the number of nodes directly connected to a specific node in
the trade network. It is an indicator of the number of nodes that it trades in the trade
network [55]. Additionally, it can reflect the degree of diversification of the food trade
objects of a country. The higher the node degree, the more countries or regions trade with
the country. According to different trade flows in a directed network, node degrees can be
divided into out-degree and in-degree. Out-degree refers to the quantity from node i to all
other nodes, and in-degree refers to the quantity from all other nodes to node i. The sum of
out-degree and in-degree is the node degree, which can be expressed as

ki = kin
i + kout

i (2)

kin
i =

n

∑
j=1

aji (j = 1, 2, 3, . . . , n) (3)

kout
i =

n

∑
j=1

aij (j = 1, 2, 3, . . . , n) (4)

where ki, kin
i and kout

i are the degree, the in-degree, and the out-degree of node i respectively;
aji represents the import relations form node j to i; and aij represents the export relations
from node i to node j.

The distribution of node degree mainly describes the distribution characteristics of
the number of connections between nodes and other nodes in a trade network [56]. For
n nodes in the trade network, the node degree distribution is expressed as p(k) = nk/n,
if nk represents the number of nodes with node degree k in the network. We sorted the
node degree from small to large and drew the node degree distribution curve to reflect the
degree of heterogeneity in the network directly.

3.2.3. Core-Peripheral Analysis

Core-peripheral analysis is mainly used to analyze the structure of a network with
closely connected centers and sparse as well as scattered peripheries, which are composed
of several interconnected elements. Its algorithm was first proposed by Borgatti and
Everett [57], and it was divided into classification and continuous models. In this study, we
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used a continuous core-edge model to calculate the coreness of each member country in the
trade network. To analyze the core-edge structure and evolution characteristics of the grain
trade network further, we used Ucinet6 software to visualize the abstract core-edge trade
network by showing the core-edge degree and trade flow of each country. The specific
calculation formula is as follows:

ρ = ∑
ij

aijδij, δij=ci×cj (5)

where Ci and Cj are the core degrees of nodes i and j, respectively; δij is the element of
pattern matrix δ corresponding to the ideal core-edge model; aij is the element of the actual
adjacency weight relation matrix A; and ρ is the correlation index between A and δ. When
ρ reaches the maximum value, δ is the edge-core structure matrix of the nearest quasi-ideal
model corresponding to the actual situation [58,59].

3.3. The Quadratic Assignment Procedure (QAP) Model

QAP is principally used to test the correlation between networks. Generally, one
network is an observed network, whereas the other is a model or expected network. The
algorithm proceeds in three steps. First, it computes the Pearson’s correlation coefficient
(plus simple matching, Jaccard, Goodman, Kruskal, Gamma, and Hamming distance)
between the corresponding cells of the two data matrices. Second, it randomly permutes
rows and columns (synchronously) of one matrix (the observed matrix, if distinction is
relevant) and recomputes the correlation and other measures. Third, step 2 is repeated
thousands of times to compute the proportion of times that a random measure is larger than
or equal to the observed measure calculated in step 1. A low proportion (<0.05) indicates a
strong correlation between the matrices that are unlikely to have occurred [60].

In this study, we established a QAP regression analysis model using the grain network
in 2000 and 2018 as the explained variables, taking the geographic distance difference,
resource endowment difference, economic gap, land border binary, cultural similarity
binary, political difference, and free trade agreement binary networks as the explanatory
variables. Thereafter, we used Ucinet 6 software to perform 2000 matrix permutation and
regression analysis to obtain the results of the QAP analysis.

InTRij = β0 + β1 InRESij + β2 InDISij + β3 InCONij + β4 InECOij + β5 InPOLij ++β6 InCLUij + β7 InRTAij + εij (6)

where TRij is the grain trade value; RESij is the national resource endowment; DISij
is the geographic distance; CONij is the contiguity; ECOij is the difference in national
economic development; POLij is the national political differences; CULij is the cultural
similarity; RTAij represents regional free trade agreements; and β0 and εij are the constant
term and random interference term of the model, respectively. Per capita cultivated land
area is an important variable reflecting the resource endowment of food production [39];
therefore, we used it to measure resource endowment (RESij) and establish a resource
endowment network. We used the spherical geographic distance (DISij) and contiguity
(CONij) to measure geographic proximity and establish the geographic distance network
and contiguity of the land network, respectively. We used GDP per capita gap (ECOij) to
measure the difference in national economic development and established a GDP per capita
difference network. We selected six indexes including voice and accountability, political
stability, and absence of violence or terrorism, government effectiveness, regulatory quality,
rule of law, and control of corruption from the global political governance indicators
network database, and used them to calculate the national political differences (POLij) and
establish the political difference network. In this study, we described the social and cultural
similarity (CULij) between countries based on whether they had a common official language
or religious proximity, and established a cultural similarity network. We established a
free trade agreements network based on whether they had signed the regional free trade
agreements (RTAij).
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3.4. Data Sources and Preparation

The data of grain trade values between individual countries for 2000 and 2018 derives
from the United Nations Commodity Trade Statistics Database (comtrade.un.org/data/
accessed on 25 July 2020). The grain code in this database is HS10 including wheat and
mixed wheat, rye, barley, oats, corn, rice, sorghum, and buckwheat. To present the main
structure of the global grain network more clearly, we excluded some countries with low
trade volumes and obtained 196 countries and regions. This had no effect on the analysis
results. The data on the arable land per capita and GDP per capita of each country were
obtained from the World Bank database (Table 1). Geographical distance, land borders,
national comprehensive governance capacity, regional free trade agreements, religious
beliefs, and official language data were obtained from the Cep II database (Table 1). Among
them, whether land bordered on each other, regional free trade agreements were signed,
they used the same official language, or they had the same religious beliefs were all dummy
variables of 0 or 1 (Table 1). To reduce multicollinearity and dimensionality, logarithmic
processing was performed on the data of per capita cultivated land, geographical distance,
per capita GDP difference, and national comprehensive governance capacity difference
(Table 1).

Table 1. List of variables, data source, and preprocessing of the QAP model.

