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Abstract: Investigating the impact of land cover change in hydrological modelling is essential for
water resources management. This paper investigates the importance of landcover change in the
development of a physically-based hydrological model called SWAT. The study area considered is
the Dodder River basin located in southern Dublin, Ireland. Runoff at the basin outlet was simulated
using SWAT for 1993–2019 using five landcover maps obtained for 1990, 2000, 2006, 2012 and 2018.
Results indicate that, in general, the SWAT model-simulated runoff for a chosen time-period are closer
to the real-world observations when the landcover data used for simulation was collated as close to
the time-period for which the simulations were performed. For 23 (20) years (from 27 years period) the
monthly mean (maximum) runoff for the Dodder River generated by the SWAT model had the least
error when the nearby landcover data were used. This study indicates the necessity of considering
dynamic and time-varying landcover data during the development of hydrological modelling for
runoff simulation. Furthermore, two composite quantile functions were generated by using a kappa
distribution for monthly mean runoff and GEV distribution for monthly maximum runoff, based on
model simulations obtained using different landcover data corresponding to different time-period.
Modelling landcover change patterns and development of projected landcover in the future for river
basins in Ireland needs to be integrated with SWAT to simulate future runoff.

Keywords: SWAT; landcover change; monthly mean runoff; monthly maximum runoff; kappa
distribution; GEV distribution; Dodder Basin in Dublin Ireland

1. Introduction

Major alterations in land cover indicate the significance of human and anthropogenic
activities on land use, which have been deemed responsible for extreme floods and the
associated devastations [1,2]. Climate change and urbanization both lead to the generation
of excess surface runoff which results in the more frequent occurrence of flood events [3].
Fragmented land cover areas caused by urban development have resulted in alterations to
the hydrological cycle [4]. A recent report [5] stated that between one-half to one-third of
our planet’s surface has been transformed by human development, leading to the rapid
growth of urbanization. There is an increasing concern that urbanization, resulting in
increased impervious areas responsible for the reduction in infiltration capacity of the soil
and an increase in soil erosion, are causing increased flooding [6,7].

Previous studies reported that high rates of soil erosion are responsible for higher and
quicker surface runoff [8–10]. The rate of surface runoff is dependent on various factors such
as topography, morphology, river network [11,12] and the rainfall-runoff relationship [13].
Karamage et al. [14] reported that rapid urban expansion and agricultural intensification
has resulted in an increase in the volume of rainfall-runoff. A geographical information
system (GIS) based hydrological model was used in this study to understand the impact
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of soil texture, land cover and land use, elevation, and rainfall intensity on rainfall-runoff.
Other studies [15] have reported that the collection of accurate land cover information is
essential for the simulation of runoff at river basin outlets. Detailed information on the
nature of land cover obtained in high spatial resolution increases the accuracy of runoff
simulations [16] considerably. Another study confirmed that the reduction of vegetation
cover has resulted in an increase in annual discharge [17,18]. In many areas the expansion
of agricultural activities has resulted in the conversion of native forests and grasslands
into agricultural land, leading to faster runoff and hence flooding [19,20]. Yang et al. [21]
investigated the impact of combined climate and landcover change at upper Heihe river
in China using SWAT model and noted that climate has slightly bigger impact on the
runoff. Yang et al. [22] developed another coupled landcover-climate change model at the
Yingluoxia and Minxian catchments in northeastern Tibetan Plateau.

Mousavi et al. [23] observed that in the Marand river basin, more than 25.3% of the
total land cover is prone to flood risk. The constructed land such as the industrial, urban,
and rural vegetated areas are particularly vulnerable to flooding in the river basin [24].

The Corine Land Cover (CLC) database is used to identify the dynamics and rate
of change of landcover by many studies in Europe [25,26]. The CLC database aims to
characterise landcover by spatial continuity which is non-ambiguous [27]. Previous studies
have shown that the CLC data is used for analysing the changes in land use and land
cover [28]. For example, Kucsicsa and Dumitrică [29] used the CLC database to estimate
the changes in forestry and the impact of deforestation on population dynamics in Europe.

The growth rate of urbanization has been quite significant in Ireland [30] over the past
30 years. Ireland’s annual growth rate of urbanization was found to be 3.1% between 1990
to 2012 [31]. Several studies [31–33] have further documented that Ireland experienced an
overall higher degree of land conversion relative to other European countries, concluding
that the urban land expansion in Ireland has been among the highest in Europe.

The majority of the physically-based hydrological models that are used to simulate
the discharge dynamics from river basin outlets require land cover information [34]. One
of the major limitations of those models is that they, in general, assume that the land cover
information remains the same over time. However, in reality, changes in land cover are
evolving over time, which needs to be considered while simulating runoff at a river basin.
In situations where the hydrological model is used to simulate runoff for a short period of
time, ranging from a few months to a few years, a static land cover information might be
sufficient, however, when runoff simulations are required for longer periods of time (more
than a decade), it is important to consider the changes in land cover over such a period.
This study investigates how changes in land cover impact hydrological runoff simulations
using a physically-based rainfall-runoff model called soil water assessment tool (SWAT).
The model was run for a 27-year period at a river basin covering a major portion of south
Dublin, the capital of Ireland, by considering different land cover data obtained from the
CORINE database. A set of SWAT models were developed by considering different land
cover information and the corresponding hydrographs were simulated. The performance
of the SWAT models was evaluated by comparing the simulated runoff with the observed
runoff. In particular, the study focuses on the efficiency of the simulations with respect to
when the land cover data used in the simulations had originally been defined. This study,
therefore, has investigated the performance of SWAT models developed by considering
different land cover data obtained at different time periods.

