Sustainable Agriculture and Self-Sufficiency in Sweden—Calculation of Climate Impact and Acreage Need Based on Ecological Recycling Agriculture Farms
Abstract
:1. Introduction
1.1. Clarifications
- Following the Nordic guidelines, we use the term ecological as a synonym for organic;
- CO2e is the used abbreviation for CO2 equivalents (carbon dioxide equivalents);
- ERA (e.g., ERA farms) is an abbreviation of Ecological Recycling Agriculture (defined below).
1.2. Hypothesis, Aim and Goal
1.3. Contribution
- Ecological (organic) Recycling Agriculture (ERA) is in focus. It is both self-supplying and productive agriculture. It imports no or very little manure/fertilisers and animal fodder, uses no chemical pesticides, and produces more than one product category of food. The nutrients needed are supplied by legume–grass leys on a large part of the acreage, in combination with well-adapted animal stock and crop rotation.
- Collected data from 22 ERA farms in Sweden are used for the calculations.
- Carbon sequestration in soil is included in the climate impact calculations.
- Food production and demand are matched for Sweden in scenarios with different diets (staple foods only) for the Swedish population. Results are presented for climate impact, nutrient balance, acreage needs, and kg food produced/consumed in different categories.
2. Materials and Methods
2.1. Ecological Recycling Agriculture
- Diversified crop rotations with a large portion of perennial, deep-rooted, humus-building (C sequestering), and nitrogen-fixating leys;
- Integrated animal husbandry (mostly grazing animals transforming grass to protein), adapted to the farm’s own fodder production and thus more or less self-sufficient on-farm or on farms in close collaboration;
- Manure management and recirculation with least possible loss of organic matter and plant nutrients;
- Focus on soil health and humus building.
2.2. Carbon Sequestration in Soil
2.3. Calculations
- Case studies of 22 Swedish ERA farms, clustered in 5 production groups;
- Definition of 3 target diets;
- Matching of production and consumption in scenarios.
2.4. Case Study Farms
2.5. Calculation of Climate Impact and Nutrient Surplus
2.6. Farm Production Groups
- Grain;
- Dairy;
- Potatoes/garden products;
- Red meat (from grazers);
- White meat (from monogastric animals).
2.7. Climate Impact from Consumption and Target Diets
2.7.1. Scenario 1. 1960-Inspired Diet
2.7.2. Scenario 2. Diet BERAS 2019
2.8. Matching of Production and Consumption
3. Results
3.1. Case Study Farms
3.1.1. Climate Impact
3.1.2. Plant Nutrient Balance
3.2. Scenarios for Matching of Production and Consumption
3.2.1. Scenario 1
3.2.2. Scenario 2
3.2.3. Scenario 2 Variations
- Scenario 2b: Grass milk, just the four dairy farms feeding the cows only roughage included in the dairy production group. Other groups unchanged.
- Scenario 2a: Five productive farms, scenario 2a with only the most productive farm (kg/ha) in each production group included.
- Scenario 2b: Five productive farms, scenario 2b with only the most productive farm (kg/ha) in each production group included.
3.3. Calculated Environmental Impacts for the Scenarios
4. Discussion
4.1. Acreage Needs and Changed Diets for Staple Food Self-Sufficiency in Sweden
4.2. Climate Impact Calulations
4.3. Nutrient Balance Calulations
4.4. Shortcomings and Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COP26 The Glasgow Climate Pact. In Proceedings of the The UN climate conference UK 2021 (COP26), Scotland, UK, 31 October–13 November 2021; Available online: https://ukcop26.org/the-conference/cop26-outcomes/ (accessed on 24 March 2022).
- Intergovernmental Panel on Climate Change (IPCC). Recommendations for Guidelines for National Greenhouse Inventories. 2006. Available online: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 24 March 2022).
- Naturvårdsverket. Handlingsplan för att nå Sveriges Klimatmål. Available online: https://www.naturvardsverket.se/klimatmal (accessed on 24 March 2022).
