Effect of Compost and Titanium Dioxide Application on the Vegetative Yield and Essential Oil Composition of Coriander
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Soil and Compost Properties
2.2. Layout and Design of the Experiment
2.3. Extraction and Analysis of Basil Essential Oils
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Compost
3.2. Effect of Foliar Application of Titanium Dioxide
3.3. Interaction between Compost and Foliar Application of Titanium Dioxide
3.4. Essential Oil Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdou, M.H.; El-Sayed, A.A.; Ahmed, E.T.; Abdel Salam, A.A. Effect of compost, mineral NPK, effective microorganisms and some vitamin treatments on growth, fruit yield and essential oil content of coriander (Coriandrum sativum L.) plants. Sci. J. Flowers Ornam. Plants 2015, 2, 203–212. [Google Scholar] [CrossRef] [Green Version]
- López, P.A.; Widrlechner, M.P.; Simon, P.W.; Rai, S.; Boylston, T.D.; Isbell, T.A.; Bailey, T.B.; Gardner, C.A.; Wilson, L.A. Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm. Genet. Res.Crop Evol. 2008, 55, 247–275. [Google Scholar] [CrossRef] [Green Version]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S. Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods 2020, 9, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Snafi, A.E. A review on chemical constituents and pharmacological activities of Coriandrum sativum. IOSR J. Pharm. 2016, 6, 17–42. [Google Scholar] [CrossRef]
- Pathak Nimish, L.; Kasture Sanjay, B.; Bhatt Nayna, M.; Rathod Jaimik, D. Phytopharmacological properties of Coriander sativum as a potential medicinal tree: An overview. J. Appl. Pharmac. Sci. 2011, 1, 20–25. [Google Scholar]
- Momin, A.H.; Acharya, S.S.; Gajjar, A.V. Coriandrum sativum-review of advances in phytopharmacology. Intern. J. Pharmac. Sci. Res. 2012, 3, 1233–1239. [Google Scholar]
- Rajeshwari, C.; Shobha, R.; Andallu, B. Antihemolytic activity of various fractions of methanolic extract of coriander (Coriandrum sativum L.) leaves and seeds: A comparative study. Pak. J. Food Sci. 2012, 22, 1–6. [Google Scholar]
- Sreelatha, S.; Inbavalli, R. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan-induced diabetic rats. J. Food Sci. 2012, 77, T119–T123. [Google Scholar] [CrossRef] [PubMed]
- Esiyok, D.; Otles, S.; Akcicek, E. Herbs as a food source in Turkey. Asian Pac. J. Cancer Prev. 2004, 5, 334–339. [Google Scholar]
- Adugna, G. A review on impact of compost on soil properties, water use and crop productivity. Acad. Res. J. Agri. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- Lal, G.; Vashisth, T.; Mehta, R.; Ali, S. Studies on different organic modules for yield and quality of coriander (Coriandrum sativum L.). Intern. J. Seed Spices 2012, 2, 1–6. [Google Scholar]