2. Methodology

This study considered a conceptual rainfall-runoff model to simulate flow at the outlet
of the watershed. The model chosen is the soil water assessment tool (SWAT). The model
was run corresponding to different land cover data to simulate runoff using the historically
observed meteorological variables. The monthly mean and maximum runoff were extracted
from the daily simulated runoff and was compared to historically observed streamflow data
for performance evaluation. Subsequently, the monthly mean and maximum runoff were
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modelled using appropriate frequency distributions to estimate quantiles corresponding
to different return periods. Details on data, SWAT modelling, performance measures,
parameter estimation of selected distributions and quantile estimations are provided below.

2.1. River Basin and Data Description

Analysis of the SWAT model using different land cover data was performed in the
Dodder River Basin for this study. The Dodder River Basin (Figure 1) is located in the
southern part of Dublin, the capital of Ireland. The Dodder River is one of the most
important rivers in the Dublin area and originating on Kippure mountain to the south and
meeting the River Liffey in Dublin city at Ringsend. The length of the Dodder River is
approximately 27 km and the overall catchment area is around 113 square km. In general,
the flow in the river is low, however, due to high slopes in the catchment area, the upper
and middle section of the river is highly susceptible to flooding during periods of extreme
rainfall events. The catchment can be broadly classified as lower and upper reaches, where
the lower reach belongs to the Dublin city with a milder slope, and the upper reach begins
from the boundary of the Dublin city and reaches the Kippure mountains where the Dodder
River originated. The average slope in the lower and upper reaches are approximately
2.27◦ and 9.26◦ respectively.

Figure 1. Location of Dodder River Basin and the river gauge at Waldron bridge, along with Met
Eireann rain gauges, temperature gauges, weather stations measuring RH, WS and SR, E-OBS Grids
for temperature, relative humidity and solar radiation, and ERA5-land grids for wind speed along
with Dodder River Basin boundary.
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Discharge at the Dodder River has been measured at the Waldron Bridge gauging
station from 3rd January 1986 at a daily scale, and are available from the Irish Environmental
Protection Agency HydroNet database (https://www.epa.ie/hydronet/#09010 accessed
on 26 November 2021). However, since the majority of the streamflow data are missing till
1992, data ranging from 1 January 1993 to 31 December 2019 were used for further analysis
in this study. The average discharge in the river over this monitoring period was 2.07 m3/s.
However, during flood events, the maximum flow in the river was noted to reach up to
70 m3/s. As the size of the river basin is small with steep slopes, it usually takes 2–3 h
to reach the water from upstream at the mountains to the downstream of river Dodder,
which can create flash flooding the area. Time series plots of the daily, monthly mean and
monthly maximum data are shown in Figure 2.

Figure 2. Time series plot of (a) daily discharge and (b) monthly mean discharge and (c) monthly
maximum discharge observed at Waldron bridge river gauge.

Three watershed related types of data (elevation, land cover and soil type) and five
meteorological variables data (rainfall, maximum and minimum temperature, wind speed,
relative humidity, and solar radiation) are needed for the river basin for running the SWAT
model. A digital elevation model (DEM) was used to delineate the watershed/basin
boundary, develop the stream network in the watershed and estimate the slope of the
watershed. The DEM data used in this study is the 25 m resolution EU-DEM data available
from “https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-
service-eu-dem accessed on 26 November 2021”. The EU-DEM was generated for 39 coun-
tries across Europe by DHI GRAS Geocenter Denmark [35] as a hybrid DEM based on 90 m
resolution shuttle radar topographic mission DEM, 30 m resolution advanced spaceborne
thermal emission and reflection radiometer DEM and publicly available topographic maps.
The DEM map for the Dodder River Basin is shown in Figure 3a.

https://www.epa.ie/hydronet/#09010
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem
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Figure 3. (a) EU digital elevation model, and (b) slope map for the Dodder River Basin study area.

The land cover map for the Dodder River Basin was obtained from the COPERNICUS
CORINE land cover inventory (https://land.copernicus.eu/pan-european/corine-land-
cover accessed on 26 November 2021). The land cover maps were prepared across European
countries using visual interpretation of high-resolution satellite imageries. The land cover
maps are available for the years 1990, 2000, 2006, 2012 and 2018 at a spatial resolution
of 100 m. Landsat-5 satellite data obtained from 1986–1998 were used to create a land
cover map for 1990 (LC1990); Landsat-7 satellite data collected for 1999–2001 were used to
develop the 2000 land cover maps (LC2000); land cover maps for the year 2006 (LC2006)
was generated using SPOT-4, SPOT-5 and IRS P6 satellite images collected for the period
2005–2007; IRS P6 and RapidEye satellite data obtained from 2011–2012 were used to
create the 2012 land cover maps (LC2012); whereas Sentinel-2 and Landsat-8 satellite data
collected for 2017–2018 were used to generate the 2018 land cover images (LC2018). The
CORINE land cover maps consist of 44 different land cover classes, shown in Table 1. Since
the SWAT model was developed mainly for simulation of runoff for United States river
basins, the land cover classes present in the SWAT database do not match with the land
cover classes in the CORINE maps. Hence, each of the CORINE land cover classes was
reclassified to match them to the SWAT database. Details of the reclassified land cover
classes are shown in Table 1 and the reclassified land cover maps for the Dodder River
basin corresponding to years 1990, 2000, 2006, 2012 and 2018 are shown in Figure 4. It can
be noted from the figure that a majority portion of the upper Dodder River catchment had
been transformed from wetlands (peat bogs) to a combination of natural grasslands, moors
and heathlands, and burnt/barren land from 2006 to 2018. One of the reasons is the rise in
temperature during the summer months, scarcity of water, and increase in the forest fire
in Ireland.

