A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China
Abstract
:1. Introduction
2. Study Area
2.1. Geographical Environment and Geology
2.2. Mining Situation
3. Methodology
3.1. Displacement Monitoring of the Roadway
3.2. Fractal Theory
4. Results
4.1. Settlement Monitoring Curve
4.2. Fractal Character of the Settlement Rate
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, N.; Nguyen, H.; Rostami, J.; Zhang, W.G.; Bui, X.N.; Pradhan, B. Predicting rock displacement in underground mines using improved machine learning-based models. Measurement 2022, 188, 110552. [Google Scholar] [CrossRef]
- Zhao, H.J.; Ma, F.S.; Xu, J.M.; Guo, J. In situ stress field inversion and its application in mining-induced rock mass movement. Int. J. Rock Mech. Min. Sci. 2012, 53, 120–128. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.S.; Guo, J.; Zhao, H.J.; Liu, G. Study on deformation failure mechanism and support technology of deep soft rock roadway. Eng. Geol. 2020, 264, 105262. [Google Scholar] [CrossRef]
- Zeng, C.L.; Zhou, Y.J.; Zhang, L.M.; Mao, D.G.; Bai, K.X. Study on overburden failure law and surrounding rock deformation control technology of mining through fault. PLoS ONE 2022, 17, e0262243. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, M.; Cecile, D.; Frederic, M. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar]
- Helm, P.R.; Davie, C.T.; Glendinning, S. Numerical modelling of shallow abandoned mine working subsidence affecting transport infrastructure. Eng. Geol. 2013, 154, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ma, F.S.; Li, G.; Guo, J.; Wan, Y.; Song, Y.W. Evolution assessment of mining subsidence characteristics using SBAS and PS interferometry in Sanshandao gold mine, China. Remote Sens. 2022, 14, 290. [Google Scholar] [CrossRef]
- Brady, B.H.G.; Brown, E.T. Rock Mechanics for Underground Mining; Kluwer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Szurgacz, D.; Brodny, J. Analysis of the influence of dynamic load on the work parameters of a powered roof support’s hydraulic leg. Sustainability 2019, 11, 2570. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, S.J.; Liu, T.Y.; Ma, F.S. Engineering geology, ground surface movement and fissures induced by underground mining in the Jinchuan Nickel Mine. Eng. Geol. 2004, 76, 93–107. [Google Scholar] [CrossRef]
- Indraratna, B.; Nemcik, J.A.; Gale, W.J. Review and interpretation of primary floor failure mechanism at a longwall coal mining face based on numerical analysis. Geotechnique 2000, 50, 547–557. [Google Scholar] [CrossRef]
- Wang, Y.H.; Deng, K.Z.; Wu, K.; Guo, G.L. On the dynamic mechanics model of mining subsidence. Chin. J. Rock Mech. Eng. 2003, 22, 352–357. [Google Scholar]
- Coulthard, M.A. Applications of numerical modeling in underground mining and construction. Geotech. Geol. Eng. 1999, 17, 373–385. [Google Scholar] [CrossRef]
- Institute of Scientific and Technical Information of China. Ground Building in Polish Mined-Out Area; China Science Press: Beijing, China, 1978. [Google Scholar]
- Brauner. Subsidence due to Underground Mining; Bureau of Mines: Raleigh, NC, USA, 1973. [Google Scholar]
- Qian, M.G.; Liao, X.X.; Xu, J.L. Research on key strata theory in rock strata control. J. China Coal Soc. 1996, 3, 6. [Google Scholar]
- Xu, J.L.; Qian, M.G. Study on the influence of key strata movement on subsidence. J. China Coal Soc. 2000, 2, 122–126. [Google Scholar]
- Guo, Z.Z.; Yin, Z.R.; Wang, J.Z. Random medium shiver movement probability and surface subsidence. J. China Coal Soc. 2000, 3, 264–267. [Google Scholar]
- Wu, K.; Wang, Y.H.; Deng, K.Z. Application of dynamic mechanics model of overlying strata movement and damage above goaf. J. China Univ. Min. Technol. 2000, 29, 34–36. [Google Scholar]
- Gong, Y.Q.; Guo, G.L.; Wang, L.P.; Zhang, G.J.; Zhang, G.X.; Fang, Z. Numerical study on the surface movement regularity of deep mining underlying the super thick and weak cementation overburden, a case study in Western China. Sustainability 2022, 14, 1855. [Google Scholar] [CrossRef]