- Carvajal, M.; Alcaraz, C. Why titanium is a beneficial element for plants. J. Plant Nutr. 1998, 21, 655–664. [Google Scholar] [CrossRef]
- Mohammad, M.D.A.; Abdul Kareem, A. Effect of foliar spray with nano titanium, zinc and bulk oxides in some biochemical and active substances of Moringa oleifera Lam. Plant Arch. 2019, 19, 221–227. [Google Scholar]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a beneficial element for crop production. Fron. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- Guenther, E. The production of essential oils. In The Essential Oils, 2nd ed.; Guenther, E., Ed.; Krieger Publishing Company: Malabar, FL, USA, 1972; Volume 1, pp. 87–226. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Santhosh, N.; Shankar, R.; Narendranath, R.; Srinivasan, K. Research of production and growth of coriander in various seasons using K-means algorithm. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 518–521. [Google Scholar]
- Darzi, M.T. Effects of organic fertilizer and azotobacter and azospirillum bacteria on concentration and composition of essential oil of Coriander (Coriandrum sativum L). Int. J. Agric. Biosyst. Eng. 2015, 9, 1. [Google Scholar]
- Said-Al Ahl, H.A.; Khalid, K.A. Response of Coriandrum sativum L. essential oil to organic fertilizers. JEOBP 2010, 13, 37–44. [Google Scholar]
- Abd EL-Kafie, O.M.; Ghaly, N.G.; El-Banna, H.Y.; Hassan, A. Effect of Fertilization and foliar applicaion treatments on coriander plant (Coriandrum sativum L.). J. Plant Prod. 2020, 11, 1375–1382. [Google Scholar] [CrossRef]
- Mehta, R.; Anwer, M.; Malhotra, S.; Lal, G.; Aishwath, O.; Meena, S.; Kant, K.; Khan, M. Growth and yield of coriander (Coriandrum sativum L)) as affected by sheep manure, vermi-compost and bio-fertilizer. Intern.J. Seed Spices 2011, 1, 22–28. [Google Scholar]
- Kumar, R.; Singh, M.; Kumar, V.; Verma, R.; Kushwah, J.; Pal, M. Effect of nutrient supplementation through organic sources on growth, yield and quality of coriander (Coriandrum sativum L.). Ind. J. Agric. Res. 2015, 49, 278–281. [Google Scholar] [CrossRef]
- Vedpathak, M.M.; Chavan, B.L. Effects of organic and chemical fertilizers on growth of coriander crop (Coriandrum Sativum L). Intern. J. Sci. Res. Dev. 2016, 4, 631–634. [Google Scholar]
- Vadiraj, B.A.; Siddagangaiah, D.; Potty, S.N. Response of coriander (Coriandrum sativum L.) cultivars to graded levels of vermicompost. J. Spices Aromat. Crops 1998, 7, 141–143. [Google Scholar]
