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Abstract: Recent studies have witnessed remarkable merits of metaheuristic algorithms in optimiza-
tion problems. Due to the significance of the early analysis of the thermal load in energy-efficient
buildings, this work introduces and compares four novel optimizer techniques—the firefly algorithm
(FA), optics-inspired optimization (OIO), shuffled complex evolution (SCE), and teaching–learning-
based optimization (TLBO)—for an accurate prediction of the heating load (HL). The models are
applied to a multilayer perceptron (MLP) neural network to surmount its computational shortcom-
ings. The models are fed by a literature-based dataset obtained for residential buildings. The results
revealed that all models used are capable of properly analyzing and predicting the HL pattern. A
comparison between them, however, showed that the TLBO-MLP with the coefficients of determi-
nation 0.9610 vs. 0.9438, 0.9373, and 0.9556 (respectively, for FA-MLP, OIO-MLP, and SCE-MLP)
and the root mean square error of 2.1103 vs. 2.5456, 2.7099, and 2.2774 presents the most reliable
approximation of the HL. It also surpassed several methods used in previous studies. Thus, the
developed TLBO-MLP can be a beneficial model for subsequent practical applications.

Keywords: HVAC; heating load; artificial intelligence; metaheuristic algorithms; big data; machine
learning; energy; building energy; deep learning; data science

1. Introduction

Heating, ventilating, and air conditioning (HVAC) systems [1] are an important com-
ponent of new buildings, because their task is to adjust indoor air conditions. On the other
hand, due to the growing tendency of people dwelling in energy-efficient buildings, having
a reliable foreknowledge of the amount of required thermal loads can give insights for
the appropriate selection of HVAC systems. Until now, many attempts have focused on
optimizing HVAC systems through various mathematical and analytical methods [2–4].
At the same time, recent research has suggested the benefit of using machine-learning
techniques (i.e., inverse modeling) for predicting the energy performance of buildings [5].

From a general perspective, engineers have recently benefited from advancements
in computational and programming sciences, which have led to the development of new
methodologies for various purposes [6–8]. Facilitating the simulations of real-world events
has been a primary objective for this purpose [8–10]. A diversity of solutions have given
experts the chance to choose the most appropriate approach (e.g., numerical [11,12], ex-
perimental [13,14], empirical [15,16], etc.) with respect to the unsolved problem. Machine
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learning, however, due to its advantages, has emerged as a potential substitute to many of
these traditional methods. A wide variety of machine learning tools have solved complex
issues with desirable accuracy [17–19].

An artificial neural network (ANN) [20] represents a robust intelligent processor for
modeling objectives in various scientific fields [21–23]. Composed of several layers and
neural processors, a multi-layer perceptron (MLP) [24] is known as a widely used type of
ANN. These processors have been profitably applied for energy-related simulations [25–27].
An MLP maps the association of a dependent parameter with independent factors. In each
processor of the MLP, called a neuron, a weight is assigned to each dependent parameter.
The summation of the resultant value with a bias term will then be the input of an activation
function. This method is implemented by the subsequent neurons to have a forward
movement. This is why the MLP is categorized as a feed-forward tool [28].

Ren et al. [29] proposed using an ANN for the heat loss prediction of buildings,
and their results showed good agreement with analytical approaches. Mohammadhassani
et al. [30] showed the superiority of this model in forecasting the strain of a tie section within
beams made of concrete. Sadeghi et al. [31] used an MLP for predicting the cooling load
(CL) and heating load (HL) of a residential building. They also benefited from a sensitivity
analysis that found the best response of the networks. Sholahudin and Han [32] employed
a simplified dynamic version of an ANN associated with the Taguchi technique for the
efficient prediction of HL in an HVAC system. More studies about the application of ANNs
in energy modeling can be found in earlier literature [33–35]. Furthermore, analogous
machine-learning models such as the fuzzy network [36], random forest [37], and support
vector-based models [38] have presented valuable evaluations of energy-based issues.