- Cederberg, C.; Persson, M.; Schmidt, S.; Hedenius, F.; Wood, R. Beyond the borders—Burdens of Swedish food consumption due to agrochemicals, greenhouse gas emissions and land use change. JCLP J. Clean. Prod. 2019, 214, 644–652. [Google Scholar] [CrossRef]
- Kjaergaard, T. The Danish Revolution; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Linderholm, K. Sveriges Självförsörjningsgrad—Energi Till Människor och Motorer Från Svenskt Jordbruk 2017–2018; Silvbergs Miljöteknik AB: Borlänge, Sweden, 2018; Available online: https://silvberg.se/Rapporter/ (accessed on 24 March 2022). (In Swedish)
- Formas. Jordbruk Som Håller i Längden. Formas Fokuserar 17, 2010. Available online: https://www.formas.se/download/18.462d60ec167c69393b9a1d0/1549956100364/jordbruk_som_haller_i_langden.pdf (accessed on 25 April 2022). (In Swedish: Long Term Sustainable Agriculture).
- Jordbruksverket. Rapport 2019:1. Plan för Odlingslandskapets Biologiska Mångfald—Ett Samverkansprojekt Inom Miljömålsrådet. Available online: https://www2.jordbruksverket.se/download/18.36d57baa168c704154d46f04/1549611543321/ra19_1.pdf (accessed on 25 April 2022). (In Swedish).
- Jordbruksstatistisk Sammanställning 2020. Available online: https://jordbruksverket.se/om-jordbruksverket/jordbruksverkets-officiella-statistik/jordbruksverkets-statistikrapporter/statistik/2020-08-14-jordbruksstatistisk-sammanstallning-2020 (accessed on 24 March 2022). (In Swedish).
- Granstedt, A.; Schneider, T.; Seuri, P.; Thomsson, O. Ecological Recycling Agriculture to Reduce Nutrient Pollution to the Baltic Sea. J. Biol. Agric. Horticulture 2008, 26, 279–307. Available online: http://sbfi.se/public/images/SBRI/Ecological-Recycling-Agriculture-to-Reduce-Nutrient-Pollution.pdf (accessed on 24 March 2022). [CrossRef]
- Granstedt, A.; Seuri, P. Conversion to Ecological Recycling Agriculture and Society Environmental, Economic and Sociological Assessments and Scenarios. In COMREC Studies on Environmental Development 8, BERAS Implementation Report 3; Granstedt, A., Seuri, P., Eds.; Södertörns Högskola (Södertörn University): Huddinge, Sweden, 2013. [Google Scholar]
- Saxe, H.; Meinert Larsen, T.; Mogensen, L. The global warming potential of two healthy Nordic diets compared with the average Danish diet. Clim. Chang. 2013, 116, 249–262. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Granstedt, A. Case studies on the flow and supply of nitrogen in alternative farming in Sweden. Biol. Agric. Hortic. 1992, 9, 15–63. [Google Scholar] [CrossRef]
- Serikstad, G.L. Økologisk Landbruk og Klimagasser: Metan, Lustgass og CO2; NORSØK Rapport; Norsk Senter for Økologisk Landbruk: Tingvoll, Norway, 2018; Available online: https://orgprints.org/id/eprint/32812/1/NORS%C3%98K%20Rapport%20nr%202%202018%20Klimagasser.pdf (accessed on 24 March 2022). (In Swedish)
- Bertilsson, G. Mat, Klimat Och Miljö; Recito Förlag AB: Everöd, Sweden, 2010; Available online: www.greengard.se (accessed on 24 March 2022). (In Swedish)
- Lal, R. Enhancing Eco-efficiency in Agro-ecosystems through Soil Carbon Sequestration. Crop Sci. Soc. Am. 2012, 50 (Suppl. S1), 120–131. [Google Scholar] [CrossRef] [Green Version]
- Granstedt, A.; L-Baeckström, G. Studier av Vallens Förfruktsvärde i Ekologisk Odling; Ekologiskt Lantbruk 25; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1998. (In Swedish) [Google Scholar]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; El-Hage Scialabba, N.; et al. Enhanced top soils carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Börjesson, B.; Bolinder, M.; Kirchmann, H.; Kätterer, T. Organic carbon stocks in topsoil and subsoil in long-term ley and cereal monoculture rotations. Biol. Fertil. Soils 2018, 54, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Kolenbrander, G.J. Efficiency of organic manure in increasing soil organic matter content. In Transactions of the 10th International Congress of Soil Science; Nauka: Moscow, Russia, 1974; pp. 129–136. Available online: https://www.iuss.org/index.php?rex_media_type=download&rex_media_file=1974_10_kothpecc__10th_congress_ii_compressed.pdf (accessed on 25 April 2022).
