Assessment of Non-Conventional Irrigation Water in Greenhouse Cucumber (Cucumis sativus) Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Water Analysis
2.3. Growing Substrate Analysis
2.4. Leaf and Fruit Analysis
2.5. Fruit Yield and Quality Analysis
2.6. Statistical Analysis
3. Results
3.1. Availability of Essential Elements and Heavy Metals in Irrigation Water Resources
3.2. Concentrations of Macro–Micro and Heavy Metal Elements Available in the Compost When Treated with Different Irrigation Water Resources
3.3. Accumulation of Essential Minerals and Heavy Metals in Plant Leaves
3.4. Accumulation of Essential Minerals and Heavy Metals in Cucumber Fruit
3.5. Effect of Irrigation Water on Fruit Production and Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becerra-Castro, C.; Lopes, A.; Vaz-Moreira, I.; Silva, M.E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Bixio, D.; Thoeye, C.; De Koning, J.; Joksimovic, D.; Savic, D.; Wintgens, T.; Melin, T. Wastewater reuse in Europe. Desalination 2006, 187, 89–101. [Google Scholar] [CrossRef]
- UNDESA. International Decade for Action ‘WATER FOR LIFE’ 2005–2015. 2014. Available online: https://www.un.org/waterforlifedecade/ (accessed on 30 September 2021).
- FAO. Growing More Food—Using less water. In Proceedings of the Fifth World Water Forum, Istanbul, Turkey, 16–22 March 2009. Available online: https://www.fao.org/land-water/news-archive/news-detail/en/c/267311/ (accessed on 30 September 2021).
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Sgroi, M.; Vagliasindi, F.G.; Roccaro, P. Feasibility, sustainability and circular economy concepts in water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 20–25. [Google Scholar] [CrossRef]
- Alcalde-Sanz, L.; Gawlik, B. Minimum Quality Requirements for Water Reuse in Agricultural Irrigation and Aquifer Recharge. Towards a Legal Instrument on Water Reuse at EU Level. 2017. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC109291/jrc109291_online_08022018.pdf (accessed on 30 September 2021).
- Maaß, O.; Grundmann, P. Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany). Sustainability 2018, 10, 1125. [Google Scholar] [CrossRef] [Green Version]
- Hanjra, M.A.; Blackwell, J.; Carr, G.; Zhang, F.; Jackson, T.M. Wastewater irrigation and environmental health: Implications for water governance and public policy. Int. J. Hyg. Environ. Health 2012, 215, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Al-Rashed, M.F.; Sherif, M.M. Water Resources in the GCC Countries: An Overview. Water Resour. Manag. 2000, 14, 59–75. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Mazahreh, N. Changes in Soil Fertility Parameters in Response to Irrigation of Forage Crops with Secondary Treated Wastewater. Commun. Soil Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar] [CrossRef]
- Hussain, A.; Priyadarshi, M.; Dubey, S. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl. Water Sci. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Woldetsadik, D.; Drechsel, P.; Keraita, B.; Itanna, F.; Erko, B.; Gebrekidan, H. Microbiological quality of lettuce (Lactuca sativa) irrigated with wastewater in Addis Ababa, Ethiopia and effect of green salads washing methods. Int. J. Food Contam. 2017, 4, 49. [Google Scholar] [CrossRef] [Green Version]
- Lonigro, A.; Rubino, P.; Lacasella, V.; Montemurro, N. Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters. Agric. Water Manag. 2016, 174, 66–73. [Google Scholar] [CrossRef]
- Rusan, M.J.M.; Hinnawi, S.; Rousan, L. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Gupta, S.; Satpati, S.; Nayek, S.; Garai, D. Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environ. Monit. Assess. 2010, 165, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, S.-H.; Najafi, P.; Amini, H. Assessment of Change in Soil Water Content Properties Irrigated with Industrial Sugar Beet Wastewater. Pak. J. Biol. Sci. 2007, 10, 1649–1654. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Wang, S.-W.; Kim, H.; Pan, S.-Y.; Fan, C.; Lin, Y.J. Non-conventional water reuse in agriculture: A circular water economy. Water Res. 2021, 199, 117193. [Google Scholar] [CrossRef]