Symbol Description Data Preprocessing Data Source

RESij
national per capita cultivated

land area differences.
logarithmic

transformation

https:
//data.worldbank.org/

(accessed on 5 March 2021)

DISij
spherical geographic

distance.
logarithmic

transformation
http://www.cepii.fr

(accessed on 7 March 2021)

CONij

whether have a common
geographical boundary

contiguity.
binaryzation to 1 or 0. http://www.cepii.fr

(accessed on 7 March 2021)

ECOij
national GDP per

capita gaps.
logarithmic

transformation

https:
//data.worldbank.org/

(accessed on 7 March 2021)

POLij national political differences. logarithmic
transformation

https:
//data.worldbank.org/

(accessed on 5 March 2021)

RTAij
whether sign the regional

free trade agreements binarization to 1 or 0. http://www.cepii.fr
(accessed on 7 March 2021)

CULij

Whether have a common
official language or
religious proximity.

binarization to 1 or 0. http://www.cepii.fr
(accessed on 7 March 2021)

4. Grain Network Topology
4.1. Overall Network Characteristics
4.1.1. The Global Grain Network Has Scale-Free Properties

From the degree distribution maps of the global grain network in 2000 and 2018
(Figure 1), the degree distribution of the global grain network presents a “long tail” feature.
This means that a few nodes have high degree values, whereas most have small and similar
degree values. Power function fitting was conducted for the distribution in 2000 and 2018,
and both passed the significance test, confirming that the degree distribution of the global
grain network followed the power-law distribution, with significant heterogeneity among
nodes, which was in accordance with the scale-free characteristics of the network. However,
compared with that in 2000, the power ratio fitting value (R2) of the distribution curve in
2018 decreased, indicating that the scale-free characteristics of the global grain network
weakened and the heterogeneity of nodes decreased. Moreover, R2 of the power function
of the out-degree distribution was greater than that of the in-degree distribution in 2000

https://data.worldbank.org/
https://data.worldbank.org/
http://www.cepii.fr
http://www.cepii.fr
https://data.worldbank.org/
https://data.worldbank.org/
https://data.worldbank.org/
https://data.worldbank.org/
http://www.cepii.fr
http://www.cepii.fr
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and 2018 (Figure 2), indicating that the heterogeneity of the out-degree was greater than
that of the in-degree.
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2018 (b).

4.1.2. The Global Grain Network Presents a Significant “Core-Periphery” Structure

Figure 3 shows that the global grain network exhibits a significant “core-periphery”
structure. In 2000, the core countries included the United States, Japan, Mexico, Egypt, and
South Korea. The Philippines was the only semi-core country. The semi-marginal countries
included 15 countries: the Philippines, Saudi Arabia, Algeria, Italy, Colombia, Canada,
Venezuela, Nigeria, Israel, Russia, and Turkey. The remaining 175 countries were marginal.
In 2018, the core periphery of the global grain network became more hierarchical because
the number of core and semi-core countries increased and the number of semi-peripheral
and peripheral countries decreased. In 2018, the core countries of the global grain network
included the United States, Japan, Mexico, Egypt, the Republic of Korea, and Colombia.
The semi-core countries included Venezuela, the Philippines, Peru, and Canada. There
were 13 semi-marginal countries including Saudi Arabia, Egypt, Indonesia, Spain, Thailand,
Ukraine, Italy, Nigeria, Russia, and the Netherlands. The number of peripheral countries
was 173 (Table 2).

4.2. Node Features
4.2.1. Heterogeneity of the Out-Degree Nodes

The out-degree indicates the number of node egress relationships. Taking 2000 data as
a reference and using the natural breaks (Jenks) method, the output degree was divided
into five grade types with 12, 29, 51, and 99 as the thresholds. Generally, the number of
countries with higher out-degree values increased, whereas those with lower out-degree
values decreased. Figure 4b shows that in 2018, there were eight countries with the highest
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out-degree values including the United States, Argentina, France, Italy, India, Pakistan,
China, and Thailand, whose output values were greater than 100. There was one country
with the highest out-degree value in 2000. The higher out-degree values between 52 and 99
including Vietnam, Spain, Canada, the United Kingdom, Russia, Peru, Germany, Turkey,
the Netherlands, Belgium, South Africa, Australia, and another 26 countries, with 15 more
countries than in 2000. There were 27 countries with out-degree values between 30 and 51
in 2018 including Denmark, the Czech Republic, Myanmar, Mexico, Portugal, Indonesia,
Philippines, Malaysia, Egypt, and Kazakhstan, with eight more countries than in 2000.
There were 24 countries with out-degree values between 13 and 29 in 2018 including Saudi
Arabia, Finland, Nigeria, Ireland, Israel, Slovenia, Colombia, Guyana, Sudan, Zambia,
Uganda, and Laos, with four less countries than in 2000. The remaining 111 countries
scored below 12, with 20 fewer countries than in 2000.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 17 
 

hierarchical because the number of core and semi-core countries increased and the num-
ber of semi-peripheral and peripheral countries decreased. In 2018, the core countries of 
the global grain network included the United States, Japan, Mexico, Egypt, the Republic 
of Korea, and Colombia. The semi-core countries included Venezuela, the Philippines, 
Peru, and Canada. There were 13 semi-marginal countries including Saudi Arabia, Egypt, 
Indonesia, Spain, Thailand, Ukraine, Italy, Nigeria, Russia, and the Netherlands. The 
number of peripheral countries was 173 (Table 2). 

 
Figure 3. The “core-periphery” structures of the global grain trade network in 2000 (a) and 2018 (b). 

Table 2. Quantitative of the four types of countries in the “core-periphery” structure in 2000 and 
2018. 

Year Core Countries Semi-Core Countries Semi-Marginal Countries Marginal Countries 
2010 5 1 15 175 
2018 6 4 13 173 

4.2. Node Features 
4.2.1. Heterogeneity of the Out-Degree Nodes 

The out-degree indicates the number of node egress relationships. Taking 2000 data 
as a reference and using the natural breaks (Jenks) method, the output degree was divided 
into five grade types with 12, 29, 51, and 99 as the thresholds. Generally, the number of 
countries with higher out-degree values increased, whereas those with lower out-degree 
values decreased. Figure 4b shows that in 2018, there were eight countries with the highest 
out-degree values including the United States, Argentina, France, Italy, India, Pakistan, 
China, and Thailand, whose output values were greater than 100. There was one country 
with the highest out-degree value in 2000. The higher out-degree values between 52 and 
99 including Vietnam, Spain, Canada, the United Kingdom, Russia, Peru, Germany, Tur-
key, the Netherlands, Belgium, South Africa, Australia, and another 26 countries, with 15 
more countries than in 2000. There were 27 countries with out-degree values between 30 
and 51 in 2018 including Denmark, the Czech Republic, Myanmar, Mexico, Portugal, In-
donesia, Philippines, Malaysia, Egypt, and Kazakhstan, with eight more countries than in 
2000. There were 24 countries with out-degree values between 13 and 29 in 2018 including 
Saudi Arabia, Finland, Nigeria, Ireland, Israel, Slovenia, Colombia, Guyana, Sudan, Zam-
bia, Uganda, and Laos, with four less countries than in 2000. The remaining 111 countries 
scored below 12, with 20 fewer countries than in 2000. 