- Granstedt, A.; Kjellenberg, L. Carbon sequestration in long-term on-farm studies in Organic and Biodynamic Agriculture, Sweden. In Innovative Research for Organic 3.0, Proceedings of the Scientific Track at the Organic World Congress 2017, Delhi, India, 9–11 November 2017; Rahmann, G., Andres, C., Yadav, A.K., Ardakani, R., Babalad, H.B., Devakumar, N., Willer, H., Eds.; Thünen Report 54—Volume 1; Thünen-Institut: Braunschweig, Germany, 2017; pp. 200–204. [Google Scholar]
- Andrén, O.; Lindberg, T.; Paustain, K.; Rosswall, T. (Eds.) Organic carbon and nitrogen flows. In Ecology of Arable Land—Organisms, Carbon and Nitrogen Cyclings; Ecological Bulletins 40; Munksgaard: Copenhagen, Denmark, 1990. [Google Scholar]
- Granstedt, A. Fallstudier av Kväveförsörjningen i Alternativ Odling. Alternativ Odling 4. Forsknings-och Försöksnämnden för Alternativ Odling. Ph.D. Thesis, Sveriges Lantbruksuniversitet, Uppsala, Sweden, 1990. (In Swedish). [Google Scholar]
- Berglund, M.; Cederberg, C.; Clason, C.; Henriksson, M.; Törner, L. Jordbrukets Klimatpåverkan—Underlag för att Beräkna Växthusgasutsläpp på Gårdsnivå och Nulägesanalyser av Exempelgårdar; Delrapport i JOKER-Projektet; Hushållningssällskapet Halland: Eldsberga, Sweden, 2009; Available online: http://hs-n.hush.se/attachments/82/2888.pdf (accessed on 24 March 2022). (In Swedish)
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 43, 334–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordbruksverket. Kort om Statistiken. 2021. Available online: https://jordbruksverket.se/om-jordbruksverket/jordbruksverkets-officiella-statistik/jordbruksverkets-statistikrapporter/statistik/2021-03-16-livsmedelskonsumtion-av-animalier.-preliminara-uppgifter-2020#h-Kortomstatistiken (accessed on 24 March 2022). (In Swedish).
- Granstedt, A.; Thomsson, O.; Schneider, T. Environmental Impacts of Eco-Local Food Systems; Baltic Ecological Agriculture and Society (BERAS) Nr. 5.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2005; Available online: www.slu.se/globalassets/ew/org/centrb/epok/aldre-bilder-och-dokument/publikationer/ekolantbruk46.pdf (accessed on 25 April 2022).
- Lantbrukarnas Riksförbund. Ökad Försörjningstrygghet Avseende Livsmedel. 2019. Available online: www.lrf.se/politikochpaverkan/foretagarvillkor-och-konkurrenskraft/nationell-livsmedelsstrategi/sjalvforsorjning/forsorjningstrygghet/ (accessed on 24 March 2022). (In Swedish).
- Jordbruksverket. Kartläggning av Mark Som Tagits ur Produktion. Rapport 2008:7. Available online: www2.jordbruksverket.se/webdav/files/SJV/trycksaker/Pdf_rapporter/ra08_7.pdf (accessed on 25 April 2022). (In Swedish).
- van der Werf, H.M.G.; Trydeman Knudsen, M.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Poeplau, C.; Bolinder, M.A.; Eriksson, J.; Lundblad, M.; Kätterer, T. Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers. Biogeosciences 2015, 12, 3241–3251. [Google Scholar] [CrossRef] [Green Version]
- Van Selm, B.; Frehner, A.; de Boer, I.J.M.; van Hal, O.; Hijbeek, R.; van Ittersum, M.K.; Talsma, E.F.; Lesschen, J.P.; Hendriks, C.M.J.; Herrero, M.; et al. Circularity in animal production requires a change in the EAT-Lancet diet in Europe. Nat. Food 2022, 3, 66–73. [Google Scholar] [CrossRef]
- World Wide Fund for Nature (WWF). Naturbetesprojekt. Långsiktiga Effekter av 25 års Arbete. (Natural Pastures Project). Report. 2015. Available online: https://www.wwf.se/dokument/wwfs-naturbetesprojekt-2015-langsiktiga-effekter-av-25-ars-arbete/pdf (accessed on 25 April 2022). (In Swedish).