- Shehata, H.S.; Galal, T.M. Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J. Consum. Prot. Food Saf. 2020, 15, 205–217. [Google Scholar] [CrossRef]
- Sharma, R.K.; Agrawal, M.; Marshall, F. Heavy Metal Contamination in Vegetables Grown in Wastewater Irrigated Areas of Varanasi, India. Bull. Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Ricolfi, L.; Barbieri, M.; Muteto, P.V.; Nigro, A.; Sappa, G.; Vitale, S. Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environ. Geochem. Health 2020, 42, 2733–2745. [Google Scholar] [CrossRef]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Muchuweti, M.; Birkett, J.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.; Lester, J. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agric. Ecosyst. Environ. 2006, 112, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Avci, H. Trace metals in vegetables grown with municipal and industrial wastewaters. Toxicol. Environ. Chem. 2012, 94, 1125–1143. [Google Scholar] [CrossRef]
- Al-Nakshabandi, G.; Saqqar, M.; Shatanawi, M.; Fayyad, M.; Al-Horani, H. Some environmental problems associated with the use of treated wastewater for irrigation in Jordan. Agric. Water Manag. 1997, 34, 81–94. [Google Scholar] [CrossRef]
- Mojiri, A.; Aziz, H.A.; Aziz, S.Q.; Gholami, A.; Aboutorab, M. Impact of Urban Wastewater on Soil Properties and Lepidium sativum in an Arid Region. Int. J. Sci. Res. Environ. Sci. 2013, 1, 7–15. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Bañón, S.; Miralles, J.; Ochoa, J.; Franco, J.; Sánchez-Blanco, M. Effects of diluted and undiluted treated wastewater on the growth, physiological aspects and visual quality of potted lantana and polygala plants. Sci. Hortic. 2011, 129, 869–876. [Google Scholar] [CrossRef]
- Rengel, Z.; Bose, J.; Chen, Q.; Tripathi, B.N. Magnesium alleviates plant toxicity of aluminium and heavy metals. Crop. Pasture Sci. 2015, 66, 1298–1307. [Google Scholar] [CrossRef]
- Cole, J.C.; Smith, M.W.; Penn, C.J.; Cheary, B.S.; Conaghan, K.J. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hortic. 2016, 211, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Hajihashemi, S.; Mbarki, S.; Skalicky, M.; Noedoost, F.; Raeisi, M.; Brestic, M. Effect of Wastewater Irrigation on Photosynthesis, Growth, and Anatomical Features of Two Wheat Cultivars (Triticum aestivum L.). Water 2020, 12, 607. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Zhang, Q.; Ma, Z.-B.; Wang, X.-M.; Chen, H.; Wang, J.-J. Fractionation and mobility risks of heavy metals and metalloids in wastewater-irrigated agricultural soils from greenhouses and fields in Gansu, China. Geoderma 2018, 328, 1–9. [Google Scholar] [CrossRef]
- Taghipour, M.; Jalali, M. Impact of some industrial solid wastes on the growth and heavy metal uptake of cucumber (Cucumis sativus L.) under salinity stress. Ecotoxicol. Environ. Saf. 2019, 182, 109347. [Google Scholar] [CrossRef]
- Taalab, A.S.; Ageeb, G.W.; Siam, H.S.; Mahmoud, S.A. Some Characteristics of Calcareous soils. A review. Middle East J. 2019, 8, 96–105. [Google Scholar]
- Santos, F.M.; Pires, J.C. Nutrient recovery from wastewaters by microalgae and its potential application as bio-char. Bioresour. Technol. 2018, 267, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Jogawat, A. Osmolytes and their Role in Abiotic Stress Tolerance in Plants. Molecular Plant Abiotic Stress 2019, 91–104. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Paranychianakis, N.; Chartzoulakis, K. Irrigation of Mediterranean crops with saline water: From physiology to management practices. Agric. Ecosyst. Environ. 2005, 106, 171–187. [Google Scholar] [CrossRef]
- Cherfi, A.; Achour, M.; Cherfi, M.; Otmani, S.; Morsli, A. Health risk assessment of heavy metals through consumption of vegetables irrigated with reclaimed urban wastewater in Algeria. Process. Saf. Environ. Prot. 2015, 98, 245–252. [Google Scholar] [CrossRef]
- Gabr, M. Wastewater Reuse Standards for Agriculture Irrigation in Egypt. 2019. Available online: https://www.researchgate.net/profile/Mohamed-Gabr-7/publication/333676905_WASTEWATER_REUSE_STANDARDS_FOR_AGRICULTURE_IRRIGATION_IN_EGYPT/links/5cfe991d4585157d15a1f2f3/WASTEWATER-REUSE-STANDARDS-FOR-AGRICULTURE-IRRIGATION-IN-EGYPT.pdf (accessed on 30 September 2021).