- Abd El-Azim, W.M. Effect of compost and number of cuttings on productivity of Coriandrum sativum L. under Sinai conditions. Egypt. J. Desert Res. 2016, 66, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Shirkhodaei, M.; Darzi, M.T.; Haj, S.H.M.R. Influence of vermicompost and biostimulant on the growth and biomass of coriander (Coriandrum sativum L.). Intern. J. Adv. Biol. Biomed. Res. 2014, 2, 706–714. [Google Scholar]
- Aishwath, O.; Mehta, R.; Lal, G. Effects of on-farm composted seed spices residues on coriander, nutritional parameters and seasonal carbon offset by the crop and soil. Intern. J. Seed Spices 2019, 9, 91–98. [Google Scholar]
- Sharangi, A.; Roychowdhury, A. Phenology and yield of coriander as influenced by sowing dates and irrigation. Bioscan 2014, 9, 1513–1520. [Google Scholar]
- Khalid, K.A. Effect of NP and foliar spray on growth and chemical compositions of some medicinal Apiaceae plants grow in arid regions in Egypt. J. Soil Sci. Plant Nutr. 2012, 12, 581–596. [Google Scholar] [CrossRef]
- Sodré, A.C.B.; Haber, L.L.; Luz, J.M.Q.; Marques, M.O.; Rodrigues, C.R. Organic and mineral fertilization in lemon balm. Hortic. Bras. 2013, 31, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, P.; Singh, M.; Rao, A.S. Organic farming: Its relevance to the Indian context. Curr. Sci. 2005, 88, 561–568. [Google Scholar]
- Carrubba, A.; Ascolillo, V. Effects of organic and conventional N-fertilization on quality traits in coriander (Coriandrum sativum L.). Acta Hortic. 2009, 826, 35–42. [Google Scholar] [CrossRef]
- Khater, M.S. Effect of titanium nanoparticles (TiO2) on growth, yield and chemical constituents of coriander plants. Arab J. Nucl. Sci. Appl. 2015, 48, 187–194. [Google Scholar]
- Sayyadizadeh, M.; Bazrgar, A.B.; Bakhtiyari, S. Evaluation of the effects of titanium dioxide nano particles on some morphological traits and oil content of lemon balm (Melissa officinalis L.) under lead stress. J. Sci. Eng. Res. 2016, 3, 532–538. [Google Scholar]
- Fazeli-Nasab, B.; Sirousmehr, A.-R.; Azad, H. Effect of titanium dioxide nanoparticles on essential oil quantity and quality in Thymus vulgaris under water deficit. J. Med. Plants By-Prod. 2018, 7, 125–133. [Google Scholar]
- Shabbir, A.; Khan, M.; Ahmad, B.; Sadiq, Y.; Jaleel, H.; Uddin, M. Efficacy of TiO2 nanoparticles in enhancing the photosynthesis, essential oil and khusimol biosynthesis in Vetiveria zizanioides L. Nash. Photosynthetica 2019, 57, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Khater, M. Effect of TIO2 nanoparticles spraying on fennel plant. J. Plant Prod. 2016, 7, 29–34. [Google Scholar] [CrossRef]