- Bagde, M.N.; Raina, A.K.; Chakraborty, A.K.; Jethwa, J.L. Rock mass characterization by fractal dimension. Eng. Geol. 2002, 63, 141–155. [Google Scholar] [CrossRef]
- Yu, G.M.; Sun, H.Q.; Zhao, J.F. The fractal increment of dynamic subsidence of the ground surface point induced by mining. Chin. J. Rock Mech. Eng. 2001, 20, 34–37. [Google Scholar]
- Knothe, S. Time Influence on Formation of a Subsidence Surface; Archiwum Gornictwa I Hutnictwa: Krakow, Polish, 1952; Volume 1, p. 1. [Google Scholar]
- Singh, R.P.; Yadav, R.N. Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India. Eng. Geol. 1995, 39, 103–111. [Google Scholar] [CrossRef]
- McNabb, K.B. Three dimensional numerical modelling of surface subsidence induced by underground mining Div. Geomech. Tech. Rep. 1987, 146, 20. [Google Scholar]
- Alejano, L.; Ramrez-Oyanguren, P.; Taboada, J. FDM predictive methodology for subsidence due to flat and inclined coal seam mining. Int. J. Rock Mech. Min. Sci. 1999, 36, 475–491. [Google Scholar] [CrossRef]
- Chang, Z.Q.; Wang, J.Z. Study on time function of surface subsidence: The improved Knothe time function. Chin. J. Rock Mech. Eng. 2003, 22, 1496–1499. [Google Scholar]
- Wu, L.X.; Wang, J.Z. Study of deformation model of a controlling holding-plate when large area is extracted continuously. J. China Coal Soc. 1994, 19, 233–242. [Google Scholar]
- Tomaž, A.; Goran, T. Prediction of subsidence due to underground mining by artificial neural networks. Comput. Geosci. 2003, 29, 627–637. [Google Scholar]
- Gao, Y.F. “Four-zone” model of rock movement and inverse analysis of dynamic displacement. J. China Coal Soc. 1996, 1, 6. [Google Scholar]
- Sun, Y.J.; Zuo, J.P.; Karakus, M.; Wang, J.T. Investigation of movement and damage of integral overburden during shallow coal seam mining. Rock Mech. Min. Sci. 2019, 119, 63–75. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman and Company: New York, NY, USA, 1982; pp. 25–50. [Google Scholar]
- Delsanto, P.P.; Gliozzi, S.A.; Bruno, L.E.C.; Pugno, N.; Carpinteri, A. Scaling laws and fractality in the framework of a phenomenological approach. Chaos Solitons Fractals 2009, 41, 2782–2786. [Google Scholar] [CrossRef]
- Wang, R.D.; Yang, M.G. Some problems in fractal statistical research on geological phenomenon. Geoscience 1998, 12, 6. [Google Scholar]
- Shen, G.Q. Fractal dimension and fractal growth of urbanized areas. Int. J. Geogr. Inf. Sci. 2002, 16, 419–437. [Google Scholar] [CrossRef]
- Ioelovich, M. Fractal dimensions of cell wall in growing cotton fibers. Fractal Fract. 2020, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.P.; Pariseau, W.G. Fractal character and mechanism of rock bursts. Chin. J. Rock Mech. Eng. 1993, 30, 28–37. [Google Scholar] [CrossRef]
- Biancolini, M.E.; Brutti, C.; Paparo, G.; Zanini, A. Fatigue cracks nucleation on steel, acoustic emission and fractal analysis. Int. J. Fatigue 2006, 28, 1820–1825. [Google Scholar] [CrossRef]
- Wu, X.Z.; Liu, X.X.; Liang, Z.Z.; You, X.; Yu, M. Experimental study of fractal dimension of AE serials of different rocks under uniaxial compression. Rock Soil Mech. 2012, 33, 3561–3569. [Google Scholar]
- Xie, H.P.; Yu, G.M.; Yang, L.; Zhou, H.W. The influence of proximate fault morphology on ground subsidence due to extraction. Int. J. Rock Mech. Min. Sci. 1998, 35, 1107–1111. [Google Scholar] [CrossRef]
- Bruneau, G.; Hudyma, M.R.; Hadjigeorgiou, J.; Potvin, Y. Influence of faulting on a mine shaft a case study part II—Numerical modelling. Int. J. Rock Mech. Min. Sci. 2003, 40, 113–125. [Google Scholar] [CrossRef]
- Zhao, H.J.; Ma, F.S.; Li, G.Q.; Ding, D.M.; Wen, Y.D. Fault effect due to underground excavation in hangingwalls and footwalls of faults. Chin. J. Geotech. Eng. 2008, 30, 1372–1375. [Google Scholar]