- MEWR. Sultanate of Oman on the Conservation of the Environment and Prevention of Pollution. Regulations for Wastewater Re-Use and Discharge, Ministreial Decision 5/86 Dated 17th May, 1986. 1986; pp. 1–6. Available online: http://www.sustainableoman.com/wp-content/uploads/2016/05/MD-5-86.pdf (accessed on 30 September 2021).
- Shakir, E.; Zahraw, Z.; Al-Obaidy, A.H.M. Environmental and health risks associated with reuse of wastewater for irrigation. Egypt. J. Pet. 2017, 26, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Emongor, V.; Ramolemana, G. Treated sewage effluent (water) potential to be used for horticultural production in Botswana. Phys. Chem. Earth Parts A/B/C 2004, 29, 1101–1108. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med Sci. 2013, 18, 144–157. [Google Scholar]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. Dr. NTR Univ. Health Sci. 2015, 4, 75–85. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- Chaoua, S.; Boussaa, S.; El Gharmali, A.; Boumezzough, A. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 2019, 18, 429–436. [Google Scholar] [CrossRef]
- Hajar, E.W.I.; Bin Sulaiman, A.Z.; Sakinah, A.M. Assessment of Heavy Metals Tolerance in Leaves, Stems and Flowers of Stevia Rebaudiana Plant. Procedia Environ. Sci. 2014, 20, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, M.; Esringu, A.; Dursun, A.; Yildirim, E.; Turan, M.; Karaman, M.R.; Arjumend, T. Growth, yield, and calcium and boron uptake of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) asaffected by calcium and boron humate application in greenhouse conditions. Turk. J. Agric. For. 2015, 39, 613–632. [Google Scholar] [CrossRef]
- Ramírez-Pérez, L.J.; Morales-Díaz, A.B.; De Alba-Romenus, K.; González-Morales, S.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Determination of Micronutrient Accumulation in Greenhouse Cucumber Crop Using a Modeling Approach. Agronomy 2017, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Karley, A.J. Potassium. In Cell Biology of Metals and Nutrients; Springer: Berlin/Heidelberg, Germany, 2010; pp. 199–224. Available online: https://link.springer.com/book/10.1007/978-3-642-10613-2 (accessed on 30 September 2021).