Apart from well-known intelligent predictors, metaheuristic science has received
growing consideration in many fields [39,40], particularly energy analysis and HVAC
systems [41,42]. Katebi et al. [43] attained the optimal condition of a wavelet-based linear
quadratic regulator using metaheuristic methods. Martin et al. [44] used a metaheuristic
technique along with sensitivity analysis for parameter adjustment in order to calibrate the
HVAC sub-system component. Likewise, Bamdad Masouleh [45] employed two types of ant
colony optimization (for continuous and mixed variables) for building energy optimization.
The superiority of the proposed models was also demonstrated in comparison to a number
of benchmarks.

The suitable applicability of these algorithms has frequently been shown for optimiz-
ing machine-learning models [46–48]. Zhou et al. [49] compared the competency of particle
swarm optimization (PSO) and artificial bee colony (ABC) applied to an ANN for estimating
the HL and CL. An approximately 22 to 24% accuracy increase demonstrated the efficiency
of both algorithms, and the PSO performed more effectively. Bui et al. [50] employed an
electromagnetism-based firefly scheme for optimizing the ANN in approximating energy
consumption. It was shown that their hybrid method was more accurate than a regular
ANN. Moayedi et al. [51] tested the effectiveness of two optimizers, namely gray wolf
optimization (GWO) and the grasshopper optimization algorithm (GOA), synthesized with
an ANN for the HL estimation of a residential building. The obtained accuracies showed
that utilizing these algorithms results in reducing the prediction error from 2.9859 to 2.4459
and 2.2899, respectively.

It has been discussed that metaheuristic algorithms perform such optimizations
through the prevailing computational drawbacks, such as local minima [52] and dimension
danger [53]. In general, it is obvious that allowing these algorithms to supervise the training
of intelligent models would result in powerful prediction models for any purpose [54,55].
On the other hand, considering the wide variety of optimization techniques, conducting
comparative studies for the new generation of a metaheuristic family is of high importance.

For the problem of energy performance analysis, discovering a reliable model for ther-
mal load modeling can be beneficial from an environmental and economical point of view.
It is for this reason that our research investigates the suitability of four novel metaheuristic
optimizers, namely the firefly algorithm (FA), optics-inspired optimization (OIO), shuffled
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complex evolution (SCE), and teaching–learning-based optimization (TLBO), for the prob-
lem of HL estimation. One motivation for considering TLBO is the excellent performance
of this strategy in appraising the CL by Zhou et al. [56]. The algorithms are synthesized
with an ANN to adjust computational parameters. The hybrid ensembles are compared to
identify the most robust technique that can be used for practical estimations of HL from
the building characteristics.

2. Materials and Methods
2.1. Data Provision

In order to approximate a parameter, the relationship between the parameter and
influential factors should be analyzed. Therefore, providing a valid dataset is a necessary
task. In this study, 768 thermal load conditions are used for training and testing the models.
Tsanas and Xifara [57] implemented a vast analysis of HL and CL for different residential
buildings. Their efforts resulted in gathering a widely used dataset, which can be accessed
at http://archive.ics.uci.edu/ml/datasets/Energy+efficiency (accessed on 4 October 2021).

The HL and CL are the output parameters (i.e., dependent factors) considered to be
affected by eight influential parameters (i.e., independent factors), namely roof area (RA),
relative compactness (RC), glazing area (GA), wall area (WA), overall height (OH), surface
area (SA), orientation (OR), and glazing area distribution (GAD). Figure 1 depicts a box
plot of the HL and input factors.
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Figure 1. Box plot of the dataset: (a) RC, (b) SA, (c) WA, (d) RA, (e) OH, (f) OR, (g) GA, (h) GAD,
and (i) HL.

As mentioned, a total of 768 samples were provided. By a random sampling, 614 records
(i.e., 80% of 768) were selected and assigned as training data to be used for HL pattern
analysis, and a residual 154 records (i.e., 20% of 768) were considered as testing data to
assess the prediction efficiency of the models.