Figure 3. The “core-periphery” structures of the global grain trade network in 2000 (a) and 2018 (b).

Table 2. Quantitative of the four types of countries in the “core-periphery” structure in 2000 and 2018.

Year Core Countries Semi-Core
Countries

Semi-Marginal
Countries

Marginal
Countries

2010 5 1 15 175
2018 6 4 13 173

4.2.2. Heterogeneity of In-Degree Nodes

In-degree indicates the number of node-import relationships. Taking the data of 2000
as a reference and using the natural discontinuity method, the in-degree was divided into
five grades with thresholds of 7, 19, 32, and 48. Similar to the out-degree’s characteristics,
the number of higher in-degree value countries increased, whereas the number of lower
in-degree countries decreased. As shown in Figure 4d, 29 countries had the highest in-
degree values between 49 and 99 in 2018 including France, Canada, Germany, the United
States, the Netherlands, and Spain. Compared with 2000, there were 23 more countries.
There were 44 countries with higher in-degree values between 33 and 48 in 2018 including
Japan, South Korea, Hungary, Thailand, Kuwait, Ukraine, Australia, Portugal, China, New
Zealand, India, Nigeria, Indonesia, and Egypt. There were 27 more countries than in 2000.
There were 36 countries with in-degree values between 20 and 23 in 2018 including Uganda,
Zambia, Zimbabwe, Burkina Faso, Latvia, Brazil, Colombia, and Peru, with a decrease
of 23 countries compared to 2000. Mexico, Ecuador, Paraguay, Uzbekistan, Cambodia,
Afghanistan, and another 19 countries ranked fourth in terms of in-degree with in-degree
values ranging between 8 and 19. This is 39 fewer countries than in 2000. The remaining
68 countries including Laos, Iran, Ethiopia, Guinea, Jamaica, Gabon, Libya, Haiti, and
Bahamas had an in-degree values below 7, which is 18 more countries than in 2000.
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5. Driving Factor for the Evolution of the Global Grain Networks
5.1. Results of QAP Model Regression

Table 3 presents a summary that QAP regression models passed the 1% significance
test in both 2000 and 2018, and the goodness of fit of the 2000 and 2018 models were 88.61%
and 87.70%, respectively, indicating that the models had high explanatory power. QAP
regression analysis results indicate that the resources endowment difference, the difference
of geographical approaches, economic development, the free trade agreement, and the
national comprehensive management ability between 2000 and 2018 had a significantly pos-
itive impact on the global grain network evolution, whereas social and cultural similarity
had a significantly negative impact on the global grain network evolution. Moreover, the
driving intensity of geographical distance, national comprehensive governance capacity,
and free trade agreement decreased significantly. In 2018, the elasticity coefficient of these
two factors decreased by 9.25%, 5.71%, and 2.49% compared with 2000. The driving inten-
sity of the resource endowment difference, land border difference, economic development
difference as well as cultural similarity increased, and the elastic coefficients of the four
factors increased by 1.77%, 1.95%, 4.46%, and 0.78%, respectively, in 2018.

According to the classical gravity model theory, the longer the distance between the
two countries, the weaker the trade links. However, our results indicate that in 2000 and
2018, the geographical distance had a positive impact on the formation of food trade links,
and countries with greater distance are more likely to form trade links. This result is not
consistent with the expectations, reflecting the uniqueness of food trade. Grain production
has significant regional characteristics, and strongly depends on natural conditions. Coun-
tries in close proximity may have similar natural conditions, similar resource endowments,
and similar regional grain production structures, which could hinder the formation of close
grain trade links. In contrast, differences in natural conditions and the production structure
between countries far away promote them to adjust the surplus or shortage through food
trade as well as to adjust variety. For instance, in the global grain network, the larger
volume of trading partners is long-distance such as China and the U.S., the EU and the
U.S., Brazil and China as well as India and the U.S. [37]. However, compared with 2000, the
regression coefficient of the geographical distance factor decreased in 2018, mainly because
of the improvement in the modern ocean transportation system. Thus, the freight cost was
significantly reduced and the impact of geographical distance on grain trade was reduced.
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Table 3. Results of QAP regression.

Indicators 2000 2018

LnRESij 0.05549 ** (6) 0.07321 ** (5) ↑
LnDISij 0.49405 ** (1) 0.40154 ** (1) ↓
CONij 0.06416 ** (5) 0.08368 ** (4) ↑

LnECOij 0.34524 ** (2) 0.38982 ** (2) ↑
LnPOLij −0.12001 ** (3) −0.17706 ** (3) ↑

RTAij 0.07089 ** (4) 0.04597 ** (6) ↓
CULij −0.01824 ** (7) −0.01047 ** (7) ↓

R2 0.886 0.877
AJ-R2 0.886 0.877

Model’s significance p < 0.001 p < 0.001
Observation items 38,220 38,220

Note: ** represents p < 0.01; The absolute value ranking of regression coefficients is in parentheses (the same
below); ”↑” and “↓” respectively indicate that the absolute value of the regression coefficient of variables in 2018
increased or decreased compared with that in 2000.

The grain trade had a significant “boundary effect.” QAP regression results indicate
that land border had a positive effect on the formation of food trade links in both 2000
and 2018, and the coefficient showed an increasing trend. That is, countries bordering on
land have closer food trade links, and the effect is increasing. As neighbors on land have
been close for a long time, their public opinion is similar, mutual trust is high, and trade is
more frequent. Because railway transportation is highly flexible and has a lower transit
time than ocean transportation, neighboring countries on land often take advantage of the
geographical benefits to promote grain trade through border ports and land transportation
facilities. For instance, in recent years, China has maintained increasingly close food trade
ties with its neighbors such as Russia, Pakistan, and Vietnam. Additionally, the United
States has maintained close food trade ties with its land neighbor, Mexico, for a long time.