- World Wide Fund for Nature (WWF). Marknadsundersökning Grönt ljus i Köttguiden. Rapport 2021-11-12. (Marketassessment Green Light in the Meat Guide). Available online: https://www.wwf.se/pressmeddelande/wwfs-kottguide-rott-ljus-for-svensk-kyckling-4116966/ (accessed on 24 March 2022). (In Swedish).
- Statistics Sweden. Agricultural Statistics 2020 Including Food Statistics—Tables. Available online: https://jordbruksverket.se/download/18.78dd5d7d173e2fbbcda98893/1597390150166/JS_2020.pdf (accessed on 29 March 2022).
- Statistics Sweden. Land Cover 2000, Sweden. Available online: https://www.scb.se/en/finding-statistics/statistics-by-subject-area/environment/land-use/other-statistics-on-land-use/pong/tables-and-graphs/marktackedata/land-cover-2000-sweden/ (accessed on 29 March 2022).
- Swedish University of Agricultural Sciences (SLU). Goodla. Lärarhandledning (Teachers Guidance). Available online: https://www.slu.se/globalassets/ew/org/inst/mom/collaboration/goodla/handledningar/lararhandl_naturbete.pdf (accessed on 29 March 2022). (In Swedish).
- Jordbruksverket. Jordbruket i Siffror. Available online: https://jordbruketisiffror.wordpress.com/2019/07/31/det-fanns-526-tusen-hektar-slatterangar-ar-1927-ar-2019-ar-arealen-12-tusen-hektar-men-den-har-mer-an-fordubblats-sedan-ar-2003/ (accessed on 24 March 2022).
- Röös, E. Kor Och Klimat; EPOK—Centrum för Ekologisk Produktion och Konsumtion Sveriges Lantbruksuniversitet: Uppsala, Sweden, 2019; Available online: https://www.slu.se/globalassets/ew/org/centrb/epok/dokument/koroklimat_web.pdf (accessed on 24 March 2022). (In Swedish)
- Wirsenius, S. Utsläpp av Växthusgaser Från Svensk Produktion Och Konsumtion av Mat år 2045; Chalmers Tekniska Högskola: Göteborg, Sweden, 2019; Available online: https://research.chalmers.se/publication/515057/file/515057_Fulltext.pdf (accessed on 24 March 2022). (In Swedish)
Study Farms | Arable Land Ha | Natural Pastures Ha | Share Ley of Arable Land % | Animal Density Au 1/Ha | Production Region 2 | Farm Production 3 |
---|---|---|---|---|---|---|
Blomfeltsgården * | 150 | 0 | 67% | 0.44 | Nö | milk, beef, oilseed |
Fjöset | 359 | 250 | 100% | 0.31 | Nn | livestock, beef |
Trappnäs | 12 | 0 | 83% | 0.00 | Nn | vegetables, ley (cropped by Fjöset) |
Ingelsbo | 60 | 30 | 67% | 0.59 | Ssk | milk, beef, bread grain |
Björnens Eko | 5 | 1 | 38% | 0.48 | Ssk | vegetables, pork, ley (cropped by Ingelsbo) |
Östanå | 38 | 10 | 68% | 0.77 | Ss | milk, beef |
Resta | 110 | 80 | 55% | 0.42 | Ss | milk, beef, mutton, pork |
Åsbergby * | 225 | 70 | 53% | 0.57 | Ss | pork, beef, grain |
Uppmälby | 7 | 3 | 56% | 0.48 | Ss | mutton, bread grain, vegetables, egg |
Nibble | 122 | 20 | 74% | 0.50 | Ss | milk, beef, bread grain, egg, vegetables |
Sörbro | 85 | 15 | 79% | 0.35 | Ss | goat milk and meat, beef, grain, egg, vegetables |
Ullberga | 90 | 34 | 84% | 0.51 | Ss | milk, beef, bread grain |
Markusgården | 80 | 10 | 40% | 0.18 | Gns | beef, heritage cereals, egg |
Älmås | 60 | 71 | 83% | 0.67 | Gsk | beef, livestock, vegetables |