2.2. Methodology

As explained, in response to the drawbacks in the conventional neural network, this
study investigates the effect of four novel optimizers, namely FA, OIO, SCE, and TLBO, on
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the performance of an ANN. Specifically, these algorithms are search schemes that aim to
find the best hyperparameters of the ANN to be replaced with those suggested by typical
learning rules (Levenberg–Marquardt [58] and backpropagation [59]).

The flashing behavior of fireflies is the basis of the FA algorithm. This nature-inspired
method was first suggested by Yang [60] in 2008. In this strategy, there are two significant
parameters, namely the intensity variation of light and the attractiveness formulation. As
a maxim, the members of the FA are attracted to each other regardless of whether they
are male or female. Further, the suitability of candidate solutions is determined by the
brightness of the fireflies; the brighter members create more attractiveness. The reader may
refer to earlier studies for mathematical details of the FA [61–63].

Kashan [64] designed the OIO as a capable physics-based search scheme. This al-
gorithm draws on the relationships between the light, mirror, and pictures in a virtual
space. Specifically, a number of light points are first generated as the population. They then
produce an artificial image in the problem space with the help of a mirror. Updating the
position of the generated image is the essential task of the OIO for adjusting the solutions.
More information about this algorithm is available in previous literature [65–67].

The name SCE implies a well-known optimizer developed by Duan et al. [68]. The
essence of the SCE is synthesizing four theories, namely controlled random search, genetic
algorithm, complex shuffling, and the Nelder–Mead (downhill simplex) method [69]. Like
many other optimization techniques, the algorithm begins by producing a scattered popu-
lation and ends with meeting a satisfaction criterion. Among these steps, the complexes
of the individuals are partitioned, evolved, and shuffled to implement optimization. For
more detailed information about the algorithms, related studies are recommended [70–72].

Mimicking the interaction of the tutor and pupil in class, the TLBO was introduced by
Rao et al. [73] in 2011 as a swarm-based metaheuristic algorithm. In this model, the teacher
tries to establish the highest cooperation among students. As in reality, the teacher assesses
the students by giving exams, and the teacher would like the students to achieve their
maximum learning capability. In this model, a difference vector (i.e., differences between
two individuals) is calculated, and the students aim to update themselves accordingly. The
TLBO is better detailed in studies such as [74,75].

3. Results and Discussion

According to Section 1, this paper investigates the capability of four novel optimiza-
tions of a neural network for HL approximation. This objective is fulfilled by synthesizing
the algorithms with an MLP neural network. Utilizing a specific search scheme, each
algorithm tries to find the most appropriate values for the computational weights (and
biases) belonging to the MLP.

As is known, the structure of the MLP relies on a hidden layer’s size and the contained
neurons therein. Thus, these parameters need to be optimized first. One hidden layer is
considered for the MLP, as many studies have proved the competence of one hidden layer
for modeling complex phenomena [76,77]. However, a trial-and-error practice was used to
identify the best number for the hidden neurons. The results showed that among the tested
structures (where the middle layer contains 1, 2, 3, . . . , 10 neurons), 8 × 6 × 1 gives the
most promising performance. Figure 2 shows the MLP used.
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3.1. Accuracy Indicators

The root mean square error (RMSE) and mean absolute error (MAE) are defined for
measuring the learning and prediction errors. Equations (1) and (2) give the RMSE and
MAE formulation. Further, Equation (3) defines the coefficient of determination (R2) that is
used to calculate the compatibility between the measured and forecasted HLs:

MAE =
1
U

U

∑
i=1

∣∣∣Siobserved − Sipredicted

∣∣∣ (1)

RMSE =

√√√√ 1
U

U

∑
i=1

[(Siobserved − Sipredicted)]

2

(2)

R2 = 1 −

U
∑

i=1
(Sipredicted − Siobserved)

2

U
∑

i=1
(Siobserved − Sobserved)

2
(3)

In these equations, Siobserved
and Sipredicted

, give the measured and forecasted HLs, re-
spectively. Further, U signifies the number of records, and Sobserved is the average of the
observed HLs.