- Ahmad, B.; Shabbir, A.; Jaleel, H.; Khan, M.M.A.; Sadiq, Y. Efficacy of titanium dioxide nanoparticles in modulating photosynthesis, peltate glandular trichomes and essential oil production and quality in Mentha piperita L. Curr. Plant Biol. 2018, 13, 6–15. [Google Scholar] [CrossRef]
- Missaoui, T.; Smiri, M.; Chmingui, H.; Hafiane, A. Effects of nanosized titanium dioxide on the photosynthetic metabolism of fenugreek (Trigonella foenum-graecum L.). Comptes Rendus Biol. 2017, 340, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Rashed, N.M.; Darwesh, R.K. A comparative study on the effect of microclimate on planting date and water requirements under different nitrogen sources on coriander (Coriandrum sativum L.). Ann. Agric. Sci. 2015, 60, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Nurzyńska-Wierdak, R. Does mineral fertilization modify essential oil content and chemical composition in medicinal plants. Acta Sci. Pol. Hortorum Cultus 2013, 12, 3–16. [Google Scholar]
- Singh, M. Effect of vermicompost and chemical fertilizers on growth, yield and quality of coriander (Coriandrum sativum L.) in a semi-arid tropical climate. J. Spices Aromat. Crops 2012, 20, 30–33. [Google Scholar]
- Özyazici, G. Influence of organic and inorganic fertilizers on coriander (Coriandrum sativum L.) agronomic traits, essential oil and components under semi-arid climate. Agronomy 2021, 11, 1427. [Google Scholar] [CrossRef]
Treatments | Plant Height (cm) | Umbels No. (1000/ha) | Seed Yield (kg/ha) | Oil Yield (%) | Oil Yield (L/ha) |
---|---|---|---|---|---|
C0 | 56.73 | 966.66 | 1335.15 | 0.37 | 5.01 |
C1 | 86.17 | 1494.43 | 2334.26 | 0.35 | 8.05 |
C2 | 98.27 | 1694.43 | 2757.20 | 0.30 | 7.87 |
LSD 5% | 4.87 | 174.93 | 190.62 | 0.0113 | 0.8625 |
T0 | 64.72 | 1170.36 | 1575.91 | 0.36 | 5.78 |
T1 | 80.08 | 1429.62 | 2113.16 | 0.38 | 8.11 |
T2 | 84.41 | 1451.84 | 2289.98 | 0.30 | 6.33 |
T3 | 92.35 | 1488.88 | 2589.75 | 0.31 | 7.69 |
LSD 5% | 2.96 | 96.15 | 130.27 | 0.0099 | 0.6016 |
C0T0 | 42.23 | 777.77 | 842.21 | 0.33 | 2.78 |
C0T1 | 54.27 | 1022.21 | 1231.54 | 0.34 | 4.19 |
C0T2 | 62.23 | 1066.66 | 1537.98 | 0.4 | 6.15 |
C0T3 | 68.2 | 999.99 | 1728.87 | 0.4 | 6.92 |
C1T0 | 74.11 | 1288.88 | 1939.98 | 0.34 | 6.60 |
C1T1 | 86.38 | 1511.1 | 2139.31 | 0.4 | 8.56 |
C1T2 | 88.04 | 1555.54 | 2330.87 | 0.28 | 6.53 |
C1T3 | 96.13 | 1622.21 | 2926.86 | 0.36 | 10.54 |
C2T0 | 77.81 | 1444.43 | 1945.54 | 0.41 | 7.98 |
C2T1 | 99.58 | 1755.54 | 2968.64 | 0.39 | 11.58 |
C2T2 | 102.96 | 1733.32 | 3001.08 | 0.21 | 6.30 |
C2T3 | 112.73 | 1844.43 | 3113.53 | 0.18 | 5.60 |
LSD 5% | 5.13 | 140.35 | 225.64 | 0.017 | 1.042 |
Treatments | Plant Height (cm) | Umbels No. (1000/ha) | Seed Yield (kg/ha) | Oil Yield (%) | Oil Yield (L/ha) |