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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Table 1. Linkage of land cover classes available in CORINE data and SWAT model. Details of the
SWAT classes are available in SWAT Model Database Appendix A (https://swat.tamu.edu/media/
69419/Appendix-A.pdf accessed on 26 November 2021).

Sl. Land Cover
CODE

Land Cover
Description SWAT Class Sl. Land Cover

CODE
Land Cover
Description SWAT Class

1 111 Continuous urban fabric URBN 23 311 Broad-leaved
forest FRSD

2 112 Discontinuous urban
fabric URML 24 312 Coniferous forest FRSE

3 121 Industrial or commercial
units UCOM 25 313 Mixed forest FRST

4 122 Road and rail networks
and associated land UTRN 26 321 Natural

grasslands RNGE

5 123 Port areas UTRN 27 322 Moors and
heathland RNGB

6 124 Airports UTRN 28 323 Sclerophyllous
vegetation RNGB

7 131 Mineral extraction sites SWRN 29 324 Transitional
woodland-shrub RNGB

8 132 Dump sites UIDU 30 331 Beaches, dunes,
sands WETN

9 133 Construction sites UIDU 31 332 Bare rocks BARR

10 141 Green urban areas RNGE 32 333 Sparsely
vegetated areas BARR

11 142 Sport and leisure
facilities UCOM 33 334 Burnt areas BARR

12 211 Non-irrigated arable
land AGRL 34 335 Glaciers and

perpetual snow WATR

13 212 Permanently irrigated
land AGRL 35 411 Inland marshes WETN

14 213 Rice fields RICE 36 412 Peat bogs WETL

15 221 Vineyards GRAP 37 421 Salt marshes WETL

16 222 Fruit trees and berry
plantations AGRL 38 422 Salines WETL

17 223 Olive groves OLIV 39 423 Intertidal flats WETL

18 231 Pastures PAST 40 511 Water courses WATR

19 241 Annual crops associated
with permanent crops AGRL 41 512 Water bodies WATR

20 242 Complex cultivation
patterns AGRL 42 521 Coastal lagoons WATR

21 243

Land principally
occupied by agriculture,
with significant areas of

natural vegetation

AGRL 43 522 Estuaries WATR

22 244 Agro-forestry areas FRST 44 523 Sea and ocean WATR

https://swat.tamu.edu/media/69419/Appendix-A.pdf
https://swat.tamu.edu/media/69419/Appendix-A.pdf
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Figure 4. Cont.
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Figure 4. Land cover maps for the year (a) 1990, (b) 2000, (c) 2006, (d) 2012 and (e) 2018 for the
Dodder River Basin.

The soil maps for Ireland were obtained from the General Soil Map of Ireland, available
at http://gis.teagasc.ie/soils/downloads.php (accessed on 26 November 2021). Similar to
the land cover classes, the soil classes also needed to be reclassified for the SWAT model.
The reclassified soil map is shown in Figure 5 and details on the soil categories is provided
in Basu [36]. It should be noted that the land cover and soil maps for Ireland needed to be
integrated with the SWAT model’s default database. This was performed using a lookup
table for land cover and soil. Furthermore, the soil database is needed to be integrated into
the SWAT geodatabase. The newly developed geodatabase (SWAT2012.mdb), the lookup
table for land cover (lulc_classes.txt) and the lookup table for soil (soillookup.txt) for Ireland
is provided in the following link https://doi.org/10.5281/zenodo.4767926 (accessed on
26 November 2021) [37] as open-source data for public use. Details on soil type in the
figure can be obtained from the Teagasc Soil Guide (http://gis.teagasc.ie/soils/soilguide.php
accessed on 26 November 2021).

The five meteorological types of data needed to run the SWAT model were obtained
either from on-site weather stations data or from satellite-based data. In general, the
performance of the SWAT model has been shown to be better in situations where multiple
point-source weather stations meteorological data are used for analysis [34]. Figure 1 shows
the locations of the Met Eireann rainfall gauges, temperature sensors, and weather stations
that measure relative humidity (RH), wind speed (WS) and solar radiation (SR) in the
surrounding vicinity of the Dodder River Basin, while Table 2 provide details of those
stations. Only three rain gauges (S1923, S5623, S6623) are located inside the Dodder River
Basin, and no Met Eireann stations are present inside the basin measuring temperature,
relative humidity, wind speed or solar radiation. Furthermore, data from station S1923
were unavailable from October 2014.

http://gis.teagasc.ie/soils/downloads.php
https://doi.org/10.5281/zenodo.4767926
http://gis.teagasc.ie/soils/soilguide.php
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Figure 5. Soil map for the Dodder River Basin study area.

Due to the scarcity of on-site weather data for all meteorological variables except
rainfall, only rainfall data from observed rain gauges were considered in the development
of the SWAT model. On-site daily rainfall data from three rain gauges S3723, S5623 and
S6623 were used for the analysis. Those three gauges were considered as there are very
little rainfall data missing and they are located either inside the Dodder River Basin or
at close proximity to the basin. Based on the analysis performed by Met Eireann, 60 mm
increase in the annual average rainfall were noted from the period 1981–2010 [38]. Based
on analysis performed using several regional climate models, Nolan et al. [38] documented
that for the period 2041–2060, annual, spring and summer rainfall in Ireland are expected
to decrease by 0–13%, while heavy rainfall events are expected to increase in the winter
and autumn months by ~20%.