3.2. Incorporated MLP with Optimizers

Once the metaheuristic algorithms are synthesized with the MLP, four ensembles
of FA-MLP, OIO-MLP, SCE-MLP, and TLBO-MLP are created. Each ensemble is fed by
training samples to infer the dependency between the HL and the corresponding factors.
With respect to the optimization behavior of the models, 1000 repetitions are considered for
each model to implement the optimization. At each repetition, the RMSE of the results is
calculated to report the objective function. Of note is that, since this stage is dedicated to
pattern recognition, the RMSE of the training data is reported.

In swarm-based algorithms, the number of the involved population is a key factor. In
this study, nine different population sizes (10, 25, 50, 75, 100, 200, 300, 400, and 500) are
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tested for each model, and the size that gives the lowest RMSE is selected as the optimal
complexity. The RMSEs are shown in Figure 3. According to this figure, the lowest RMSE
values (2.3838, 2.6256, 2.1448, and 1.9817) are the result of the populations 50, 200, 50, and
300, respectively, for the FA-MLP, OIO-MLP, SCE-MLP, and TLBO-MLP. However, a weaker
sensitivity can be seen for the OIO algorithm compared to the other three; the reason for this
can be sought in specific characteristics of the optimization strategies. Moreover, Figure 4
depicts the RMSE values obtained for these complexities in all iterations.
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Figure 4 also demonstrates that the convergence curve of the TLBO algorithm is
slightly lower than the other algorithms. This means that this algorithm has obtained a
lower error in adjusting the ANN parameters. Thus, the findings of the algorithm are
presented here to create a predictive model. Returning to Figure 2, the output is released
from the latest neuron, which deals with seven parameters (six weights and one bias). This
neuron itself is fed by six previous layers of neurons, each dealing with nine parameters
(eight weights and one bias). Altogether, the network is composed of sixty-one variables
that are optimized by metaheuristic approaches. Equation (4) calculates the HL from the
TLBO method when it receives six parameters distinguished by K1, K2, K3, K4, K5, and K6,
which are the responses of the neurons in the hidden layer:

HL TLBO-MLP = 0.303606 × K1 − 0.311304 × K2 − 0.276431 × K3 + 0.137188 × K4 + 0.689859 × K5
− 0.265206 × K6 + 0.831238

(4)

These middle terms of the above relationship are functions of the input parameters
described in Equations (5)–(10):

K1 = Tansig (−0.756894 × RC + 0.867454 × SA + 0.841520 × WA + 0.216126 × RA + 0.680434 × OH − 0.362683

× OR − 0.323011 × GA − 0.537092 × GAD + 1.751447)
(5)

K2 = Tansig (−0.527296 × RC − 0.057151 × SA − 0.263581 × WA + 0.474892 × RA + 0.420216 × OH + 0.475592

× OR + 0.798177 × GA − 1.204743 × GAD + 1.050868)
(6)

K3 = Tansig (0.645523 × RC − 0.058418 × SA − 0.344279 × WA − 0.897648 × RA − 0.794700 × OH − 0.474246

× OR + 0.875500 × GA + 0.316534 × GAD − 0.350289)
(7)

K4 = Tansig (−0.009316 × RC − 1.121579 × SA − 0.760253 × WA − 0.924062 × RA + 0.169935 × OH + 0.150478

× OR − 0.217070 × GA − 0.528228 × GAD − 0.350289)
(8)

K5 = Tansig (0.029189 × RC + 0.665102 × SA + 0.559293 × WA + 0.741565 × RA − 0.692446 × OH − 0.443736

× OR − 0.864550 × GA − 0.581201 × GAD + 1.050868)
(9)

K6 = Tansig (−0.488121 × RC + 0.222809 × SA + 0.754266 × WA + 1.225463 × RA − 0.156798 × OH + 0.028737

× OR + 0.214770 × GA − 0.798401 × GAD − 1.751447)
(10)

where, for a typical input x,

Tansig (x) =
2

1 + e−2x − 1 (11)

3.3. Prediction Results

In this section, the outputs (i.e., the predicted HLs) are compared to the target values
(i.e., the measured HLs) to assess the effectiveness of the implemented models. The results
of the training phase are presented in Figure 5, which depicts the difference between each
set of output and target HLs. In this phase, the obtained error values range in [−6.2053,
6.8793], [−6.9659, 7.8776], [−5.6939, 6.7539], and [−4.1923, 6.5126] for the predictions of
the FA-MLP, OIO-MLP, SCE-MLP, and TLBO-MLP, respectively.