The level of economic development had a positive effect on the evolution of the grain
trade network shown by a statistical significance test of 1%, and the influence coefficient
showed an increasing trend. Countries with larger differences in economic development
levels had a closer grain trade relationship. Generally, international grain trade mainly
occurs between high-income and low-income countries. High-income countries are usually
net grain export regions [61], whereas slow-income countries have maintained a consistent
trend in net food imports. With a high degree of mechanization and a high per capita grain
output, high-income countries such as the United States, Canada, Australia, and France,
mainly export grain. Most low-income countries are in the process of transforming from
plant-based food consumption to animal-based food consumption structures, and their
food consumption increases rigidly. Their domestic food cannot meet the demand because
of low productivity, and they have to rely on imports for food consumption.

The difference in political attributes had a negative impact on food trade, which
passed the statistical significance test of 1%. Countries with smaller differences in national
governance capacity had closer bilateral food trade links. Compared with 2010, the absolute
value of the influence coefficient of national comprehensive governance capacity on the
grain trade network exhibited an increasing trend in 2018.

The impact of resource endowment differences on the grain trade network passed
the statistical significance test of 1%, indicating a positive influence, and the coefficient
showed an increasing trend. The resource endowment difference is still an important
factor affecting food trade. Under the condition of existing technology, food production
depends highly on natural resources, specifically land resources. The greater the difference
in per capita cultivated land resources between countries, the greater the bilateral trade
value. As global arable land decreases and land scarcity increases, differences in resource
endowments have an increasing impact on the global food trade.

Regional free trade agreements had a positive impact on grain networks using a statis-
tical significance test of 1%, and the coefficient exhibited an increasing trend. Regional free
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trade agreements play a positive role in food trade. Signing bilateral free trade agreements
has provided legal guarantees for bilateral economic and trade cooperation, reduced the
cost of bilateral trade, and improved the level of trade facilitation. This contributed to the
formation of a mutually beneficial situation to strengthen mutual food trade links.

Cultural similarity had a negative impact on the formation of food trade links using
a statistical significance test of 1%. Countries with larger cultural differences had fewer
bilateral food trade links, which is consistent with the expected result. Compared to 2000,
the absolute value of the regression coefficient of cultural similarity exhibited a decreasing
trend in 2018, but the relative ranking remained unchanged, ranking seventh among all
influencing factors.

5.2. Robustness Test

To test the robustness of the QAP regression results, two methods of removing vari-
ables and randomly deleting samples were used to conduct the QAP regression analysis.

The results of the variable exclusion test in 2000 indicated that the QAP regression was
relatively robust. After a variable was removed in 2000, the regression coefficient symbols
of the remaining variables were consistent with the original QAP regression results, and all
p values were less than 0.01 (Table 4). In addition, the results of the variable exclusion test
in 2018 indicated that the QAP regression was robust. In 2018, the sign of the regression
coefficient of cultural difference variables changed from negative to positive when only
land border variables were excluded, but it was not significant. In addition, when other
variables were removed, the regression coefficient symbols of the remaining variables were
consistent with the original results, and all p values were less than 0.01 (Table 5).

Table 4. Results of the variable exclusion test in 2000.

Indicators Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

LnRESij 0.03832 ** 0.04968 ** 0.04802 ** 0.04833 ** 0.04230 ** 0.05646 **
LnDISij 0.47128 ** 0.45887 ** 0.84713 ** 0.64667 ** 0.40053 ** 0.49376 **
CONij 0.06190 ** 0.05384 ** 0.06720 ** 0.07637 ** 0.07440 ** 0.06216 **

LnECOij 0.33375 ** 0.75434 ** 0.35725 ** 0.27203 ** 0.42114 ** 0.34205 **
LnPOLij −0.11397 ** −0.21721 ** −0.14651 ** −0.07978 ** −0.15989 ** −0.11660 **

RTAij 0.06427 ** 0.03548 ** 0.08411 ** 0.09570 ** 0.09461 ** 0.06800 **
CULij −0.01976 ** −0.01790 ** −0.01012 ** −0.01496 ** −0.01186 ** −0.00917 **

R2 0.884 0.877 0.882 0.880 0.882 0.885
AJ-R2 0.884 0.877 0.882 0.880 0.882 0.885

Model’s
significance p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Observation
items 38,220 38,220 38,220 38,220 38,220 38,220 38,220

Note: ** represents p < 0.01.

The results were tested using a random deletion of the samples. Based on the original
samples in 2000 and 2018, 20% of the samples were randomly excluded to obtain 35,910
and 35,532 samples. QAP regression was performed for the new samples. The new QAP
regression results indicated that in 2000 and 2018, the regression symbols of all variables
were consistent, and the p values were all less than 0.01, which passed the significance test
at the 1% level (Table 6). Therefore, the test results of the random deletion sample method
also indicate that the empirical conclusion of this study is robust and credible.
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Table 5. Results of the variable exclusion test in 2018.

Indicators Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14

LnRESij 0.06357 ** 0.06268 ** 0.06527 ** 0.06433 ** 0.06855 ** 0.07417 **
LnDISij 0.37491 ** 0.32565 ** 0.79360 ** 0.65213 ** 0.32627 ** 0.40348 **
CONij 0.07974 ** 0.07341 ** 0.08931 ** 0.10126 ** 0.08728 ** 0.08244 **

LnECOij 0.37053 ** 0.73467 ** 0.42639 ** 0.25749 ** 0.46590 ** 0.38695 **
LnPOLij −0.16940 ** −0.25540 ** −0.21765 ** −0.13003 ** −0.20275 ** −0.17506 **

RTAij 0.04010 ** 0.01169 ** 0.05806 ** 0.08535 ** 0.08339 ** 0.04499 **
CULij −0.01350 ** −0.01270 ** 0.00001 −0.00373 ** −0.00314 ** −0.00801 **

R2 0.875 0.873 0.871 0.873 0.872 0.876 0.877
AJ-R2 0.875 0.873 0.871 0.873 0.872 0.876 0.877

Model’s
significance p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Observation
items 38,220 38,220 38,220 38,220 38,220 38,220 38,220

Note: ** represents p < 0.01.