Alvans | 80 | 30 | 69% | 0.58 | Gmb | milk, beef |
Buters | 57 | 0 | 50% | - | Gmb | grain, vegetables, ley (cropped by neighbor) |
Sigsarve | 80 | 10 | 56% | 0.23 | Gmb | mutton, heritage cereals, lenses |
Stig in Mörtelek * | 12 | 40 | 67% | 0.52 | Gsk | pork, mutton, beef, poultry, egg, vegetables |
Västregård * | 170 | 110 | 60% | 0.75 | Gsk | milk, beef, oilseed |
Solmarka | 122 | 25 | 49% | 0.78 | Gmb | milk, beef, poultry, egg, vegetables, cereals |
Källunda * | 80 | 20 | 50% | 0.28 | Gmb | pork, beef, heritage cereals, vegetables |
Ängavallen | 104 | 35 | 50% | 0.56 | Gss | milk, beef, pork, mutton, grain, vegetables |
Sweden 2019 | 2,251,499 | 450,000 | 38% |
Food Product Category Kg per Capita, Year | Target Diets 1 | Comparative Data | |||
---|---|---|---|---|---|
Scenario 1 | Scenario 2 | Sweden | Sweden | BERAS | |
1960 | 2018 | 2004 | |||
Grain products | 62 | 70 | 71 | 62 | 89 |
Vegetables incl. potatoes | 168 | 180 | 118 | 168 | 169 |
Milk and dairy products | 380 | 380 | 442 | 357 | 555 |
Red meat, ruminants | 22 | 10 | 22 | 27 | 10 |
White meat, monogastrics | 27 | 5 | 27 | 55 | 5 |
Egg | 12 | 8 | 12 | 15 | 8 |
Study Farms | Carbon Sequestration in Soil | Scenario Fossil Fuels | Scenario Renewable Fuels | ||
---|---|---|---|---|---|
Emissions | NET | Emissions | NET | ||
Blomfeltsgården | −2126 | 2245 | 119 | 2081 | −45 |
Fjöset + Trappnäs | −2541 | 1813 | −728 | 1486 | −1055 |
Ingelsbo + Björnens Eko | −1936 | 2930 | 994 | 2522 | 586 |
Östanå | −2689 | 3570 | 880 | 3100 | 411 |
Resta | −1640 | 1195 | −445 | 1094 | −545 |
Åsbergby | −1409 | 1604 | 194 | 1340 | −69 |
Uppmälby | −1675 | 2019 | 344 | 1511 | −164 |
Nibble | −1583 | 2378 | 794 | 2143 | 560 |
Sörbro | −1378 | 1631 | 254 | 1480 | 103 |
Ullberga | −2672 | 2366 | −306 | 2081 | −591 |
Markusgården | −566 | 1100 | 534 | 925 | 359 |
Älmås | −2344 | 4349 | 2004 | 3873 | 1528 |
Alvans | −1672 | 3263 | 1591 | 3012 | 1340 |
Buters | −1287 | 679 | −607 | 378 | −908 |
Sigsarve | −839 | 1117 | 278 | 959 | 120 |
Stig in Mörtelek | −2360 | 2330 | −29 | 2042 | −318 |
Västregård | −2705 | 3873 | 1167 | 3499 | 794 |
Solmarka | −2106 | 2742 | 636 | 2424 | 317 |
Källunda | −1026 | 1034 | 8 | 910 | −116 |
Ängavallen | −1436 | 2314 | 878 | 2070 | 635 |
Average | −1799 | 2228 | 428 | 1947 | 147 |
Weighted average | −1962 | 2231 | 269 | 1953 | −9 |
Sweden 2019 | −786 | 3038 | 2 253 | 2649 | 1863 |
Study Farms | Carbon Sequestration in Soil | Scenario Fossil Fuels | Scenario Renewable Fuels | ||
---|---|---|---|---|---|
Emissions | NET | Emissions | NET | ||
Blomfeltsgården | −2126 | 2245 | 119 | 2081 | −45 |
Fjöset + Trappnäs | −1518 | 1083 | −435 | 888 | −630 |
Ingelsbo + Björnens Eko | −1312 | 1986 | 674 | 1710 | 397 |
Östanå | −2129 | 2826 | 697 | 2454 | 325 |
Resta | −949 | 692 | −258 | 634 | −316 |
Åsbergby | −1075 | 1223 | 148 | 1022 | −53 |
Uppmälby | −1172 | 1413 | 241 | 1058 | −114 |
Nibble | −1360 | 2043 | 683 | 1841 | 481 |
Sörbro | −1171 | 1387 | 216 | 1258 | 87 |