The RMSE values, as mentioned in the previous section, are 2.3838, 2.6256, 2.1448,
and 1.9817. In addition to this, the calculated MAEs (1.6821, 1.9568, 1.5466, and 1.4626)
denote a low level of training error for all four models. Meanwhile, the obtained values of
R2 indicate a consistency of more than 93% of target and output HLs.
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In the testing phase, the RMSEs (2.5456, 2.7099, 2.2774, and 2.1103) indicate that the
weights (and biases) tuned by the metaheuristic algorithms can construct capable MLPs.
Further, the MAEs of 1.7979, 1.9278, 1.6077, and 1.5804 show a reasonable generalization
error for all four ensembles. Moreover, the consistency of the testing results is shown in
Figure 7. The calculated R2s (0.9438, 0.9373, 0.9556, and 0.9610) give a high accuracy in
predicting the HL.
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3.4. Efficiency Comparison

Considering the results in both the learning and prediction phases, the models with a
lower RMSE (or MAE) and a larger R2 are selected as the most accurate predictors of the
HL. To this end, Table 1 presents all obtained accuracy criteria. As shown, without any
discrepancy, the MLP made by the weights and biases from the TLBO presents the most
reliable understanding of the HL and also the most accurate prediction of this parameter.
Subsequently, the SCE emerges as the second promising optimizer, followed by the FA
and OIO.

Table 1 also provides the results of three previous works [49,51,78,79]. In these stud-
ies, six different hybrids of the MLP network (based on ABC [80], PSO [81], the genetic
algorithm [82], the imperialist competitive algorithm (ICA) [83], wind-driven optimization
(WDO) [84], the whale optimization algorithm (WOA) [85], spotted hyena optimization
(SHO) [86], the salp swarm algorithm (SSA) [87], GOA [88], and GWO [89]) were employed
to predict the HL using the same dataset. At a glance, the TLBO and SCE algorithms used
in this study outperform the listed models in both the training and testing phases. This
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indicates that our work has achieved the defined objective of introducing more capable HL
evaluative tools.

Table 1. Obtained statistical indices in HL modeling of this study compared to [49,51,78,79].

Study Models

Network Results

Training Testing

RMSE MAE R2 RMSE MAE R2

This study

FA-MLP 2.3838 1.6821 0.9426 2.5456 1.7979 0.9438

OIO-MLP 2.6256 1.9568 0.9304 2.7099 1.9278 0.9373

SCE-MLP 2.1448 1.5466 0.9536 2.2774 1.6077 0.9556

TLBO-MLP 1.9817 1.4626 0.9604 2.1103 1.5804 0.9610

[49]
ABC-MLP 2.9855 2.1197 0.9120 2.6159 1.9111 0.9349

PSO-MLP 2.9736 2.1479 0.9126 2.5693 1.8630 0.9370

[78]
GA-MLP 2.9986 2.1797 0.8711 2.8878 2.0622 0.9076

ICA-MLP 2.8050 2.0068 0.8816 2.7819 2.0089 0.9115

[79]

WDO-MLP 2.5896 1.7944 0.9344 2.8312 1.9863 0.9213

WOA-MLP 2.6998 1.9702 0.9287 2.9213 2.1921 0.9154

SHO-MLP 4.2283 3.2232 0.8337 4.1501 3.1092 0.8385

SSA-MLP 2.4321 1.6737 0.9421 2.7527 1.9178 0.9248

[51]
GOA-MLP 2.3715 1.6934 0.9432 2.4459 1.7373 0.9486

GWO-MLP 2.2959 1.6475 0.9468 2.2899 1.6514 0.9551

Furthermore, Figure 8 shows the computation time taken by each algorithm to op-
timize the MLP. According to this chart, there is not a significant difference between the
performance of the models for populations smaller than 75. Implementing the best fitted
populations of the FA-MLP, OIO-MLP, SCE-MLP, and TLBO-MLP (i.e., 50, 200, 50, and 300,
respectively) takes around 654, 5652, 794, and 8547 s. The optimum TLBO-MLP, despite
having the best accuracy for predicting the HL, is the most time-consuming approach. At
the same time, the column of the SCE experiences the smallest change and reaches at most
1261 s.
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main memory).
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3.5. Discussion