Table 6. Results of randomly deleting samples test in 2000 and 2018.

Indicators 2000 2018

LnRESij 0.04142 ** 0.06995 **
LnDISij 0.49925 ** 0.39088 **
CONij 0.07030 ** 0.08597 **

LnECOij 0.34104 ** 0.39754 **
LnPOLij −0.10828 ** −0.17727 **

RTAij 0.06927 ** 0.04312 **
CULij −0.02331 ** −0.00844 **

R2 0.886 0.878
AJ-R2 0.886 0.878

Model’s significance p < 0.001 p < 0.001
Observation items 35,910 35,532

Note: ** represents p < 0.01.

6. Conclusions

This study constructed a weighted global grain network based on complex network
theory using data from 2000 and 2018. First, we analyzed the topological properties of the
evolution of the global grain network. We then investigated the evolution of the global
grain trade and its spatial homogeneity for the years of 2000 and 2018 based on complex
networks. Thereafter, we evaluated the impacts of six factors on the global food trade using
the QAP model. We conclude that:

(1) The global grain network is scale-free. The distributions of degree, out-degree,
and in-degree of the global grain network follow the power-law distribution. There was
significant heterogeneity among nodes, and the heterogeneity of out-degree was greater
than that of in-degree. There were eight countries with the highest output values greater
than 100 including the United States, Argentina, France, Italy, India, Pakistan, China, and
Thailand. There were 29 countries with the highest in-degree value between 49 and 99
including France, Canada, Germany, the United States, the Netherlands, and Spain.

(2) The global grain network has a significant core-periphery structure. The United
States, Japan, Mexico, Egypt, South Korea, and Colombia are the core countries. Compared
with 2000, the number of core and semi-core countries increased in 2018, whereas the
number of semi-peripheral and peripheral countries decreased. This trend indicates that
the “core-periphery” hierarchy of the global grain network is more obvious.

(3) Empirical research into trade network evolution mechanism with the six factors
revealed several significant findings: (a) The geographical distance has a positive impact on
the formation of food trade links in both 2000 and 2018, and countries with greater distance
between them are more likely to form trade links. This is contrary to the classical gravity
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model theory, reflecting the uniqueness of the food trade. (b) Grain trade has significant
“boundary effects.” Countries with land borders are more closely linked to the food trade,
and this effect increases. (c) The level of economic development has a positive impact on
the evolution of the grain trade network. Countries with larger differences in economic
development have closer trade links, and the world grain trade mainly occurs between
high-income and low-income countries. (d) The difference in resource endowment has
a positive impact on the grain networks. Under existing technological conditions, food
production is highly dependent on natural resources, specifically land resources. The
scarcity of cultivated land increases with decreasing global cultivated land, and the impact
of resource endowment differences on global food trade increases. (e) Regional free trade
agreements have a positive impact on grain networks, and they play a positive role in food
trade. In contrast, cultural similarity and differences in politics attributes have a negative
impact on the formation of food trade links.

This study contributes to the literature by first addressing a gap in the global grain
network research that focuses on structural and topological characteristics without consid-
ering its influencing factors. Second, the influence of geographical distance on grain trade
is in contrast to the classical gravity model, which reflects the uniqueness of the food trade.
Third, this study expands the application of the QAP model to the grain trade sector. In
addition, this study can provide policymakers with a basis for the development of timely
grain export and import strategy adjustments and policy-making processes.

There are several potential directions for future research. First, the impact of ocean
liner transportation, tariff rates, currency interest rates, urbanization rates, and other
factors on the global food trade should be considered. Second, innovative models such
as the temporal exponential random graph model (TERGM) may be used to observe the
endogenous structural and relational embeddedness effects. Third, it is necessary to add
more cross-sectional data and improve the time resolution to observe more details of
the variability for the 2000–2018 period in future research. Last, but not least, to explore
the impacts of climate change on grain production and trade patterns. Global climate
changes have multiple implications for the global food system by affecting food production,
processing, packaging, storage, food prices, and retailing [62]. For example, climate change
is projected to rise agriculture prices [63,64]. According to the Intergovernmental Panel on
Climate Change (IPCC) global agricultural prices could increase up to 29% from the current
levels by 2050 [65], which will aggravate financial burdens for food acquisition, particularly
for net-importing countries [64]. Moreover, due to future climate change, many countries
such as China [66], the United States [65], Bangladesh, and Myanmar [67] will suffer from
decreases in crop production, while increases in precipitation and temperature will increase
the yields and exports of wheat and rice in Kazakhstan [68]. The heterogeneous impacts
of climate change across the world will change the relative competitive advantages in
agricultural production, leading to significant adjustments of global grain trade patterns,
and countries may experience the heterogeneous economic consequences depending on
the position and the nodal relationship of each country in the global agricultural trade
network [63]. Thus, the precise simulation of future changes in grain production and trade
has important implications for stabilizing the international grain market and ensure food
security.

Author Contributions: Conceptualization, J.D. and D.Y.; Methodology, C.N.; Software, C.N.; Vali-
dation, J.D.; Formal analysis, J.D.; Investigation, J.D.; Resources, J.D.; Data curation, C.N.; Writing—
original draft preparation, J.D. and C.N.; Writing—review and editing, J.D., Y.W. and W.X.; Visual-
ization, J.D.; Supervision, D.Y.; Project administration, J.D.; Funding acquisition, J.D. and D.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Evolution of spatial coupled network between global grain
trade and transnational cultivated land investment and Regional differences of rural housing based
on interior/exterior boundaries, grant numbers 42001128 and LQ20E080008. The PAC was funded by
the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang
Province, China.



Sustainability 2022, 14, 245 15 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We greatly appreciate the helpful comments of reviewers and editors, which
have significantly contributed to improving the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin,

C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [CrossRef]
2. Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [CrossRef] [PubMed]
3. Porkka, M.; Kummu, M.; Siebert, S.; Varis, O. From Food Insufficiency towards Trade Dependency: A Historical Analysis of

Global Food Availability. PLoS ONE 2013, 8, e82714. [CrossRef]
4. Puma, M.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the Evolving Fragility of the Global Food System. Environ. Res. Lett. 2015, 10,

24007. [CrossRef]
5. D’Odorico, P.; Carr, J.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding Humanity through Global Food Trade. Earth Future 2014, 2,

458–469. [CrossRef]
6. Matthews, A. Trade Rules, Food Security and the Multilateral Trade Negotiations. Eur. Rev. Agric. Econ. 2014, 41, 511–535.