The other four meteorological variables temperature, relative humidity, wind speed
and solar radiation required for the development of the SWAT model were obtained at a
gridded scale from COPERNICUS E-OBS and ERA-5 land databases.
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Table 2. Location of Met Eireann rain (R) gauges, temperature (T) gauges and weather stations
measuring relative humidity (RH), wind speed (WS) and solar radiation (SR) in and around Dodder
River Basin. Stations located inside the Dodder River Basin are highlighted in bold.

Gauge
Number

Location Details
Data Range Available

VariablesLat Lon

S175 53.364 −6.350 16/08/2003–31/12/2020 R, T, RH, WS, SR

S1823 53.370 −6.270 01/01/1984–31/10/2020 R, T

S1923 53.239 −6.367 01/01/1984–30/09/2014 R

S3723 53.306 −6.439 01/01/1964–31/10/2020 R, T, RH, WS, SR

S3923 53.341 −6.253 01/01/1948–31/10/2020 R, T

S5623 53.239 −6.364 01/10/1959–31/10/2020 R

S6623 53.276 −6.304 01/02/1967–31/10/2020 R

S7523 53.325 −6.225 01/08/1972–28/02/2015 R

A readily available data source of the meteorological variables is the COPERNICUS
E-OBS dataset. The E-OBS dataset was generated based on a network of station data
observations from European National Meteorological and Hydrological Services and other
European database centres. The dataset covers the majority of Europe and provides rainfall,
maximum and minimum temperature, relative humidity, and shortwave solar radiation at
0.1◦ grids spacing at a daily time scale from the year 1950 till the present time. The data
has been obtained from the following link: https://cds.climate.copernicus.eu/cdsapp#!/
dataset/insitu-gridded-observations-europe?tab=form (accessed on 26 November 2021). It
should be noted that wind speed data are not available in this dataset. The ERA5-Land data
from the COPERNICUS database has been used to obtain the wind speed data in this study.
The ERA-5 Land data are available from the year 1981 to the present date at an hourly
time scale at 0.1◦ spatial interval covering the entire globe. The data is available from the
link https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
(accessed on 26 November 2021). Locations of the E-OBS grids and the ERA5 grids used
for this study covering the Dodder River Basin are shown in Figure 1.

2.2. Soil Water Assessment Tool (SWAT) Model and Performance Evaluation

The soil water assessment tool model (SWAT) is a conceptual semi-distributed
continuous-time hydrological model developed by the United States Department of Agri-
culture to simulate the water transport at a basin/watershed scale on a daily or sub-daily
time scale [34,39]. A flowchart of the SWAT model is shown in Figure 6 which shows
how watershed-related data (elevation, land cover and soil type), and meteorological data
(rainfall, temperature (daily maximum and daily minimum), wind speed, relative humidity
and solar radiation) are used in the different steps of the SWAT model.

The SWAT model uses the basin DEM data to delineate the watershed boundary,
the river network inside the watershed, and the slope of the entire watershed. Once the
watershed and the river network were generated, the land cover and the soil data for
the watershed are used by the SWAT model along with the estimated slope to divide the
entire watershed into multiple sub-basins. Each of those sub-basins, termed as hydrological
response units (HRUs), contains the same land cover, soil, and similar slope characteristics.
Once the HRUs for the watershed was formed, the flow dynamics in the watershed are
modelled in two phases: the land phase and routing phase. In the land phase, SWAT
simulates the hydrologic cycle for each HRU based on the following water balance equation:

SWt = SW0 +
n

∑
i=1

(
Rday −Qsur − Ea −Wseep −Qgw

)
i

(1)

https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-gridded-observations-europe?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
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where t is the time in days, SWt is the final soil water content (mm), SW0 is the initial
soil water content (mm), Rday is the amount of precipitation on day i (mm), Qsur is the
amount of surface runoff on day i (mm), Ea is the amount of evapotranspiration on day
i (mm), Wseep is the amount of water entering the vadose zone from the soil (percolation)
on day i (mm), and Qgw is the amount of return flow on day i (mm) [40], and n is the total
number of days considered in the simulation study. Once the land phase is modelled, the
water is routed through reservoirs and channels in the routing phase by using the variable
storage coefficient method developed by Williams [41]. The water balance of each HRU is
represented by four storage volumes including: snow, soil profile (0–2 m), shallow aquifer
(typically 2–20 m) and deep aquifer (>20 m).

Figure 6. Flowchart of SWAT model.

SWAT uses the SCS curve number approach to estimate the surface runoff in the
water balance equation, and the Penman–Monteith equation [42] to estimate the evapo-
transpiration. To estimate evapotranspiration at a daily time scale, daily values of four
meteorological variables namely, mean temperature, wind speed, relative humidity and
solar radiation are required. The daily mean temperature was estimated as the average of
the daily maximum and daily minimum temperature. In the SWAT model, lateral subsur-
face flow in the soil profile (0–2 m) is calculated simultaneously with percolation. Using
the degree of slope, slope length and saturated hydraulic conductivity of the soil layer,
SWAT performs a kinematic storage routing to predict the lateral flow in each soil layer.
Lateral flow occurs in situations where the storage in any layer exceeds field capacity after
percolation. SWAT creates a shallow aquifer storage to simulate the groundwater flow
contribution to the total streamflow [43]. Percolation from the bottom of the root zone is
considered as recharge to the shallow aquifer. The SWAT model simulates surface runoff,
sub-surface runoff and groundwater recharge as its model output.