---|---|---|---|---|---|
C0 | 62.51 | 1083.32 | 1575.21 | 0.38 | 6.05 |
C1 | 90.48 | 1583.32 | 2585.81 | 0.34 | 8.82 |
C2 | 103.67 | 2049.98 | 2956.14 | 0.29 | 8.27 |
LSD 5% | 4.54 | 59.73 | 51.46 | 0.0507 | 1.154 |
T0 | 68.28 | 1244.43 | 1891.91 | 0.36 | 6.87 |
T1 | 85.49 | 1548.13 | 2283.24 | 0.38 | 8.70 |
T2 | 91.77 | 1651.84 | 2568.71 | 0.29 | 7.07 |
T3 | 96.69 | 1844.43 | 2745.68 | 0.31 | 8.20 |
LSD 5% | 3.64 | 95.3 | 78.85 | 0.0099 | 3.68 |
C0T0 | 45.21 | 866.66 | 1051.33 | 0.35 | 4.85 |
C0T1 | 62.59 | 1066.66 | 1385.32 | 0.35 | 7.27 |
C0T2 | 69.52 | 1155.54 | 1818.65 | 0.4 | 8.39 |
C0T3 | 72.74 | 1244.43 | 2045.54 | 0.41 | 7.43 |
C1T0 | 77.66 | 1333.32 | 2185.09 | 0.34 | 9.79 |
C1T1 | 90.18 | 1577.76 | 2446.65 | 0.4 | 7.96 |
C1T2 | 93.83 | 1622.21 | 2744.64 | 0.29 | 10.09 |
C1T3 | 100.26 | 1799.98 | 2966.86 | 0.34 | 9.51 |
C2T0 | 81.98 | 1533.32 | 2439.31 | 0.39 | 11.47 |
C2T1 | 103.7 | 1999.98 | 3017.75 | 0.38 | 5.97 |
C2T2 | 111.95 | 2177.76 | 3142.86 | 0.19 | 6.13 |
C2T3 | 117.06 | 2488.86 | 3224.63 | 0.19 | 3.68 |
LSD 5% | 9.12 | 165.07 | 136.58 | 0.017 | 0.713 |
No. | Compound | Rt | Titanium Dioxide | Compost | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C0T0 | C0T1 | C0T2 | C0T3 | C1T0 | C1T1 | |||||||||
% | SD | % | SD | % | SD | % | SD | % | SD | % | SD | |||
1 | Sabinene | 3.33 | 0.12 | 0.01 | 0.13 | 0.01 | 0.10 | 0.01 | 0.13 | 0.01 | 0.13 | 0.01 | 0.09 | 0.01 |
2 | β-Pinene | 3.42 | 0.14 | 0.01 | 0.14 | 0.01 | 0.13 | 0.01 | 0.16 | 0.01 | 0.16 | 0.01 | 0.11 | 0.01 |
3 | β-Myrcene | 3.65 | 0.18 | 0.02 | 0.18 | 0.02 | 0.15 | 0.02 | 0.18 | 0.02 | 0.18 | 0.02 | 0.13 | 0.02 |
4 | p-Cymene | 4.49 | 4.14 | 0.20 | 4.72 | 0.30 | 3.79 | 0.20 | 3.45 | 0.01 | 4.33 | 0.10 | 3.84 | 0.30 |
5 | Eucalyptol | 4.68 | 0.03 | --- | 0.03 | --- | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.03 | --- |
6 | γ-Terpinene | 5.29 | 2.04 | 0.10 | 2.05 | 0.20 | 1.47 | 0.10 | 1.97 | 0.10 | 1.97 | 0.1 | 1.51 | 0.2 |
7 | Linalool oxide B | 5.85 | 0.30 | 0.01 | 0.4 | 0.10 | 0.31 | 0.01 | 0.28 | 0.01 | 0.28 | 0.01 | 0.24 | 0.10 |
8 | Terpinolene | 6.05 | 0.08 | 0.02 | 0.08 | 0.02 | 0.07 | 0.02 | 0.08 | 0.02 | 0.08 | 0.02 | 0.06 | 0.02 |
9 | Linalool oxide A | 6.35 | 0.20 | 0.01 | 0.26 | 0.01 | 0.33 | 0.01 | 0.54 | 0.01 | 0.54 | 0.01 | 0.73 | 0.01 |
10 | Fenchone | 6.41 | 0.19 | 0.01 | 0.22 | 0.01 | --- | --- | --- | --- | --- | --- | --- | --- |
11 | L-Linalool | 6.88 | 85.54 | 0.50 | 82.98 | 0.40 | 87.61 | 0.30 | 84.33 | 0.25 | 83.74 | 0.50 | 77.34 | 0.70 |
12 | (+)-2-Bornanone | 8.41 | 3.58 | 0.20 | 3.55 | 0.12 | 4.29 | 0.12 | 3.22 | 0.20 | 3.32 | 0.12 | 2.78 | 0.20 |
13 | Citronellal | 8.63 | --- | --- | 0.13 | 0.02 | --- | --- | 0.04 | 0.01 | 0.04 | 0.02 | 0.03 | 0.02 |