[CrossRef]
7. Gephart, J.A.; Pace, M. Structure and Evolution of the Global Seafood Trade Network. Environ. Res. Lett. 2015, 10, 125014.

[CrossRef]
8. Dupas, M.-C.; Halloy, J.; Chatzimpiros, P. Time Dynamics and Invariant Subnetwork Structures in the World Cereals Trade

Network. PLoS ONE 2019, 14, e0216318. [CrossRef]
9. Macdonald, G.K.; Brauman, K.; Sun, S.; Carlson, K.M.; Cassidy, E.S.; Gerber, J.; West, P. Rethinking Agricultural Trade Relation-

ships in an Era of Globalization. BioScience 2015, 65, 275–289. [CrossRef]
10. Duan, J.; Xu, Y.; Jiang, H. Tradevulnerability Assessment in the Grain-Importing Countries: A Case Study of China. PLoS ONE

2021, 16, e0257987. [CrossRef]
11. FAO. World Food and Nutrition Press Security: Report. 2019. Available online: www.fao.org/home/search/en?Page=0&

category=publications (accessed on 25 October 2020).
12. Foley, J.A.; Ramankutty, N.; Brauman, K.; Cassidy, E.S.; Gerber, J.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.; West, P.;

et al. Solutions for a Cultivated Planet. Nat. Cell Biol. 2011, 478, 337–342. [CrossRef]
13. Crist, E.; Mora, C.; Engelman, R. The Interaction of Human Population, Food Production, and Biodiversity Protection. Science

2017, 356, 260–264. [CrossRef] [PubMed]
14. Herzberger, A.; Chung, M.G.; Kapsar, K.; Frank, K.A.; Liu, J. Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled

Production. Sustainability 2019, 11, 2908. [CrossRef]
15. Serrano, M. Ángeles; Boguñá, M. Topology of the World Trade Web. Phys. Rev. E 2003, 68, 015101. [CrossRef] [PubMed]
16. Fagiolo, G.; Reyes, J.; Schiavo, S. World-Trade Web: Topological Properties, Dynamics, and Evolution. Phys. Rev. E 2009, 79,

036115. [CrossRef]
17. He, Z.; Yang, Y.; Liu, Y.; Jin, F. Characteristics of Evolution of Global Energy Trading Network and Relationships Between Major

Countries. Prog. Geogr 2019, 38, 1621–1632. [CrossRef]
18. Kitamura, T.; Managi, S. Driving Force and Resistance: Network Feature in Oil Trade. Appl. Energy 2017, 208, 361–375. [CrossRef]
19. Hou, W.; Liu, H.; Wang, H.; Wu, F. Structure and Patterns of the International Rare Earths Trade: A Complex Network Analysis.

Resour. Policy 2018, 55, 133–142. [CrossRef]
20. Sui, G.; Zou, J.; Wu, S.; Tang, D. Comparative Studies on Trade and Value-Added Trade Along the “Belt and Road”: A Network

Analysis. Complexity 2021, 2021, 3994004. [CrossRef]
21. Dong, C.; Yin, Q.; Lane, K.J.; Yan, Z.; Shi, T.; Liu, Y.; Bell, M. Competition and Transmission Evolution of Global Food Trade: A

Case Study of Wheat. Phys. A Stat. Mech. Appl. 2018, 509, 998–1008. [CrossRef]
22. Shutters, S.T.; Muneepeerakul, R. Agricultural Trade Networks and Patterns of Economic Development. PLoS ONE 2012, 7,

e39756. [CrossRef]
23. Cai, H.; Song, Y. The state’s Position in International Agricultural Commodity Trade. China Agric. Econ. Rev. 2016, 8, 430–442.

[CrossRef]
24. Wang, X.; Niu, S.W.; Qiang, W.L.; Liu, A.M.; Cheng, S.K.; Qiu, X. Trade Network of Global Agricultural Products Weighted by

Physical and Value Quantity. Econ. Geogr. 2019, 39, 164–173. [CrossRef]
25. Fan, Y.; Ren, S.; Cai, H.; Cui, X. The state’s Role and Position in International Trade: A Complex Network Perspective. Econ.

Model. 2014, 39, 71–81. [CrossRef]

http://doi.org/10.1126/science.1185383
http://doi.org/10.1126/science.1092958
http://www.ncbi.nlm.nih.gov/pubmed/14671289
http://doi.org/10.1371/journal.pone.0082714
http://doi.org/10.1088/1748-9326/10/2/024007
http://doi.org/10.1002/2014EF000250
http://doi.org/10.1093/erae/jbu017
http://doi.org/10.1088/1748-9326/10/12/125014
http://doi.org/10.1371/journal.pone.0216318
http://doi.org/10.1093/biosci/biu225
http://doi.org/10.1371/journal.pone.0257987
www.fao.org/home/search/en?Page=0&category=publications
www.fao.org/home/search/en?Page=0&category=publications
http://doi.org/10.1038/nature10452
http://doi.org/10.1126/science.aal2011
http://www.ncbi.nlm.nih.gov/pubmed/28428391
http://doi.org/10.3390/su11102908
http://doi.org/10.1103/PhysRevE.68.015101
http://www.ncbi.nlm.nih.gov/pubmed/12935184
http://doi.org/10.1103/PhysRevE.79.036115
http://doi.org/10.18306/dlkxjz.2019.10.016
http://doi.org/10.1016/j.apenergy.2017.10.028
http://doi.org/10.1016/j.resourpol.2017.11.008
http://doi.org/10.1155/2021/3994004
http://doi.org/10.1016/j.physa.2018.06.052
http://doi.org/10.1371/journal.pone.0039756
http://doi.org/10.1108/CAER-02-2016-0032
http://doi.org/10.15957/j.cnki.Jjdl.2019.04.020
http://doi.org/10.1016/j.econmod.2014.02.027


Sustainability 2022, 14, 245 16 of 17

26. Chen, W.-Q.; Graedel, T.E.; Nuss, P.; Ohno, H. Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy.
Environ. Sci. Technol. 2016, 50, 3905–3912. [CrossRef]