Overall, the superiority of intelligent models over traditional and experimental ap-
proaches is widely accepted in many engineering measurements. Apart from a satisfying
accuracy provided by these models, the ease of implementation is a determining advan-
tage for their use. In the case of energy-efficiency analysis, for example, there might be
some drawbacks associated with using forward modeling approaches (low capability
for occupied buildings [90]) and popular simulation packages (different accuracy of sim-
ulation [91]). Therefore, indirect evaluative models, and more particularly the models
offered in this paper, are preferable over costly and destructive techniques. This is further
stressed when an optimal methodology is developed utilizing metaheuristic techniques. In
other words, the use of optimization algorithms creates capable ensembles that operate at
optimum conditions.

From an applicability point of view, practical usages can be defined for the suggested
methodologies. Two examples are:

(a) With an upcoming construction project, the suggested models can give an accurate
early measurement of the required thermal load with respect to the dimensions and
building characteristics. The models would effectively assist engineers and owners in
providing suitable HVAC systems.

(b) Another form of early-stage assistance would be the proper design of the building
itself and tuning the architecture through input parameters (i.e., RA, RC, GA, WA,
OH, SA, OR, and GAD) in reconstruction projects. In this sense, it is also possible to
investigate the effect of each input parameter separately to achieve an understanding
of the thermal load behavior. Figure 9 shows the behavior of the HL with an increase
in RC. As shown, the trend is not regular and easy to predict; however, it is nicely
predicted by the TLBO-MLP. Hence, this algorithm can give reliable approximations
for real-world buildings, too.
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In this regard, it is also worth noting that the suggested model was presented in the
form of an explicit mathematical formula that is more convenient to use compared to the
GUI form in MATLAB.

Despite various benefits that come after solving an optimization problem, taking the
appropriate time to find a global solution is required. Hence, having a balance between
the time effectiveness and accuracy of the models can influence choosing the most efficient
model. However, the authors believe that properly setting the hyper-parameters of the
optimizers, as well as performing feature validity analysis, can result in a less complicated
problem space, and, consequently, more efficient solutions. Although the TLBO was the
most accurate model, the SCE-based models were considerably more time-effective. This
necessitates selecting the appropriate methodology with respect to both time and accuracy.
For example, in projects for which time is not an issue, using the most accurate mode
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(i.e., no matter how time-consuming) is logical, whereas in time-sensitive applications, a
tolerance may be considered for the accuracy to reach a faster solution. However, it should
be noted that, overall, the performance of the models was not that different, and all models
would properly serve practical usages.

The dataset used creates a relatively large network and extended problem space due
to the number of records and input parameters. In such situations, it is recommended
to perform feature selection to use only the most contributive parameters. For instance,
according to the importance assessment carried out by Wu et al. [92] on the same data,
the role of GA and RC is considerably more involved than other parameters, whereas OR
and OH have the smallest influence on the HL. This point should result in a more efficient
simulation for future research.

4. Conclusions

This paper presented a comparison between four novel metaheuristic techniques,
namely FA, OIO, SCE, and TLBO, for analyzing and predicting the heating load of resi-
dential buildings. These algorithms played the role of optimizer for an artificial neural
network. The models estimated the HL for 768 thermal load conditions. The outcomes are
as follows:

• According to the sensitivity analysis carried out, the best complexities of the FA-MLP,
OIO-MLP, SCE-MLP, and TLBO-MLP ensembles result for the swarm sizes of 50, 200, 50,
and 300, respectively.