In this study, the SWAT model is used to simulate surface runoff at the basin outlet for
the historical period by considering different land cover data as it changes over time. This
study uses land cover data obtained at different time periods and uses them separately
to simulate the surface runoff for the entire historical time period. In general, it can be
expected that the simulated runoff should be closer to the observed runoff/streamflow at
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the basin outlet when appropriate land cover data has been used to run the SWAT model. To
verify this hypothesis, this study quantifies the error in runoff simulations at different time
periods for the entire historical period using different land cover data. In situations where
the hypothesis is correct, for a land cover data collected at a chosen year, the error in runoff
simulation using SWAT model should be at a minimum; conversely the error in runoff
simulation should be higher for the simulated years that are further away from the year
when the land cover data was collected. The land cover data were collected on multiple
different years in this study, and the error in monthly mean and monthly maximum runoff
obtained by comparing the model simulation with observed runoff for each land cover
data was estimated. using the Nash–Sutcliffe efficiency (NSE), as follows:

NSE = 1− ∑T
t=1[ŷ(t)− y(t)]2

∑T
t=1[y(t)− y]2

(2)

where y(t) is the observed runoff/streamflow at time t, ŷ(t) is the SWAT model predicted
runoff at time t, T is the number of data points (monthly mean or monthly maximum), and
y = ∑T

t=1 y(t)/T is the mean observed flow for the chosen period.
The value of NSE ranges from (−∞, 1] , where the performance measure values tend

to unity as model predictions become closer to the observed values.

2.3. Kappa and Generalized Extreme Value Distribution

The simulated monthly mean and maximum runoffs obtained were then used to
estimate the runoff quantile corresponding to different return periods. According to
the extreme value theory [44], the monthly maximum runoff can be modelled using the
extreme value distribution. This study considers the generalised extreme value (GEV)
distribution to model the monthly maximum runoff obtained from the SWAT model. There
appear to be no established distributions that are being used to model the monthly mean
runoff. Only a limited number of studies [45–47] have performed distribution fitting to the
monthly mean streamflow/runoff. Blum et al. [45] used a five parameter Wakeby (WAK5)
distribution, four-parameter kappa (KAP4) distribution, and three-parameter generalized
Pareto (GPA) and log-normal (LN3) distributions to fit the mean monthly streamflow from
398 stream gauges in the conterminous United States and noted that kappa is the most
suited distribution. Svensson et al. [46] analysed mean monthly streamflow obtained from
121 catchments in the United Kingdom using 12 frequency distributions: KAP4, three-
parameter distributions kappa (KAP3), generalised logistic (GLO3), Pearson type 3 (PE3),
generalised extreme value (GEV), Tweedie, and two-parameter distributions generalized
logistic (GLO2), gamma (GAM), Weibull, Gumbel, normal and log-normal (LN2). Based
on the analysis they noted that both three and four-parameter kappa distributions fit the
data well. The other study [47] used LN3, GEV, Weibull, Gamma, Gumbel and normal
distributions to fit annual mean streamflow data at the Tana River in Kenya and found
LN3 to be the best-fit distribution. In this study, four-parameter kappa distribution has
been used to fit the monthly mean runoff. The parameters for KAP4 and GEV (in the case
of monthly maximum runoff) were estimated using the L-moments. Details of parameter
estimation and quantile estimation corresponding to different return periods using KAP4
and GEV are provided below.

The four-parameter kappa distribution has been used to fit the monthly mean runoff
generated using the SWAT model. The cumulative distribution function (CDF) of kappa is
given as,

F(x) =

[
1− h

{
1− k

α
(x− ξ)

}1/k
]1/h

(3)
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where ξ is the location parameter, α is the scale parameter and k, h are the shape parameters
respectively. The distribution parameters can be estimated using the first two L-moments
λ1, λ2, L-skewness τ3 and L-kurtosis τ4 based on the following relationship,

λ1 = ξ + α(1− g1)/k
λ2 = α(g1 − g2)/k

τ3 = (−g1 + 3g2 − 2g3)/(g1 − g2)
τ4 = (−g1 + 6g2 − 10g3 + 5g4)/(g1 − g2)

gr =


rΓ(1+k)Γ(r/h)

h1+kΓ(1+k+r/h)
, h > 0

rΓ(1+k)Γ(−k−r/h)
(−h)1+kΓ(1−r/h)

, h < 0

(4)

where Γ(z) =
∫ ∞

0 tz−1e−tdt is the gamma function.
Considering there are n number of data points in the monthly mean time series

{x1, x2, · · · , xn}, the series is first arranged in an ascending order {x1:n, x2:n, · · · , xn:n} such
that x1:n ≤ x2:n ≤ · · · ≤ xn:n. Subsequently, the probability-weighted moments br can be
estimated as,

br =
1
n

(
n− 1

r

)−1 n

∑
j=r+1

(
j− 1

r

)
xj:n, r = 0, 1, 2, 3, 4, · · · (5)