27. Nuss, P.; Chen, W.-Q.; Ohno, H.; Graedel, T.E. Structural Investigation of Aluminum in the U.S. Economy Using Network
Analysis. Environ. Sci. Technol. 2016, 50, 4091–4101. [CrossRef] [PubMed]

28. Nie, C.L.; Jiang, H.N.; Duan, J. Spatial Pattern Evolution of Global Grain Trade Network since the 21st Century. Econ. Geogr. 2021,
41, 119–127. [CrossRef]

29. Wu, Z.; Cai, H.; Zhao, R.; Fan, Y.; Di, Z.; Zhang, J. A Topological Analysis of Trade Distance: Evidence from the Gravity Model
and Complex Flow Networks. Sustainability 2020, 12, 3511. [CrossRef]

30. Anderson, J.E.; Van Wincoop, E. Gravity with Gravitas: A Solution to the Border Puzzle. Am. Econ. Rev. 2003, 93, 170–192.
[CrossRef]

31. Mizik, T. Agri-Food Trade Competitiveness: A Review of the Literature. Sustainability 2021, 13, 11235. [CrossRef]
32. Tadesse, B.; White, R. Does Cultural Distance Hinder Trade in Goods? A Comparative Study of Nine OECD Member Nations.

Open Econ. Rev. 2010, 21, 237–261. [CrossRef]
33. Shi, B.Z. Cultural Identification and International Trade. J. World Econ. 2016, 39, 78–97.
34. Feng, L.; Xu, H.; Wu, G.; Zhang, W. Service Trade Network Structure and Its Determinants in the Belt and Road Based on the

Temporal Exponential Random Graph Model. Pac. Econ. Rev. 2021, 26, 617–650. [CrossRef]
35. Serrano, R.; Pinilla, V. Causes of World Trade Growth in Agricultural and Food Products, 1951–2000: A Demand Function

Approach. Appl. Econ. 2010, 42, 3503–3518. [CrossRef]
36. Manger, M.S.; Pickup, M.A.; Snijders, T.A.B. A Hierarchy of Preferences. J. Confl. Resolut. 2012, 56, 853–878. [CrossRef]
37. Anderson, J.E.; Marcouiller, D. Insecurity and the Pattern of Trade: An Empirical Investigation. Rev. Econ. Stat. 2002, 84, 342–352.

[CrossRef]
38. Wang, J.-Y.; Dai, C.; Zhou, M.-Z.; Liu, Z.-J. Research on Global Grain Trade Network Pattern and Its Influencing Factors. J. Nat.

Resour. 2021, 36, 1545–1556. [CrossRef]
39. McCallum, J. National Borders Matter: Canada-U.S. Regional Trade Patterns. Am. Econ. Rev. 1995, 85, 615–623.
40. Kimura, F.; Lee, H.-H. The Gravity Equation in International Trade in Services. Rev. World Econ. 2006, 142, 92–121. [CrossRef]
41. Lee, J. Network Effects on International Trade. Econ. Lett. 2012, 116, 199–201. [CrossRef]
42. Gani, A.; Clemes, M.D. Modeling the Effect of the Domestic Business Environment on Services Trade. Econ. Model. 2013, 35,

297–304. [CrossRef]
43. Huang, S.Y.; Gou, W.S.; Cai, H.B.; Li, X.M.; Chen, Q.H. Effects of Regional Trade Agreement to Local and Global Trade Purity

Relationships. Complexity 2020, 2987217. [CrossRef]
44. Watkins, M.H.; Linder, S.B. An Essay on Trade and Transformation. Can. J. Econ. Political Sci. 1963, 29, 121. [CrossRef]
45. Ma, J.; He, C. Structure and Change of International Trade Network of Intermediate Goods: From the Perspective of Trade Costs.

Prog. Geogr 2019, 38, 1607–1620. [CrossRef]
46. Chen, Y.; Li, E. Spatial Pattern and Evolution of Cereal Trade Networks Among the Belt and Road Countries. Prog. Geogr 2019, 38,

1643–1654. [CrossRef]
47. Davis, L.S.; Abdurazokzoda, F. Language, Culture and Institutions: Evidence from a New Linguistic Dataset. J. Comp. Econ. 2016,

44, 541–561. [CrossRef]
48. Walker, S. Cultural Barriers to Market Integration: Evidence from 19th Century Austria. J. Comp. Econ. 2018, 46, 1122–1145.

[CrossRef]
49. Yang, W.L.; Du, D.B.; Ma, Y.H.; Jiao, M.Q. Network Structure and Proximity of the Trade Network in the Belt and Road Region.

Geogr. Res. 2018, 37, 2218–2235.
50. Carrère, C. Revisiting the Effects of Regional Trade Agreements on Trade Flows with Proper Specification of the Gravity Model.

Eur. Econ. Rev. 2006, 50, 223–247. [CrossRef]
51. Ghosh, S.; Yamarik, S. Are Regional Trading Arrangements Trade Creating? An Application of Extreme Bounds Analysis. J. Int.

Econ. 2004, 63, 369–395. [CrossRef]
52. Magee, C.S. New Measures of Trade Creation and Trade Diversion. J. Int. Econ. 2008, 75, 349–362. [CrossRef]
53. Ding, S.H.; He, S.Q. Analysis on the Efficiency and Influence Factors of China’s Agricultural Products Export to the Five Central

Asian Countries. Int. Bus. 2019, 13–24, 5. [CrossRef]
54. Zhen, J.; Wang, X.M. Potential and Influencing Factors of Agricultural Trade Among RCEP members—Empirical Analysis Based

on Stochastic Frontier Gravity Model. Xinjiang State Farms Econ. 2019, 8, 28–36, 64.
55. Dalin, C.; Konar, M.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Evolution of the Global Virtual Water Trade Network. Proc.