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The Physiology of Potassium in Crop Production. Adv. Agron. 2014, 126, 203–233. [Google Scholar] [CrossRef]
- Farahat, E.; Linderholm, H.W. The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Sci. Total. Environ. 2015, 512–513, 1–7. [Google Scholar] [CrossRef]
- Xu, X.; Du, X.; Wang, F.; Sha, J.; Chen, Q.; Tian, G.; Zhu, Z.; Ge, S.; Jiang, Y. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. Front. Plant Sci. 2020, 11, 904. [Google Scholar] [CrossRef] [PubMed]
- ChitraMani, P.K. Evaluation of antimony induced biochemical shift in mustard. Plant Arch. 2020, 20, 3493–3498. [Google Scholar]
- Hafeez, B.; Khanif, Y.; Saleem, M. Role of zinc in plant nutrition—A review. J. Exp. Agric. Int. 2013, 374–391. [Google Scholar] [CrossRef]
- Sillanpaa, M. Micronutrient Assessment at the Country Level: An International Study; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1990. [Google Scholar]
- Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxidative Med. Cell. Longev. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.J.; Jan, M.T.; Farhatullah, N.; Khan, M.A.; Perveen, S.; Alam, S.; Jan, A. The effect of using waste water for tomato. Pak. J. Bot. 2011, 43, 1033–1044. [Google Scholar]
- Jahan, K.; Khatun, R.; Islam, M. Effects of wastewater irrigation on soil physico-chemical properties, growth and yield of tomato. Progress. Agric. 2020, 30, 352–359. [Google Scholar] [CrossRef]
- Verma, S.; Dubey, R.S. Effect of Cadmium on Soluble Sugars and Enzymes of their Metabolism in Rice. Biol. Plant. 2001, 44, 117–124. [Google Scholar] [CrossRef]
- Petousi, I.; Daskalakis, G.; Fountoulakis, M.; Lydakis, D.; Fletcher, L.; Stentiford, E.; Manios, T. Effects of treated wastewater irrigation on the establishment of young grapevines. Sci. Total. Environ. 2019, 658, 485–492. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M. Reply to Ridoutt and Huang: From water footprint assessment to policy. Proc. Natl. Acad. Sci. USA 2012, 109, E1425. [Google Scholar] [CrossRef] [Green Version]
- Cooper, P. Historical aspect of wastewater treatment. In Decentralised Sanitation Reuse: Concepts, System and Implementation; IWA Publishing: London, UK, 2001; pp. 11–38. [Google Scholar]
- Ibekwe, A.M.; Gonzalez-Rubio, A.; Suarez, D.L. Impact of treated wastewater for irrigatioon soil microbial communities. Sci. Total Environ. 2018, 622–623, 1603–1610. [Google Scholar] [CrossRef] [PubMed]
- Maaß, O.; Grundmann, P. Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany). Resour. Conserv. Recycl. 2016, 107, 195–211. [Google Scholar] [CrossRef]
Freshwater | Greywater | Dairy Water | Wastewater | |
---|---|---|---|---|
Macroelements | ||||
Na (mg/L) | 320 ± 100 c | 530 ± 90 c | 1500 ± 80 b | 5370 ± 90 a |
K (mg/L) | 190 ± 20 b | 310 ± 90 b | 1430 ± 80 a | 380 ± 50 b |
