The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis
Abstract
:1. Introduction
2. Goal and Scope
- Non-linear performance degradation: In [7], we used PV module and system field data to show that performance degradation does not always follow a linear path. In the same study, it was demonstrated that even at the same failure threshold, the degradation profile taken to reach this threshold influences the lifetime yield of a given PV module or system. Therefore, in this study, we assess the variations in GHG emissions that can be caused by different non-linear degradation profiles at the same defined failure threshold in comparison with a linear degradation profile.
- Climate-specific degradation rate: The climatic conditions of a specific location will influence the stress that is acting on the PV module. Degradation rates of PV modules have been shown to be climate dependent [12,18]. Therefore, the PV service lifetime and the lifetime energy yield vary from location to location. In this study, climate specific degradation rates are evaluated and applied in the calculation of GHG emissions instead of using a constant degradation rate for the different climate locations. Irradiation values for the lifetime yield calculation are adapted according to the location.
- Climate change: Global climate change will cause a change in climate variables (like temperature and solar irradiation), which is described in the form of different climate change scenarios in several studies [19]. Based on our knowledge about the effect of climatic conditions on the degradation mechanism and in turn, GHG emissions, it is to be expected that climate change will have an effect on PV degradation rates, service lifetime, lifetime yield and hence GHG emissions. Therefore, we assess how different climate change scenarios will cause changes in GHG emissions from PV electricity.
3. Methods and Materials
3.1. Lifetime Yield and PV System
3.2. Modelling the Degradation Aspects
3.2.1. Modelling the Impact of Non-Linear PV Performance Degradation
3.2.2. Modelling the Impact of Location Specific Degradation Rate
3.2.3. Estimating the Impact of Climate Change
- SSP1—sustainability: also called the “Green road”, where the world shifts gradually, but pervasively, toward a more sustainable path and emphasizes more inclusive development respective the environmental boundaries.
- SSP5—fossil fueled development: described as “taking the highway” to increase faith in competitive markets, innovation, and participatory societies to produce rapid technological progress and development of human capital as the path to sustainable development. This scenario pushes society to increase the exploitation of abundant fossil fuel resources and the adoption of resource and energy-intensive lifestyles worldwide.
3.3. Climatic and PV Data Sources and Uncertainties
- To demonstrate the non-linearity in PV performance degradation, we used the data and methods of extracting degradation trends of the PV systems in our previous study [7]. The underlying values contain an average relative uncertainty of 7.0%, which is outstanding in comparison with similar studies [25].
- To assess the impact of climate change, the data used is extracted from the ground measurements of the German meteorological service (Deutscher Wetterdienst: DWD) [27]. The data consist of long-time series from the 1940s to the present of global horizontal irradiation (GHI), ambient temperature, wind speed, and relative humidity. The modelled climate change data for scenarios SSP119 and SSP585 have been retrieved through the Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system [28]. Further details on the generation of climate change scenarios are given in [29,30]. Data projecting climate change scenarios into the future naturally contain high uncertainty. In this analysis, uncertainty is reduced by comparing two different scenarios (best-case and worst-case). Still, our analysis only contains climate change projections from one source [19]. Future analysis should ideally consider the combination of different datasets generated by different research institutions in the frame of the IPCC.
3.4. Statistical Analysis
- for assessing the effect of non-linear performance degradation, P is the CO emission evaluated using non-linear degradation scenarios and m is the CO emission value evaluated using the linear degradation.
- for assessing the effect of climate change, p is the value of climate variable or CO emission evaluated in 2021 and m is the value of climate variable or CO emission evaluated in 2100.
4. Results
4.1. Assessing the Effect of Non-Linear Performance Degradation on the GHG Emissions of PV Electricity
4.2. Assessing the Effect of Climate Specific Degradation Rates on the GHG Emissions of PV Electricity
4.3. Assessing the Impact of Climate Change on the GHG Emissions of PV Electricity
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Maps of Total Degradation Rate and Solar Irradiation
References
- Doka, G.; Vollmer, M. Ökoinventare für Energiesysteme, 1st ed.; ETH Zürich, Gruppe Energie-Stoffe-Umwelt ESU: Zuerich, Switzerland, 1994. [Google Scholar]
- Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D.H. A Comparative Life Cycle Assessment of Silicon PV Modules: Impact of Module Design, Manufacturing Location and Inventory. Sol. Energy Mater. Sol. Cells 2021, 230, 111277. [Google Scholar] [CrossRef]
- Friedrich, L.; Nold, S.; Müller, A.; Rentsch, J.; Preu, R. Global Warming Potential and Energy Payback Time Analysis of Photovoltaic Electricity by Passivated Emitter and Rear Cell (PERC) Solar Modules. J. Photovolta. 2021; submitted. [Google Scholar]
- Umweltbundesamt. Aktualisierung und Bewertung der Ökobilanzen von Windenergie- und Photovoltaikanlagen unter Berücksichtigung Aktueller Technologieentwicklungen; Umweltbundesamt: Dessau-Roßlau, Germany, 2021; ISSN 1862-4359. [Google Scholar]
- Rolf, F.; Stolz, P.; Heath, G.; Raugei, M.; Sinha, P.; de Wild-Scholten, M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic; IEA PVPS Task 12 Technical Report; IEA International Energy Agency: Paris, France, 2020. [Google Scholar]
- European Commission. Product Environmental Footprint Category Rules (PEFCR). Photovoltaic Modules Used in Photovoltaic Power Systems for Electricity Generation. 2020. Available online: https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCRPVelectricityfeb20202.pdf (accessed on 11 November 2021).