Natl. Acad. Sci. USA 2012, 109, 5989–5994. [CrossRef] [PubMed]
56. Geng, J.-B.; Ji, Q.; Fan, Y. A Dynamic Analysis on Global Natural Gas Trade Network. Appl. Energy 2014, 132, 23–33. [CrossRef]
57. Borgatti, S.; Everett, M.G. Models of core/Periphery Structures. Soc. Netw. 2000, 21, 375–395. [CrossRef]
58. Zheng, L.; Liu, Y.; Liu, W.D. Globalization and Regionalizationof Complete Auto’s and Auto parts’ trade. Sci. Geogr. Sin. 2016, 36,

662–670. [CrossRef]
59. Elliott, A.; Chiu, A.; Bazzi, M.; Reinert, G.; Cucuringu, M. Core–periphery Structure in Directed Networks. Proc. R. Soc. A Math.

Phys. Eng. Sci. 2020, 476, 20190783. [CrossRef]

http://doi.org/10.1021/acs.est.5b05095
http://doi.org/10.1021/acs.est.5b05094
http://www.ncbi.nlm.nih.gov/pubmed/26926990
http://doi.org/10.15957/j.cnki.Jjdl.2021.07.013
http://doi.org/10.3390/su12093511
http://doi.org/10.1257/000282803321455214
http://doi.org/10.3390/su132011235
http://doi.org/10.1007/s11079-008-9090-8
http://doi.org/10.1111/1468-0106.12378
http://doi.org/10.1080/00036840802167368
http://doi.org/10.1177/0022002712438351
http://doi.org/10.1162/003465302317411587
http://doi.org/10.31497/zrzyxb.20210615
http://doi.org/10.1007/s10290-006-0058-8
http://doi.org/10.1016/j.econlet.2012.02.017
http://doi.org/10.1016/j.econmod.2013.06.033
http://doi.org/10.1155/2020/2987217
http://doi.org/10.2307/139381
http://doi.org/10.18306/dlkxjz.2019.10.015
http://doi.org/10.18306/dlkxjz.2019.10.018
http://doi.org/10.1016/j.jce.2015.10.015
http://doi.org/10.1016/j.jce.2018.05.001
http://doi.org/10.1016/j.euroecorev.2004.06.001
http://doi.org/10.1016/S0022-1996(03)00058-8
http://doi.org/10.1016/j.jinteco.2008.03.006
http://doi.org/10.13509/j.cnki.Ib.2019.05.002
http://doi.org/10.1073/pnas.1203176109
http://www.ncbi.nlm.nih.gov/pubmed/22474363
http://doi.org/10.1016/j.apenergy.2014.06.064
http://doi.org/10.1016/S0378-8733(99)00019-2
http://doi.org/10.13249/j.cnki.Sgs.2016.05.003
http://doi.org/10.1098/rspa.2019.0783


Sustainability 2022, 14, 245 17 of 17

60. Xu, H.; Cheng, L. The QAP Weighted Network Analysis Method and Its Application in International Services Trade. Phys. A Stat.
Mech. Appl. 2016, 448, 91–101. [CrossRef]

61. Feng, Z.M.; Zhao, X.; Yang, Y.Z. Evolutionary Trends of World Cereal Trade in Recent 50 Years from a View of Spatial-Temporal
Patternsand Regional Differences. Resour. Sci. 2010, 32, 2–10.

62. Molly, E.B.; Edward, R.C.; Kathryn, L.G.; Keith, W.; Christopher, C.F.; Witsanu, A.; Peter, B.; Lawrence, B. Do Markets and Trade
Help or Hurt the Global Food System Adapt to Climate change? Food Policy 2017, 68, 154–159. [CrossRef]

63. Lee, H.-L.; Lin, Y.-P.; Petway, J.R. Global Agricultural Trade Pattern in A Warming World: Regional Realities. Sustainability 2018,
10, 2763. [CrossRef]

64. Janssens, C.; Havlík, P.; Krisztin, T.; Baker, J.; Frank, S.; Hasegawa, T.; Leclère, D.; Ohrel, S.; Ragnauth, S.; Schmid, E.; et al. Global
Hunger and Climate Change Adaptation through International Trade. Nat. Clim. Chang. 2020, 10, 829–835. [CrossRef] [PubMed]

65. Kunimitsu, Y.; Sakurai, G.; Iizumi, T. Systemic Risk in Global Agricultural Markets and Trade Liberalization under Climate
Change: Synchronized Crop-Yield Change and Agricultural Price Volatility. Sustainability 2020, 12, 10680. [CrossRef]

66. Xie, W.; Huang, J.; Wang, J.; Cui, Q.; Robertson, R.; Chen, K. Climate Change Impacts on China’s Agriculture: The Responses
from Market and Trade. China Econ. Rev. 2020, 62, 101256. [CrossRef]

67. Wu, F.; Wang, Y.; Liu, Y.; Liu, Y.; Zhang, Y. Simulated Responses of Global Rice Trade to Variations in Yield under Climate Change:
Evidence from Main Rice-Producing Countries. J. Clean. Prod. 2021, 281, 124690. [CrossRef]

68. Yu, X.; Luo, H.; Wang, H.; Feil, J.-H. Climate Change and Agricultural Trade in Central Asia: Evidence from Kazakhstan. Ecosyst.
Heal. Sustain. 2020, 6, 1766380. [CrossRef]

http://doi.org/10.1016/j.physa.2015.12.094
http://doi.org/10.1016/j.Foodpol.2017.02.004
http://doi.org/10.3390/su10082763
http://doi.org/10.1038/s41558-020-0847-4
http://www.ncbi.nlm.nih.gov/pubmed/33564324
http://doi.org/10.3390/su122410680
http://doi.org/10.1016/j.chieco.2018.11.007
http://doi.org/10.1016/j.jclepro.2020.124690
http://doi.org/10.1080/20964129.2020.1766380

	Introduction 
	Literature Review 
	Materials and Methods 
	The Analysis Framework: Factors Affecting International Grain Trade 
	Complex Network Analysis Method 
	Constructing the Global Grain Trade Network 
	Node Degree and Distribution of Node Degree 
	Core-Peripheral Analysis 

	The Quadratic Assignment Procedure (QAP) Model 
	Data Sources and Preparation 

	Grain Network Topology 
	Overall Network Characteristics 
	The Global Grain Network Has Scale-Free Properties 
	The Global Grain Network Presents a Significant “Core-Periphery” Structure 

	Node Features 
	Heterogeneity of the Out-Degree Nodes 
	Heterogeneity of In-Degree Nodes 


	Driving Factor for the Evolution of the Global Grain Networks 
	Results of QAP Model Regression 
	Robustness Test 

	Conclusions 
	References