Ca (mg/L) | 550 ± 100 b | 100 ± 40 c | 670 ± 90 b | 1960 ± 80 a |
Mg (mg/L) | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 590 ± 20 b | 940 ± 20 a |
Microelements | ||||
Zn (mg/L) | 6.40 ± 0.4 d | 9.18 ± 0.9 b | 9.89 ± 0.9 a | 7.07 ± 0.2 c |
Fe (mg/L) | 2.95 ± 0.1 d | 12.97 ± 0.2 b | 17.63 ± 0.3 a | 4.85 ± 0.1 c |
Mn (mg/L) | 0.20 ± 0.09 c | 0.61 ± 0.10 ab | 0.81 ± 0.08 a | 0.40 ± 0.10 c |
Heavy metals | ||||
Cu (mg/L) | 1.60 ± 0.18 c | 3.16 ± 0.06 a | 1.96 ± 0.01 b | 1.85 ± 0.10 bc |
Ba (mg/L) | 4.62 ± 0.08 a | 3.71 ± 0.20 b | 3.76 ± 0.09 b | 5.00 ± 0.20 a |
Cr (mg/L) | 0.40 ± 0.09 b | 1.46 ± 0.10 a | 1.33 ± 0.18 a | 0.40 ± 0.04 b |
Pb (mg/L) | 0.70 ± 0.01 c | 4.25 ± 0.10 a | 0.25 ± 0.02 d | 1.20 ± 0.20 b |
Cd (mg/L) | 0.05 ± 0.01 a | 0.08 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.02 a |
Freshwater | Greywater | Dairy Water | Wastewater | |
---|---|---|---|---|
Macroelements | ||||
Na (mg/L) | 430 ± 40 b | 450 ± 50 b | 530 ± 110 b | 690 ± 30 a |
K (mg/L) | 770 ± 20 a | 780 ± 30 a | 800 ± 50 a | 780 ± 100 a |
Ca (mg/L) | 17,180 ± 170 c | 17,070 ± 120 c | 17,870 ± 100 b | 18,400 ± 150 a |
Mg (mg/L) | 1390 ± 30 b | 1370 ± 100 b | 1640 ± 100 a | 1710 ± 100 a |
Microelements | ||||
Zn (mg/L) | 41.85 ± 5 d | 62.00 ± 0.89 b | 91.30 ± 20 a | 51.55 ± 17 c |
Fe (mg/L) | 727.00 ± 100 b | 746.67 ± 40 b | 862.00 ± 30 a | 728.67 ± 89 b |
Mn (mg/L) | 38.82 ± 0.05 d | 41.96 ± 0.04 c | 52.57 ± 0.03 a | 42.65 ± 0.09 b |
Heavy metals | ||||
Cu (mg/L) | 16.26 ± 0.45 d | 172.0 ± 17 a | 59.77 ± 0.12 b | 20.77 ± 0.10 c |
Ba (mg/L) | 8.25 ± 0.10 a | 7.71 ± 0.20 b | 8.11 ± 0.11 a | 8.15 ± 0.09 a |
Cr (mg/L) | 11.25 ± 0.22 a | 11.53 ± 0.20 a | 7.82 ± 0.3 b | 3.63 ± 0.27 c |
Pb (mg/L) | 7.83 ± 0.13 b | 12.22 ± 0.18 a | 2.93 ± 0.03 d | 7.46 ± 0.8 c |
Cd (mg/L) | 1.31 ± 0.10 b | 1.82 ± 0.10 a | 1.01 ± 0.09 c | 0.73 ± 0.09 d |
Freshwater | Greywater | Dairy Water | Wastewater | |
---|---|---|---|---|
Macroelements | ||||
Na (mg/L) | 710 ± 20 c | 690 ± 10 c | 1220 ± 90 b | 1940 ±80 a |
K (mg/L) | 6730 ± 160 c | 7550 ± 190 b | 9470 ± 120 a | 6130 ± 90 d |
Ca (mg/L) | 42,830 ± 1000 c | 44,830 ± 900 a | 45,080 ± 800 a | 44,120 ± 700 b |
Mg (mg/L) | 5460 ± 110 c | 5430 ± 70 c | 6580 ± 100 a | 6030 ± 80 b |
Microelements | ||||
Zn (mg/L) | 38.05 ± 0.10 c | 44.58 ± 0.8 b | 48.37 ± 0.9 a | 34.68 ± 0.78 d |
Fe (mg/L) | 78.80 ± 1.78 b | 50.56 ± 1.09 c | 95.00 ± 3.00 a | 76.18 ± 0.9 b |
Mn (mg/L) | 23.70 ± 1.80 b | 31.10 ± 0.9 b | 41.00 ± 0.10 a | 31.16 ± 0.88 b |
Heavy metals | ||||
Cu (mg/L) | 5.07 ± 0.08 b | 5.38 ± 0.12 a | 4.06 ± 0.08 d | 4.63 ± 0.09 c |
Ba (mg/L) | 11.85 ± 1.79 a | 7.40 ± 0.40 b | 8.38 ± 0.08 b | 6.72 ± 0.09 b |
Cr (mg/L) | 4.46 ± 0.04 b | 5.28 ± 0.10 a | 3.86 ± 0.12 c | 4.28 ± 0.06 b |
Pb (mg/L) | 2.11 ± 0.09 c | 4.34 ± 0.020 a | 1.81 ± 0.09 c | 3.13 ± 0.08 b |