The first four sample L-moments can be estimated as,

λ1 = b0
λ2 = 2b1 − b0

λ3 = 6b2 − 6b1 + b0
λ4 = 20b3 − 30b2 + 12b1 − b0

(6)

where τ3 = λ3/λ2 and τ4 = λ4/λ2.
The parameters of the kappa distribution can be solved numerically. Further details

on the parameter estimation can be found in Hosking and Wallis [48].
Once the parameters of the kappa distribution are obtained, the quantile corresponding

to a non-exceedance probability F or a return period T = 1/(1− F) can be obtained as,

x(F) = ξ +
α

k

1−
(

1− Fh

h

)k
 (7)

The generalized extreme value (GEV) distribution used for fitting the monthly maxi-
mum runoff data are defined by its CDF as,

F(x) = exp

{
−
[

1− k
α
(x− ξ)

] 1
k
}

(8)

where ξ, α and k are respectively the location, scale, and shape parameters of the distribution.
Once the L-moments λ1, λ2 and L-skewness τ3 were obtained from the monthly maximum
runoff data, the GEV distribution parameters can be estimated as [48],

k = 7.8590c + 2.9554c2 where c = 2
3+τ3
− log(2)

log(3)

α = λ2k
(1−2−k)Γ(1+k)

ξ = λ1 − α{1− Γ(1 + k)}/k

(9)

where Γ(·) is the gamma function.
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The quantile function for GEV can be estimated as,

x(F) =

{
ξ + α

k

[
1− (−lnF)k

]
, i f k 6= 0

ξ − α[ln(−lnF)], i f k = 0
(10)

The non-exceedance probability F can be replaced with the return period T where
T = 1/(1− F). The flood quantile functions are generally plotted against the return
period T.

The CDF/quantile function obtained based on fitting the SWAT simulated runoff
can be compared to the CDF/quantile function generated using the observed monthly
mean/monthly maximum streamflow. This study uses the Weibull plotting position
formula to generate the empirical CDF for the observed streamflow. The Weibull plotting
position formula is a commonly used approach to develop empirical CDF for daily/monthly
streamflow [49]. The Weibull plotting position has been found to have unbiased exceedance
probabilities for all distributions.

3. Results and Discussion

The watershed upstream of Waldron bridge river gauging station was delineated and
gives a basin area of 92.266 km2. For comparison purposes, the watershed area estimated
by the Office of Public Works (OPW), Ireland based on the topographic maps of Ireland is
documented as 94.3 km2, indicating that the difference in the basin area obtained based
on topographic maps and EU-DEM based SWAT model is around 2%, which as deemed
acceptable for practical purposes.

Based on the DEM, the slope of the watershed has been estimated using the SWAT
model and classified into five classes: 0–2◦, 2–5◦, 5–10◦, 10–25◦ and >25◦ (see Figure 3b).
The SWAT model combines the land cover, soil and slope data to create the hydrological
response units (HRUs). In this analysis, five different SWAT models had been generated
by using five land cover maps obtained for the years 1990, 2000, 2006, 2012 and 2018. Due
to changes in the land cover maps for each model, the HRUs generated by the model also
varied for each case. The total number of HRUs generated while using 1990, 2000, 2006,
2012 and 2018 land cover maps are respectively 1446, 1481, 1497, 1466 and 1504.

Once the HRUs were developed for each SWAT model, the five meteorological vari-
ables at a daily time scale were fed into each SWAT model to simulate surface runoff for
the period of 1 January 1993 to 31 December 2019. In general, the SWAT model parameters
are being calibrated to improve the performance of the SWAT model. However, this study
primarily focuses on the effectiveness of the SWAT model while considering different land
cover data. Hence, for every SWAT model, the DEM, soil, and weather data as well as the
model parameters were retained to be the same, while varying only the land cover data.
This ensures to compare the performance of different land cover data in the simulation of
runoff at watershed outlet using SWAT model.

The monthly mean and the monthly maximum runoff were then extracted from the
daily simulated runoff value for each of the five SWAT models and compared to the
observed monthly mean and monthly maximum streamflow values obtained based on the
daily observed streamflow data available at Waldron bridge. The error in monthly mean
and monthly maximum runoff was quantified in terms of NSE for each year and the values
are shown in Table 3. The land cover map for the year 1990 (LC1990) was developed based
on data collected for the period of 1986–1998, while the same for LC2000 was 1999–2001,
LC2006 was 2005–2007, LC2012 was 2011–2012 and LC2018 was 2017–2018, respectively.
Hence, each of the land cover maps was considered to represent the following years in
this study: LC1990 for the years 1993–1998, LC2000 for the years 1999–2003, LC2006 for
the years 2004–2009, LC2012 for the years 2010–2015 and LC2018 for the years 2016–2019.
The SWAT simulated month mean/monthly maximum runoff that is closer to the observed
runoff for a chosen year obtained using a chosen land cover data (out of the available
five maps) was identified based on the three performance measures. The best-fit land
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cover map based on the NSE values for each year ranging from 1993 to 2019 are shown
in Figure 7. Table 3 and Figure 7 indicates that, in general, the performance of the SWAT
model is superior when the land cover map representing a chosen year is used to simulate
the runoff for that year. The difference in NSE value for a chosen year corresponding to
different land cover data ranged from 0.1 to 0.23 for monthly mean runoff and 0.11 to 0.28
for monthly maximum runoff, indicating the importance of selecting appropriate land
cover data while developing the SWAT model. Out of the simulated 27 years data, the
best-fit SWAT model for the monthly mean data simulation matched with the expected
model for 23 years (85%), while that for the monthly maximum data simulation matched
for 20 years (74%). The results indicate the advantage of using the most appropriate land
cover data while simulating the runoff using a hydrological model.