- Yan, S.; Bai, J.B.; Li, W.F.; Chen, J.G.; Li, L. Deformation mechanism and stability control of roadway along a fault subjected to mining. Int. J. Min. Sci. Technol. 2012, 22, 559–565. [Google Scholar] [CrossRef]
- Sun, Q.H.; Ma, F.S.; Guo, J.; Li, G.; Feng, X.L. Deformation failure mechanism of deep vertical shaft in Jinchuan mining area. Sustainability 2020, 12, 2226. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.H.; Wang, X.F.; Li, P.; Zhang, D.S.; Sun, C.D.; Qin, D.D. Wide strip backfill mining for surface subsidence control and its application in critical mining conditions of a coal mine. Sustainability 2018, 10, 700. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.Y.; Chang, Z.C.; Zhang, D.S.; Wang, X.F.; Cao, W.H.; Zhou, Y.Z. Roof filling control technology and application to mine roadway damage in small pit goaf. Int. J. Min. Sci. Technol. 2019, 29, 477–482. [Google Scholar] [CrossRef]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality an explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Hergarten, S.; Neugebauer, H.J. Self-organized criticality in a landslide model. Geophys. Res. Lett. 1998, 25, 801–804. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.Q. Catastrophe model and chaos mechanism of ramp instability. Chin. J. Rock Mech. Eng. 2000, 19, 486–492. [Google Scholar]
- Xu, Q.; Huang, R.Q. Systematic analysis principles of geological hazards. Mt. Res. 2000, 3, 272–277. [Google Scholar]
- Iwahashi, J.; Watanabe, S.; Furuya, T. Mean slope-angle frequency distribution and size frequency distribution of landslide masses in Higashikubiki area, Japan. Geomorphology 2003, 50, 349–364. [Google Scholar] [CrossRef]
- Li, Z.S.; Miao, S.J.; Ren, F.H. Research on comprehensive prediction of rock burst in Sanshandao Gold Mine. Appl. Mech. Mater. 2012, 170, 1612–1617. [Google Scholar]
- Liu, G.; Ma, F.S.; Zhao, H.J.; Li, G.; Cao, J.Y.; Guo, J. Study on the fracture distribution law and the influence of discrete fractures on the stability of roadway surrounding rock in the Sanshandao coastal Gold Mine, China. Sustainability 2019, 11, 2758. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, G.Y.; Wang, S.F.; Wu, H.; Wang, S.W. A case study on the height of a water-flow fracture zone above undersea mining: Sanshandao Gold Mine, China. Environ. Earth Sci. 2019, 78, 122. [Google Scholar] [CrossRef]
- Song, M.C.; Ding, Z.J.; Zhang, J.J.; Song, Y.X.; Bo, J.W.; Wang, Y.Q.; Liu, H.B.; Li, S.Y.; Li, J.; Li, R.X.; et al. Geology and mineralization of the Sanshandao supergiant gold deposit (1200 t) in the Jiaodong Peninsula, China: A review. China Geol. 2021, 4, 686–719. [Google Scholar] [CrossRef]
- Liu, G.W.; Ma, F.S.; Liu, G.; Zhao, H.J.; Guo, J.; Cao, J.Y. Application of multivariate statistical analysis to identify water sources in A coastal Gold Mine, Shandong, China. Sustainability 2019, 11, 3345. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.S.; Zhao, H.J.; Guo, J. Investigating the characteristics of mine water in a subsea mine using groundwater geochemistry and stable isotopes. Environ. Earth Sci. 2015, 74, 6703–6715. [Google Scholar] [CrossRef]
- Kersten, T.; Kobe, M.; Gabriel, G.; Timmen, L.; Schön, S.; Vogel, D. Geodetic monitoring of subrosion-induced subsidence processes in urban areas. J. Appl. Geod. 2017, 11, 21–29. [Google Scholar] [CrossRef]
- Li, S.M.; Wang, Z.M.; Yuan, L.W.; Li, X.X.; Huang, Y.Z.; Guo, R. Mechanism of land subsidence of plateau lakeside Kunming city cluster (China) by MT-InSAR and leveling survey. J. Coast. Res. 2020, 115, 666–675. [Google Scholar] [CrossRef]
- Nojo, M.; Waki, F.; Akaishi, M.; Muramoto, Y. The investigation of a new monitoring system using leveling and GPS. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.M.; Guo, C.X.; Jiang, T.; Zhang, Q.T.; Chen, B.; Jiang, G.W. 2020 height measurement and determination of Mount Oomolangma. Acta Geod. Et Cartogr. Sin. 2021, 50, 556–561. [Google Scholar]
- Xie, Y.S.; Tan, K.X. Fractal research on fracture structures and application in geology. Earth Environ. 2002, 1, 71–77. [Google Scholar]