• Compared to other algorithms, the optimum configuration of the TLBO needed con-
siderably higher computation time for optimizing the MLP.

• Considering the accuracy evaluation (the MEAs of 1.6821, 1.9568, 1.5466, and 1.4626),
all four ensembles attained a good perception of the relationship between the HL and
influential parameters.

• In the testing phase, the calculated error values of 1.7979, 1.9278, 1.6077, and 1.5804
indicated a low prediction error and the success of the implemented models.

• By comparison, the TLBO-MLP came up to be the strongest model, followed by
SCE-MLP, FA-MLP, and OIO-MLP.

• The TLBO and SCE surpassed several other optimizers, including those used in the
literature.

The TLBO-MLP was introduced as a practically applicable methodology, but potential
ideas were also presented for future projects with respect to the limitations of the study,
such as data improvement and future selection, optimizing the characteristics of a building
using the model, comparison with more time-efficient tools, etc.
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Nomenclature

HVAC heating, ventilating, and air conditioning
ANN artificial neural network
MLP multi-layer perceptron
CL cooling load
HL heating load
PSO particle swarm optimization
ABC artificial bee colony
GWO gray wolf optimization
GOA grasshopper optimization algorithm
FA firefly algorithm
OIO optics inspired optimization
SCE shuffled complex evolution
TLBO teaching–learning-based optimization
RA roof area
RC relative compactness
GA glazing area
WA wall area
OH overall height
SA surface area
OR orientation
GAD glazing area distribution
RMSE root mean square error
MAE mean absolute error
R2 coefficient of determination
ICA imperialist competitive algorithm
WDO wind-driven optimization
WOA whale optimization algorithm
SHO spotted hyena optimization
SSA salp swarm algorithm

References
1. McQuiston, F.C.; Parker, J.D. Heating, Ventilating, and Air Conditioning: Analysis and Design; John Wiley & Sons: Hoboken, NJ,

USA, 1982.
2. Ihara, T.; Gustavsen, A.; Jelle, B.P. Effect of facade components on energy efficiency in office buildings. Appl. Energy 2015, 158,

422–432. [CrossRef]
3. Rosen, S.L. Using BIM in HVAC design. Ashrae J. 2010, 52, 24.
4. Ikeda, S.; Ooka, R. Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy

storage, and heat source in a building energy system. Appl. Energy 2015, 151, 192–205. [CrossRef]
5. Sonmez, Y.; Guvenc, U.; Kahraman, H.T.; Yilmaz, C. A Comperative Study on Novel Machine Learning Algorithms for Estimation

of Energy Performance of Residential Buildings. In Proceedings of the 2015 3rd International Istanbul Smart Grid Congress and
Fair (ICSG), Istanbul, Turkey, 29–30 April 2015; pp. 1–7.

6. Lu, N.; Wang, H.; Wang, K.; Liu, Y. Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges.
Comput. Model. Eng. Sci. 2021, 127, 345–360. [CrossRef]

7. Chen, Y.; Lin, H.; Cao, R.; Zhang, C. Slope stability analysis considering different contributions of shear strength parameters. Int.
J. Geomech. 2021, 21, 04020265. [CrossRef]

8. Zhang, S.-W.; Shang, L.-Y.; Zhou, L.; Lv, Z.-B. Hydrate Deposition Model and Flow Assurance Technology in Gas-Dominant
Pipeline Transportation Systems: A Review. Energy Fuels 2022, 36, 1747–1775. [CrossRef]

9. Liu, E.; Li, D.; Li, W.; Liao, Y.; Qiao, W.; Liu, W.; Azimi, M. Erosion simulation and improvement scheme of separator blowdown
system—A case study of Changning national shale gas demonstration area. J. Nat. Gas Sci. Eng. 2021, 88, 103856. [CrossRef]

10. Peng, S.; Zhang, Y.; Zhao, W.; Liu, E. Analysis of the influence of rectifier blockage on the metering performance during shale gas
extraction. Energy Fuels 2021, 35, 2134–2143. [CrossRef]