Table 3. Nash–Sutcliffe efficiency obtained for the period of 1993–2019 estimated based on the
observed and simulated runoff using five different land cover data corresponding to (a) monthly
mean runoff and (b) monthly maximum runoff at Waldron bridge. The best-fit SWAT models are
shown in bold.

Year
(a) Monthly Mean Runoff (b) Monthly Maximum Runoff

LC1990 LC2000 LC2006 LC2012 LC2018 LC1990 LC2000 LC2006 LC2012 LC2018

1993 0.55 0.51 0.47 0.45 0.41 0.56 0.53 0.47 0.41 0.44

1994 0.85 0.77 0.80 0.82 0.74 0.58 0.46 0.49 0.55 0.52

1995 0.65 0.60 0.55 0.57 0.62 0.56 0.47 0.50 0.40 0.43

1996 0.52 0.43 0.49 0.54 0.46 0.52 0.43 0.47 0.55 0.49

1997 0.59 0.52 0.50 0.55 0.46 0.57 0.51 0.55 0.48 0.45

1998 0.54 0.47 0.44 0.51 0.41 0.52 0.48 0.42 0.45 0.38

1999 0.50 0.57 0.45 0.53 0.42 0.57 0.46 0.51 0.48 0.39

2000 0.80 0.83 0.77 0.71 0.75 0.82 0.91 0.85 0.79 0.88

2001 0.45 0.53 0.34 0.48 0.39 0.26 0.44 0.51 0.23 0.35

2002 0.77 0.74 0.71 0.79 0.82 0.43 0.55 0.50 0.39 0.47

2003 0.46 0.60 0.43 0.55 0.51 0.54 0.57 0.48 0.51 0.45

2004 0.54 0.46 0.58 0.51 0.43 0.57 0.53 0.66 0.60 0.63

2005 0.51 0.46 0.59 0.54 0.43 0.48 0.51 0.43 0.36 0.40

2006 0.47 0.39 0.52 0.44 0.36 0.53 0.40 0.56 0.51 0.45

2007 0.36 0.41 0.50 0.46 0.29 0.45 0.49 0.57 0.53 0.40

2008 0.58 0.43 0.52 0.47 0.39 0.48 0.43 0.51 0.45 0.39

2009 0.41 0.44 0.52 0.47 0.37 0.47 0.37 0.52 0.34 0.31

2010 0.48 0.44 0.41 0.50 0.38 0.44 0.49 0.55 0.52 0.46

2011 0.51 0.54 0.57 0.45 0.48 0.78 0.83 0.86 0.89 0.81

2012 0.47 0.44 0.41 0.54 0.35 0.51 0.47 0.44 0.54 0.41

2013 0.47 0.41 0.38 0.51 0.45 0.44 0.41 0.47 0.52 0.49

2014 0.69 0.66 0.63 0.71 0.60 0.51 0.42 0.45 0.54 0.48

2015 0.73 0.70 0.67 0.77 0.64 0.51 0.54 0.46 0.40 0.43

2016 0.87 0.82 0.85 0.67 0.90 0.48 0.52 0.42 0.34 0.40

2017 0.86 0.81 0.80 0.84 0.91 0.47 0.38 0.42 0.35 0.52

2018 0.61 0.58 0.63 0.55 0.66 0.88 0.79 0.82 0.85 0.90

2019 0.71 0.66 0.68 0.63 0.74 0.49 0.52 0.55 0.46 0.58
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The NSE values from Table 3 indicate that the NSE values corresponding to the best-fit
model range from 0.50–0.91 for monthly mean runoff, where the NSE value is less than
0.6 for 16 years (59%), between 0.6 to 0.8 for 6 years (22%), and greater than 0.8 for 5 years
(19%). In the case of the monthly maximum runoff, the range of NSE value corresponding
to the best-fit model is 0.51–0.91, where the NSE is less than 0.6 for 23 years (85%), between
0.6 to 0.6 for 1 year (4%) and greater than 0.8 for 3 years (11%). This result indicates that
even though the use of effective land cover data considerably improves the accuracy of the
SWAT model in runoff simulation, the performance of the developed SWAT models can
be termed fair at the best for the majority of the years. One of the primary reasons is that
the performance of the SWAT model depends not only on the land cover data but also on
the DEM, the soil, and most importantly on the five weather variables [21,34,43]. Since no
in-situ measurements were available inside the Dodder River catchment for temperature,
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relative humidity, wind speed and solar radiation, gridded data were considered for the
development of the SWAT models obtained from the COPERNICUS E-OBS and ERA-5
land database. Out of the two rain gauges that were located inside the catchment, rainfall
station S5623 had 3% data missing for the period 1993–2019, while rainfall station S6623
had 40% missing data for the considered period. The use of appropriate weather data
is essential for the improvement of the model performances. Furthermore, it needs to
be noted that this study considered 25 m resolution EU-DEM to identify the watershed
boundary, generate the stream network, and estimate the slope of the watershed. A finer
resolution DEM might also be useful in improving the performance of the SWAT models.
However, it needs to be noted that the objective of this manuscript is to investigate the
relative performance of the SWAT models corresponding to different land cover data while
retaining all the other input data (DEM, soil, weather variables) to be the same.