- Kaaya, I.; Lindig, S.; Weiss, K.-A.; Virtuani, A.; de Cardona Ortin, M.S.; Moser, D. Photovoltaic lifetime forecast model based on degradation patterns. Prog. Photovolt. Res. Appl. 2020, 28, 979–992. [Google Scholar] [CrossRef]
- Theristis, M.; Livera, A.; Micheli, L.; Ascencio-Vásquez, J.; Makrides, G.; Georghiou, G.E.; Stein, J.S. Comparative Analysis of Change-Point Techniques for Nonlinear Photovoltaic Performance Degradation Rate Estimations. IEEE J. Photovolta. 2021, 11, 1511–1518. [Google Scholar] [CrossRef]
- Rajput, P.; Malvoni, M.; Kumar, N.M.; Sastry, O.S.; Jayakumar, A. Operational Performance and Degradation Influenced Life Cycle Environmental—Economic Metrics of mc-Si, a-Si and HIT Photovoltaic Arrays in Hot Semi-arid Climates. Sustainability 2020, 12, 1075. [Google Scholar] [CrossRef] [Green Version]
- Theristis, M.; Livera, A.; Jones, C.B.; Makrides, G.; Georghiou, G.E.; Stein, J.S. Nonlinear Photovoltaic Degradation Rates: Modeling and Comparison Against Conventional Methods. IEEE J. Photovolta. 2020, 10, 1112–1118. [Google Scholar] [CrossRef]
- Kaaya, I.; Köhl, M.; Mehilli, A.; de Cardona Ortin, M.S.; Weiss, K.-A. Modeling outdoor service lifetime prediction of PV modules: Effects of combined climatic stressors on PV module power degradation. IEEE J. Photovolt. 2019, 9, 1105–1112. [Google Scholar] [CrossRef]
- Ascencio-Vásquez, J.; Kaaya, I.; Brecl, K.; Weiss, K.-A.; Topič, M. Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules. Energies 2019, 12, 4749. [Google Scholar] [CrossRef] [Green Version]
- Gil, V.; Gartner, M.-A.; Gutierrez, C.; Losada, T. Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models. Int. J. Climatol. 2018, 39, 1733–1747. [Google Scholar] [CrossRef] [Green Version]
- Burnett, D.; Barbour, E.; Harrison, G.P. The UK solar energy resource and the impact of climate change. Renew. Energy 2014, 71, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Rajput, P.; Tiwari, G.; Sastry, O. Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study. Energy 2017, 120, 731–739. [Google Scholar] [CrossRef]
- Bouaichi, A.; Merrouni, A.A.; Hajjaj, C.; Messaoudi, C.; Ghennioui, A.; Benlarabi, A.; Ikken, B.; El Amrani, A.; Zitouni, H. In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco. Renew. Energy 2019, 143, 1500–1518. [Google Scholar] [CrossRef]
- Ascencio-Vásquez, J. Modeliranje in Globalno Vrednotenje Ucinkovitosti Delovanja ter Staranja Fotonapetostnih Modulov in Sistemov. Ph.D. Thesis, University of Ljubljana, Ljubljana, Slovenia, 2021. Available online: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=131079 (accessed on 19 April 2022).
- Jordan, D.C.; Kurtz, S.R.; VanSant, K.; Newmiller, J. Compendium of photovoltaic degradation rates. Prog. Photovolt. Res. Appl. 2016, 24, 978–989. [Google Scholar] [CrossRef]
- CMIP6 Special Issue in GMD. Available online: https://gmd.copernicus.org/articles/special_issue590.html (accessed on 15 September 2021).
- ISO 14040; European Committee for Standardization, DIN EN ISO 14040: Environmental Management—Life Cycle Assessment— Principles and Framework (ISO 14040: 2006). ISO: Geneva, Switzerland, 2006.
- ISO 14044; European Committee for Standardization, DIN EN ISO 14044: Environmental Management—Life Cycle Assessment— Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- VDMA Phovoltaic Equipment International. Technology Roadmap for Photovoltaic (ITRPV) 2019 Results, 8th ed. Available online: https://itrpv.vdma.org\T1\guilsinglrightITRPV02020.pdf (accessed on 24 April 2020).