14 | endo-Borneol | 9.39 | 0.31 | 0.01 | 0.76 | 0.01 | 0.26 | 0.01 | 0.49 | 0.01 | 0.49 | 0.10 | 0.32 | 0.01 |
15 | Terpinene-4-ol | 9.63 | 0.13 | 0.01 | 0.17 | 0.01 | 0.10 | 0.01 | 0.12 | 0.01 | 0.12 | 0.01 | 0.12 | 0.01 |
16 | Estragole | 10.39 | 1.20 | 0.10 | 2.46 | 0.10 | 0.70 | 0.10 | 2.81 | 0.03 | 2.91 | 0.10 | 9.84 | 0.10 |
17 | β-Citronellol | 11.85 | --- | --- | 0.09 | 0.10 | --- | --- | --- | --- | --- | --- | --- | --- |
18 | (−)-Carvone | 12.38 | 0.91 | 0.20 | 0.59 | 0.20 | --- | --- | 0.75 | 0.15 | 0.75 | 0.20 | 2.38 | 0.20 |
19 | Grandlure II | 12.85 | --- | --- | 0.11 | 0.01 | 0.10 | 0.01 | 0.08 | 0.01 | 0.08 | 0.01 | --- | --- |
20 | Myrtenyl acetate | 15.25 | 0.04 | 0.01 | 0.05 | 0.01 | --- | --- | 0.04 | 0.01 | 0.04 | 0.01 | --- | --- |
21 | Geranyl acetate | 17.72 | 0.68 | 0.10 | 0.79 | 0.01 | --- | --- | 0.76 | 0.01 | 0.76 | 0.01 | 0.38 | 0.01 |
22 | Dillapiole | 27.73 | 0.21 | 0.01 | 0.09 | 0.01 | 0.56 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | 0.07 | 0.01 |
Monoterpene hydrocarbons | 6.70 | 7.30 | 5.71 | 5.97 | 6.85 | 5.74 | 6.70 | |||||||
Oxygenated monoterpenes | 93.32 | 92.68 | 94.28 | 93.53 | 93.14 | 94.26 | 93.32 | |||||||
Total | 99.81 | 99.89 | 99.43 | 99.45 | 99.94 | 99.93 | 99.81 |
No. | Compound | Rt | Titanium Dioxide + Compost | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1T2 | C1T3 | C2T0 | C2T1 | C2T2 | C2T3 | |||||||||
% | SD | % | SD | % | SD | % | SD | % | SD | % | SD | |||
1 | Sabinene | 3.33 | 0.11 | 0.01 | 0.11 | 0.01 | 0.08 | 0.01 | 0.12 | 0.01 | 0.13 | 0.01 | 0.12 | 0.01 |
2 | β-Pinene | 3.42 | 0.13 | 0.01 | 0.13 | 0.01 | 0.10 | 0.01 | 0.14 | 0.01 | 0.14 | 0.01 | 0.14 | 0.01 |
3 | β-Myrcene | 3.65 | 0.19 | 0.02 | 0.19 | 0.02 | 0.11 | 0.02 | 0.19 | 0.02 | 0.18 | 0.02 | 0.19 | 0.02 |
4 | p-Cymene | 4.49 | 4.28 | 0.30 | 4.09 | 0.30 | 3.32 | 0.30 | 2.88 | 0.20 | 2.75 | 0.10 | 4.98 | 0.10 |
5 | Eucalyptol | 4.68 | 0.05 | --- | 0.05 | --- | --- | --- | 0.04 | --- | 0.03 | 0.01 | 0.04 | 0.01 |
6 | γ-Terpinene | 5.29 | 1.20 | 0.2 | 1.89 | 0.20 | 1.23 | 0.20 | 1.35 | 0.20 | 1.52 | 0.10 | 1.88 | 0.10 |
7 | Linalool oxide B | 5.85 | 0.29 | 0.1 | 0.29 | 0.10 | 0.23 | 0.10 | 0.29 | 0.10 | 0.40 | 0.01 | 0.29 | 0.01 |
8 | Terpinolene | 6.05 | 0.09 | 0.02 | 0.09 | 0.02 | 0.05 | 0.02 | 0.08 | 0.02 | 0.08 | 0.02 | 0.08 | 0.02 |
9 | Linalool oxide A | 6.35 | 0.13 | 0.01 | 0.13 | 0.01 | 0.22 | 0.01 | 0.66 | 0.01 | 0.26 | 0.01 | 0.66 | 0.01 |
10 | Fenchone | 6.41 | 0.22 | 0.01 | 0.22 | 0.01 | --- | --- | --- | --- | 0.22 | 0.01 | --- | --- |
11 | L-Linalool | 6.88 | 83.41 | 0.60 | 82.91 | 0.60 | 87.44 | 0.8 | 81.24 | 0.70 | 79.1 | 0.4 | 77.06 | 0.4 |