Cd (mg/L) | 0.46 ± 0.04 c | 0.78 ± 0.03 ab | 0.73 ± 0.02 b | 0.81 ± 0.01 a |
Freshwater | Greywater | Dairy Water | Wastewater | |
---|---|---|---|---|
Macroelements | ||||
Na (mg/L) | 620 ± 10 c | 660 ± 20 bc | 790 ± 40 b | 1360 ± 80 a |
K (mg/L) | 14,330 ± 100 b | 13,770 ± 160 c | 16,780 ± 180 a | 12,530 ± 190 d |
Ca (mg/L) | 1400 ± 90 c | 1920 ± 30 b | 2420 ± 17 a | 1420 ± 50 c |
Mg (mg/L) | 1090 ± 40 c | 1260 ± 10 bc | 1550 ± 90 a | 1370 ± 10 ab |
Microelements | ||||
Zn (mg/L) | 24.11 ± 0.11 c | 25.27 ± 0.07 b | 28.13 ± 0.12 a | 20.18 ± 0.05 d |
Fe (mg/L) | 33.88 ± 0.06 c | 61.20 ± 3.58 b | 67.96 ± 0.25 a | 33.90 ± 0.11 c |
Mn (mg/L) | 10.35 ± 0.20 c | 13.95 ± 0.27 b | 15.68 ± 0.18 a | 8.91 ± 0.04 d |
Heavy metals | ||||
Cu (mg/L) | 5.31 ± 0.18 a | 5.68 ± 0.16 a | 4.67 ± 0.20 b | 5.26 ± 0.08 a |
Ba (mg/L) | 2.25 ± 0.35 a | 2.62 ± 0.51 a | 0.71 ± 0.10 b | 2.81 ± 0.09 a |
Cr (mg/L) | 3.00 ± 0.08 b | 5.02 ± 0.02 a | 2.73 ± 0.03 c | 3.03 ± 0.03 b |
Pb (mg/L) | 0.86 ± 0.07 c | 1.80 ± 0.27 a | 1.15 ± 0.11 bc | 1.50 ± 0.09 ab |
Cd (mg/L) | 0.13 ± 0.18 b | 0.22 ± 0.02 a | 0.15 ± 0.03 b | 0.20 ± 0.02 a |
Parameters | Units | WHO | US-EPA | Oman | UAE | Jordan | Egypt | Algeria |
---|---|---|---|---|---|---|---|---|
Na | mg/L | 250 | 70 | 150 | 230 | - | ||
K | mg/L | 100 | - | 12 | - | - | ||
Ca | mg/L | 450 | - | - | 230 | - | ||
Mg | mg/L | 80 | 30 | 0.4 | 100 | - | ||
Zn | mg/L | 20 | 2 | 2 | 5 | 5 | 0.01 | 10 |
Fe | mg/L | 50 | 5 | 1 | 0.2 | 5 | 0.5 | - |
Mn | mg/L | 0.2 | 0.2 | 0.2 | - | 0.2 | 0.2 | - |
Cu | mg/L | 0.2 | 0.2 | 0.2 | 1 | 0.2 | 0.01 | 0.5 |
Cr | mg/L | 0.1 | 0.1 | 0.1 | 0.5 | 0.1 | 0.05 | 5 |
Pb | mg/L | 5 | 5 | 0.1 | 0.1 | 5 | 0.01 | 10 |
Cd | mg/L | 0.01 | 0.01 | 0.01 | 0.003 | 0.01 | 0.001 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.M.; Al-Haddabi, M.H.; Akram, M.T.; Khan, M.A.; Farooque, A.A.; Siddiqi, S.A. Assessment of Non-Conventional Irrigation Water in Greenhouse Cucumber (Cucumis sativus) Production. Sustainability 2022, 14, 257. https://doi.org/10.3390/su14010257
Khan MM, Al-Haddabi MH, Akram MT, Khan MA, Farooque AA, Siddiqi SA. Assessment of Non-Conventional Irrigation Water in Greenhouse Cucumber (Cucumis sativus) Production. Sustainability. 2022; 14(1):257. https://doi.org/10.3390/su14010257
Chicago/Turabian StyleKhan, Muhammad Mumtaz, Mansour Hamed Al-Haddabi, Muhammad Tahir Akram, Muhammad Azam Khan, Aitazaz A. Farooque, and Sajjad Ahmad Siddiqi. 2022. "Assessment of Non-Conventional Irrigation Water in Greenhouse Cucumber (Cucumis sativus) Production" Sustainability 14, no. 1: 257. https://doi.org/10.3390/su14010257
APA StyleKhan, M. M., Al-Haddabi, M. H., Akram, M. T., Khan, M. A., Farooque, A. A., & Siddiqi, S. A. (2022). Assessment of Non-Conventional Irrigation Water in Greenhouse Cucumber (Cucumis sativus) Production. Sustainability, 14(1), 257. https://doi.org/10.3390/su14010257