- Köntges, M.; Kurtz, S.; Packard, C.E.; Jahn, U.; Berger, K.A.; Kato, K.; Friesen, T.; Liu, H.; Van Iseghem, M.; Wohlgemuth, J.; et al. Review of Failures of Photovoltaic Modules; IEA International Energy Agency: Paris, France, 2014. [Google Scholar]
- Ascencio-Vásquez, J.; Brecl, K.; Topič, M. Methodology of Köppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance. Sol. Energy 2019, 191, 672–685. [Google Scholar] [CrossRef]
- Jordan, D.C.; Deline, C.; Deceglie, M.G.; Nag, A.; Kimball, G.M.; Shinn, A.B.; John, J.J.; Alnuaimi, A.A.; Elnosh, A.B.; Luo, W.; et al. Reducing interanalyst variability in photovoltaic degradation rate assessments. IEEE J. Photovolt. 2020, 10, 206–212. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2017. Available online: Https://Cds.Climate.Copernicus.Eu/Cdsapp#!/Home (accessed on 16 November 2020).
- Deutscher Wetterdienst, DWD, DWD Opendata. Available online: https://opendata.dwd.de/climate_environment/CDC/ (accessed on 30 April 2021).
- Cinquini, L.; Crichton, D.; Mattmann, C.; Harney, J.; Shipman, G.; Wang, F.; Ananthakrishnan, R.; Miller, N.; Denvil, S.; Morgan, M.; et al. The Earth System Grid Federation: An open infrastructure for access to distributed geospatial data. Future Gener. Comput. Syst. 2014, 36, 400–417. [Google Scholar] [CrossRef]
- Olivier, B.; Sébastien, D.; Guillaume, L.; Anne, C.; Arnaud, C.; Marie-Alice, F.; Yann, M.; Patricia, C.; Marion, D.; Josefine, G.; et al. IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. Version 20190429. Earth Syst. Grid Fed. 2018. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Jiao, Y.; et al. CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP. Version 20190429. Earth Syst. Grid Fed. 2019. [Google Scholar] [CrossRef]
- Faiman, D. Assessing the outdoor operating temperature of photovoltaic modules. Prog. Photovolt. Res. Appl. 2008, 16, 307–315. [Google Scholar] [CrossRef]
- Kaaya, I.; Ascencio-Vasquez, J.; Weiss, K.-A.; Topič, M. Assessment of uncertainties and variations in PV modules degradation rates and lifetime predictions using physical models. Sol. Energy 2021, 218, 354–367. [Google Scholar] [CrossRef]
- Rolf, F.; Philippe, S.; Luana, K.; de Wild-Scholten, M.; Parikhit, S. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems; IEA Task 12 PV Sustainability; IEA International Energy Agency: Paris, France, 2020. [Google Scholar]
Parameter | Values |
---|---|
Solar irradiation | 1331 kWh/(m year) (baseline) |
Performance ratio | 0.85 |
Degradation rate | 0.7%/year (baseline) |
Plant size | 3000 Wp |
Module efficiency | 20.11% |
Module area | 1.85 m |
Maximum power | 372.3 Wp |
Power/Area | 201.24 Wp/m |
Scenario | Parameter () | Parameter () | k (%/Year) | Lifetime (Years) |
---|---|---|---|---|
Linear | - | - | 0.70 | 30.0 |
S01 | 1.0 | 0.33 | 0.70 | 30.0 |
S02 | 0.7 | 0.40 | 0.70 | 30.0 |
S03 | 0.3 | 0.93 | 0.70 | 30.0 |
S04 | 0.2 | 1.94 | 0.70 | 30.0 |
Temperature-Precipitation (TP) Zones | Irradiation (H) Zones |
---|---|
A: Tropical climate | K: Very high irradiation |
B: Desert climate | H: High irradiation |
C: Steppe climate | M: Medium irradiation |
E: Temperate climate | L: Low irradiation |
D: Cold climate | |
F: Polar climate |
Increase in | Increase in | Increase in | Increase in | ||
---|---|---|---|---|---|
Station | Scenario | Solar | Module | Degradation | CO |
Irradiation | Temperature | Rate | Emission | ||
Station A | ss119 | 0.63% | 0.11% | 7.96% | 5.32% |
ss585 | 0.21% | 33.65% | 93.71% | 93.84% | |
Station B | ss119 | 2.35% | 3.24% | 8.95% | 7.38% |
ss585 | 1.02% | 58.86% | 109.28% | 105.12% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herceg, S.; Kaaya, I.; Ascencio-Vásquez, J.; Fischer, M.; Weiß, K.-A.; Schebek, L. The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis. Sustainability 2022, 14, 5843. https://doi.org/10.3390/su14105843
Herceg S, Kaaya I, Ascencio-Vásquez J, Fischer M, Weiß K-A, Schebek L. The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis. Sustainability. 2022; 14(10):5843. https://doi.org/10.3390/su14105843
Chicago/Turabian StyleHerceg, Sina, Ismail Kaaya, Julián Ascencio-Vásquez, Marie Fischer, Karl-Anders Weiß, and Liselotte Schebek. 2022. "The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis" Sustainability 14, no. 10: 5843. https://doi.org/10.3390/su14105843
APA StyleHerceg, S., Kaaya, I., Ascencio-Vásquez, J., Fischer, M., Weiß, K. -A., & Schebek, L. (2022). The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis. Sustainability, 14(10), 5843. https://doi.org/10.3390/su14105843