12 | (+)-2-Bornanone | 8.41 | 3.09 | 0.12 | 3.59 | 0.12 | 3.31 | 0.12 | 1.67 | 0.12 | 4.55 | 0.12 | 2.68 | 0.12 |
13 | Citronellal | 8.63 | --- | --- | --- | --- | --- | --- | 0.03 | 0.02 | 0.13 | 0.02 | 0.03 | 0.02 |
14 | endo-Borneol | 9.39 | 0.65 | 0.01 | 0.65 | 0.01 | 0.2 | 0.01 | 0.37 | 0.01 | 0.76 | 0.01 | 0.37 | 0.01 |
15 | Terpinene-4-ol | 9.63 | 0.67 | 0.01 | 0.17 | 0.01 | 0.1 | 0.01 | 0.13 | 0.01 | 0.17 | 0.01 | 0.13 | 0.01 |
16 | Estragole | 10.39 | 3.02 | 0.20 | 2.52 | 0.20 | 2.24 | 0.10 | 7.76 | 0.10 | 7.46 | 0.10 | 8.76 | 0.10 |
17 | β-Citronellol | 11.85 | --- | --- | --- | --- | --- | --- | --- | --- | 0.09 | 0.10 | --- | --- |
18 | (−)-Carvone | 12.38 | 0.65 | 0.20 | 0.65 | 0.20 | --- | --- | 1.92 | 0.20 | 0.59 | 0.20 | 1.92 | 0.20 |
19 | Grandlure II | 12.85 | 0.42 | 0.01 | 0.42 | 0.01 | 0.2 | 0.01 | --- | --- | 0.11 | 0.01 | --- | --- |
20 | Myrtenyl acetate | 15.25 | --- | --- | --- | --- | --- | --- | 0.03 | 0.01 | 0.05 | 0.01 | 0.03 | 0.01 |
21 | Geranyl acetate | 17.72 | 0.98 | 0.01 | 1.48 | 0.01 | 0.22 | 0.01 | 0.52 | 0.01 | 0.79 | 0.01 | 0.52 | 0.01 |
22 | Dillapiole | 27.73 | --- | --- | --- | --- | --- | --- | --- | --- | 0.09 | 0.01 | --- | --- |
Monoterpene hydrocarbons | 6.50 | 5.97 | 4.89 | 4.76 | 4.80 | 7.39 | 6.50 | |||||||
Oxygenated monoterpenes | 93.08 | 93.53 | 94.16 | 94.66 | 94.8 | 92.49 | 93.08 | |||||||
Total | 99.58 | 99.50 | 99.05 | 99.42 | 99.51 | 99.88 | 99.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khater, R.M.R.; Sabry, R.M.; Pistelli, L.; Abd-ElGawad, A.M.; Soufan, W.; El-Gendy, A.N.G. Effect of Compost and Titanium Dioxide Application on the Vegetative Yield and Essential Oil Composition of Coriander. Sustainability 2022, 14, 322. https://doi.org/10.3390/su14010322
Khater RMR, Sabry RM, Pistelli L, Abd-ElGawad AM, Soufan W, El-Gendy ANG. Effect of Compost and Titanium Dioxide Application on the Vegetative Yield and Essential Oil Composition of Coriander. Sustainability. 2022; 14(1):322. https://doi.org/10.3390/su14010322
Chicago/Turabian StyleKhater, Rania M. R., Reham M. Sabry, Luisa Pistelli, Ahmed M. Abd-ElGawad, Walid Soufan, and Abdel Nasser G. El-Gendy. 2022. "Effect of Compost and Titanium Dioxide Application on the Vegetative Yield and Essential Oil Composition of Coriander" Sustainability 14, no. 1: 322. https://doi.org/10.3390/su14010322
APA StyleKhater, R. M. R., Sabry, R. M., Pistelli, L., Abd-ElGawad, A. M., Soufan, W., & El-Gendy, A. N. G. (2022). Effect of Compost and Titanium Dioxide Application on the Vegetative Yield and Essential Oil Composition of Coriander. Sustainability, 14(1), 322. https://doi.org/10.3390/su14010322