A composite runoff time series for monthly mean and monthly maximum time period
were constructed by considering different land cover data across different time periods.
The land cover data selected to simulate runoff for a chosen year are described in the
previous paragraph. A scatter plot between the observed monthly mean and composite
monthly mean, as well as observed and composite monthly maximum runoff were plotted
in Figure 8. A point belonging to the 45◦ line (shown in green) indicate that the observed
and model simulated composite runoff are the same, while a point located away from the
line indicates that model-simulation is different from the observed value. The distance of
the point from the 45◦ line measures the error in the model simulation (under-prediction or
over-prediction depending on the side). It should be noted that use of real-world weather
data is expected to improve the runoff obtained from the composite SWAT model.

Subsequently, quantile curves were generated using the monthly mean and maximum
time series runoff simulations. The kappa distribution was considered for the monthly mean
series while the generalized extreme value (GEV) distribution was fitted for the monthly
maximum data. The parameters of the kappa distribution and the GEV distribution are
provided in Table 4 and the quantile curves are shown in Figure 9. The quantile curves were
plotted corresponding to different return periods ranging from 100 years to 1000 years.

Table 4. Parameters of (a) kappa distribution estimated using the monthly mean flow and (b)
generalized extreme value distribution estimated using monthly maximum flow data simulated
using the SWAT models by considering composite time series, and land cover maps obtained for the
year 1990, 2000, 2006, 2012 and 2018.

Data Type Location ( ξ ) Scale ( α )
Shape

k h

Composite 0.345 1.668 0.126 0.781

LC1990 −0.137 2.063 0.187 1.072

LC2000 −0.097 2.024 0.178 1.052

LC2006 −0.064 1.983 0.171 1.036

LC2012 −0.116 2.030 0.179 1.066

LC2018 0.261 1.727 0.138 0.830

(a) Kappa distribution parameters

Data Type Location (ξ) Scale (α) Shape (k)

Composite 2.313 2.487 −0.395

LC1990 2.344 2.470 −0.396

LC2000 2.369 2.511 −0.392

LC2006 2.387 2.503 −0.393

LC2012 2.330 2.442 −0.396

LC2018 2.410 2.488 −0.390

(b) Generalized extreme value distribution parameters
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Figure 8. Scatterplot between the observed and SWAT model-simulated composite runoff for monthly
mean and monthly maximum flow.
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Figure 9. Quantile plot of (a) monthly mean flow using kappa distribution and (b) monthly maximum
flows using GEV distribution obtained based on composite SWAT based time series simulations
and each of the five SWAT model simulations for the period 1993–2019 at Waldron bridge. The
quantile plots were compared with the quantile plot obtained based on Weibull plotting position
using historical observations.

The quantile curves obtained based on the SWAT simulations were compared to the
quantile curves generated using the historical observations at Waldron bridge river gauge,
located at the basin outlet. The quantile curve from the historical data was generated using
the Weibull plotting position. For comparison purposes, the quantile curves obtained based
on simulated runoff corresponding to each of the five SWAT models, where fixed land
cover data were only considered for each simulation, are also plotted. The comparison
of the quantile curves indicates that the composite runoff is closest to the quantile curve
obtained from historical data. However, it can be noted that all of the different model
simulations underpredict the flow quantile when compared to the historical data. However,
the quantile values obtained using the composite SWAT simulated time series were closer
to the historical one. It needs to be noted that the quantile curves were developed based
on 27 years of historical data, while the curve estimate runoff/streamflow quantiles up
to 1000 years. Based on the short period of data, it is unwise to claim that the historical
quantile curve represents the real-world scenario. The availability of longer historical
records can improve the development of the true quantile curve. Furthermore, the use of
real-world weather data in the development of the SWAT model can improve the quantile
functions generated based on the model outputs.
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Based on the overall results it can therefore be concluded that a dynamic approach
is necessary to simulate runoff using the SWAT hydrological model where the land cover
data needs to be updated over time to obtain realistic runoff.

4. Conclusions

The impact of changes in land cover over time with respect to runoff simulations
using a physically-based hydrological model called soil water assessment tool has been
investigated in this study. The majority of the hydrological models assume that land cover
remains fixed across the periods that they are used to simulate, whereas this study has
developed multiple SWAT models that compare different land cover data that has been
obtained at different time periods. The comparison of the simulated runoff with real-world
observations revealed that the model performance is highest when the land cover data used
in the model has been collated as close to the time period across which the simulations need
to be performed. Based on the results, it has been concluded that a dynamic land cover
database should be considered for modelling runoff in order to obtain better performance.
This study, therefore, proposes a method whereby the entire time period of simulation is
subdivided into multiple time segments. The subdivision should be based on the land
cover data that are available for the river basin at several temporal scales. Subsequently,
unique land cover data needs to be identified for each of those subdivisions and the SWAT
model is then be run using different land cover data for different time periods. Following
this, a composite time series of runoff simulations can be constructed from which monthly
mean and monthly maximum runoff for the entire period of simulation can be extracted.
This methodology was carried out on the studied watershed (the River Dodder) and the
monthly mean data were fitted using four-parameter kappa distribution and the monthly
maximum data were fitted using generalized extreme value distribution to obtain quantile
functions corresponding to different return periods. The performance of the composite
approach was found to be superior in obtaining effective flood quantiles. Furthermore, the
performance of the composite SWAT model can be improved by considering real-world
weather data. Overall, this research shows that in order to simulate runoff for future periods
in a river basin, it is important to understand the land cover dynamics and use it to project
future scenarios of land cover patterns before simulating future runoff. Ongoing research
focuses on the development of land cover change model for river basins in Ireland.
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