- Guo, C.Y.; Gao, B.F.; Xing, X.W. Comparison of lower limit value determined by two fractal methods. Gold 2008, 3, 13–17. [Google Scholar]
- Nooshin, F.; Michel, A.; Li, L. Numerical investigation of the geomechanical response of adjacent backfilled stopes. Can. Geotech. J. 2015, 52, 1507–1525. [Google Scholar]
- Zhang, J.X.; Zhou, N.; Huang, Y.L.; Zhang, Q. Impact law of the bulk ratio of backfilling body to over-lying strata movement in fully mechanized backfilling mining. Miner. Min. Technol. 2011, 47, 73–84. [Google Scholar]
- Liu, Z.X.; Lan, M.; Xiao, S.Y.; Guo, H.Q. Damage failure of cemented backfill and its reasonable match with rock mass. Trans. Nonferrous Met. Soc. China 2015, 25, 954–959. [Google Scholar] [CrossRef]
- Deveci, H.; Ercikdi, B.; Kesimal, A. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage. Cem. Concr. Compos. 2009, 31, 268–274. [Google Scholar]
- Zhang, D.M.; Yin, G.Z.; Wei, Z.A.; Zhang, W.Z. Fractal characteristics and prediction of rock layer movement in coal mining. J. Min. Saf. Eng. 2003, 2, 98–100. [Google Scholar]
- Donnelly, L.J.; Culshaw, M.G.; Bell, F.G. Longwall mining-induced fault reactivation and delayed subsidence ground movement in British coalfields. Q. J. Eng. Geol. Hydrogeol. 2008, 41, 301–314. [Google Scholar] [CrossRef]
- Jiang, J.P.; Zhang, Y.S.; Yan, C.H.; Luo, G.Y. Discussion on fault effect of rock movement in underground engineering. Chin. J. Rock Mech. Eng. 2002, 8, 1257–1262. [Google Scholar]
- Wang, H.; Qin, Y.; Wang, H.B.; Chen, Y.; Liu, X.C. Process of overburden failure in steeply inclined multi-seam mining: Insights from physical modeling. R. Soc. Open Sci. 2021, 2, 75. [Google Scholar] [CrossRef]
- Das, A.J.; Mandal, P.K.; Bhattacharjee, R.; Tiwari, S.; Kushwaha, A.; Roy, L.B. Evaluation of stability of underground workings for exploitation of an inclined coal seam by the ubiquitous joint model. Int. J. Rock Mech. Min. Sci. 2017, 93, 101–114. [Google Scholar] [CrossRef]
- Kusznir, N.J.; Marsden, G.; Egan, S.S. A Flexural-Cantilever Simple-Shear/Pure-Shear Model of Continental Lithosphere Extension: Applications to the Jeanne d’Arc Basin, Grand Banks and Viking Graben, North Sea; Special Publications; Geological Society: London, UK, 1991. [Google Scholar]
- Ren, J.Y.; Lei, C.; Yang, H.Z.; Yin, X.Y. Lithosphere stretching model of deep water in Qiongdongnan basin, northern continental margin of south China sea, and controlling of the post-rift subsidence. Earth Sci. 2009, 34, 963–974. [Google Scholar]
- Hui, X.; Ma, F.S.; Zhao, H.J.; Xu, J.M. Monitoring and statistical analysis of mine subsidence at three metal mines in China. Bull. Eng. Geol. Environ. 2018, 78, 3983–4001. [Google Scholar] [CrossRef]
r/(mm/month) | 3 | 6 | 9 | 12 | 15 | 18 |
N1 (r) | 894 | 175 | 45 | 17 | 4 | 1 |
r/(mm/month) | 3 | 6 | 9 | 12 | 15 | 18 |
N2 (r) | 4473.7 | 1441.7 | 517.0 | 236.8 | 68.1 | 19.7 |
r/(mm/month) | 3 | 6 | 9 | 12 | 15 |
N3 (r) | 287 | 59 | 12 | 3 | 1 |
r/(mm/month) | 3 | 6 | 9 | 12 | 15 |
N4 (r) | 208 | 46 | 12 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Ma, F.; Guo, J.; Li, G.; Song, Y.; Wan, Y. A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China. Sustainability 2022, 14, 5864. https://doi.org/10.3390/su14105864
Liu J, Ma F, Guo J, Li G, Song Y, Wan Y. A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China. Sustainability. 2022; 14(10):5864. https://doi.org/10.3390/su14105864
Chicago/Turabian StyleLiu, Jia, Fengshan Ma, Jie Guo, Guang Li, Yewei Song, and Yang Wan. 2022. "A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China" Sustainability 14, no. 10: 5864. https://doi.org/10.3390/su14105864
APA StyleLiu, J., Ma, F., Guo, J., Li, G., Song, Y., & Wan, Y. (2022). A Field Study on the Law of Spatiotemporal Development of Rock Movement of Under-Sea Mining, Shandong, China. Sustainability, 14(10), 5864. https://doi.org/10.3390/su14105864