Ullberga | −1939 | 1717 | −222 | 1510 | −429 |
Markusgården | −503 | 978 | 475 | 823 | 319 |
Älmås | −1074 | 1992 | 918 | 1774 | 700 |
Alvans | −1216 | 2373 | 1157 | 2190 | 974 |
Buters | −1287 | 679 | −607 | 378 | −908 |
Sigsarve | −745 | 993 | 247 | 852 | 107 |
Stig in Mörtelek | −545 | 538 | −7 | 471 | −73 |
Västregård | −1642 | 2351 | 709 | 2125 | 482 |
Solmarka | −1748 | 2276 | 528 | 2012 | 263 |
Källunda | −821 | 827 | 6 | 728 | −93 |
Ängavallen | −1074 | 1731 | 657 | 1549 | 475 |
Average | −1270 | 1568 | 297 | 1368 | 98 |
Weighted average | −1341 | 1536 | 195 | 1346 | 5 |
Sweden 2019 | −655 | 2532 | 1877 | 2207 | 1552 |
Study Farms | Farm Plant Nutrient Balance kg per ka Arable Land | Farm Plant Nutrient Balance kg per ha Farmland | Fodder Part Purchased % | ||||
---|---|---|---|---|---|---|---|
N | P | K | N | P | K | ||
Blomfeltsgården | 54 | −2 | −2 | 54 | −2 | −2 | 11% |
Fjöset + Trappnäs | 65 | −2 | 0 | 39 | −1 | 0 | 0% |
Ingelsbo + Björnens Eko | 64 | −1 | −3 | 43 | −1 | −2 | 6% |
Östanå | 49 | −5 | −7 | 39 | −4 | −5 | 0% |
Resta | 60 | −1 | 0 | 35 | 0 | 0 | 4% |
Åsbergby | 59 | −2 | 0 | 45 | −1 | 0 | 17% |
Uppmälby | 63 | −3 | −7 | 44 | −2 | −5 | 0% |
Nibble | 50 | −3 | −3 | 43 | −2 | −2 | 11% |
Sörbro | 35 | −2 | −3 | 30 | −1 | −3 | 6% |
Ullberga | 19 | −3 | −3 | 14 | −2 | −2 | 2% |
Markusgården | 15 | −3 | −5 | 13 | −3 | −4 | 0% |
Älmås | 68 | 0 | 10 | 31 | 0 | 5 | 12% |
Alvans | 67 | −1 | −2 | 49 | −1 | −1 | 18% |
Buters | 11 | −1 | −8 | 11 | −1 | −8 | no animals |
Sigsarve | 25 | −2 | −2 | 22 | −2 | −2 | 2% |
Stig in Mörtelek | 55 | −2 | 0 | 13 | −1 | 0 | 8% |
Västregård | 74 | 0 | 3 | 45 | 0 | 2 | 17% |
Solmarka | 60 | −4 | −9 | 50 | −3 | −8 | 3% |
Källunda | 62 | −1 | −1 | 50 | −1 | −1 | 7% |
Ängavallen | 61 | −3 | −3 | 45 | −2 | −2 | 3% |
Average | 51 | −2 | −2 | 36 | −2 | −2 | 7% |
Weighted average | 56 | −2 | −1 | 38 | −1 | −1 | 7% |
Sweden 2019 | 76 | 0 | 4 | 63 | 0 | 4 | 18% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granstedt, A.; Thomsson, O. Sustainable Agriculture and Self-Sufficiency in Sweden—Calculation of Climate Impact and Acreage Need Based on Ecological Recycling Agriculture Farms. Sustainability 2022, 14, 5834. https://doi.org/10.3390/su14105834
Granstedt A, Thomsson O. Sustainable Agriculture and Self-Sufficiency in Sweden—Calculation of Climate Impact and Acreage Need Based on Ecological Recycling Agriculture Farms. Sustainability. 2022; 14(10):5834. https://doi.org/10.3390/su14105834
Chicago/Turabian StyleGranstedt, Artur, and Olof Thomsson. 2022. "Sustainable Agriculture and Self-Sufficiency in Sweden—Calculation of Climate Impact and Acreage Need Based on Ecological Recycling Agriculture Farms" Sustainability 14, no. 10: 5834. https://doi.org/10.3390/su14105834
APA StyleGranstedt, A., & Thomsson, O. (2022). Sustainable Agriculture and Self-Sufficiency in Sweden—Calculation of Climate Impact and Acreage Need Based on Ecological Recycling Agriculture Farms. Sustainability, 14(10), 5834. https://doi.org/10.3390/su14105834