11. Zhang, W.; Tang, Z. Numerical modeling of response of CFRP–Concrete interfaces subjected to fatigue loading. J. Compos. Constr.
2021, 25, 04021043. [CrossRef]

12. Peng, S.; Chen, Q.; Liu, E. The role of computational fluid dynamics tools on investigation of pathogen transmission: Prevention
and control. Sci. Total Environ. 2020, 746, 142090. [CrossRef]

http://doi.org/10.1016/j.apenergy.2015.08.074
http://doi.org/10.1016/j.apenergy.2015.04.029
http://doi.org/10.32604/cmes.2021.013792
http://doi.org/10.1061/(ASCE)GM.1943-5622.0001937
http://doi.org/10.1021/acs.energyfuels.1c03812
http://doi.org/10.1016/j.jngse.2021.103856
http://doi.org/10.1021/acs.energyfuels.0c03748
http://doi.org/10.1061/(ASCE)CC.1943-5614.0001154
http://doi.org/10.1016/j.scitotenv.2020.142090


Sustainability 2022, 14, 5924 17 of 19

13. Wei, J.; Xie, Z.; Zhang, W.; Luo, X.; Yang, Y.; Chen, B. Experimental study on circular steel tube-confined reinforced UHPC
columns under axial loading. Eng. Struct. 2021, 230, 111599. [CrossRef]

14. Mou, B.; Bai, Y. Experimental investigation on shear behavior of steel beam-to-CFST column connections with irregular panel
zone. Eng. Struct. 2018, 168, 487–504. [CrossRef]

15. Xie, S.-J.; Lin, H.; Chen, Y.-F.; Wang, Y.-X. A new nonlinear empirical strength criterion for rocks under conventional triaxial
compression. J. Cent. South Univ. 2021, 28, 1448–1458. [CrossRef]

16. Ju, B.-K.; Yoo, S.-H.; Baek, C. Economies of Scale in City Gas Sector in Seoul, South Korea: Evidence from an Empirical
Investigation. Sustainability 2022, 14, 5371. [CrossRef]

17. Liu, Z.; Fang, L.; Jiang, D.; Qu, R. A machine-learning based fault diagnosis method with adaptive secondary sampling for
multiphase drive systems. IEEE Trans. Power Electron. 2022, 37, 8767–8772. [CrossRef]

18. Yahya, S.I.; Aghel, B. Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and
empirical paradigms. Renew. Energy 2021, 177, 318–326. [CrossRef]

19. Moayedi, H.; Mehrabi, M.; Kalantar, B.; Abdullahi Mu’azu, M.; Rashid, A.S.A.; Foong, L.K.; Nguyen, H. Novel hybrids of
adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of
seismic-induced landslide. Geomat. Nat. Hazards Risk 2019, 10, 1879–1911. [CrossRef]

20. Braspenning, P.J.; Thuijsman, F.; Weijters, A.J.M.M. Artificial Neural Networks: An Introduction to ANN Theory and Practice; Springer
Science & Business Media: Berlin/Heidelberg, Germany, 1995; Volume 931.

21. Yahya, S.I.; Rezaei, A.; Aghel, B. Forecasting of water thermal conductivity enhancement by adding nano-sized alumina particles.
J. Therm. Anal. Calorim. 2021, 145, 1791–1800. [CrossRef]

22. Peng, S.; Chen, R.; Yu, B.; Xiang, M.; Lin, X.; Liu, E. Daily natural gas load forecasting based on the combination of long short term
memory, local mean decomposition, and wavelet threshold denoising algorithm. J. Nat. Gas Sci. Eng. 2021, 95, 104175. [CrossRef]

23. Seyedashraf, O.; Mehrabi, M.; Akhtari, A.A. Novel approach for dam break flow modeling using computational intelligence. J.
Hydrol. 2018, 559, 1028–1038. [CrossRef]

24. Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [CrossRef]
25. Gao, W.; Alsarraf, J.; Moayedi, H.; Shahsavar, A.; Nguyen, H. Comprehensive preference learning and feature validity for

designing energy-efficient residential buildings using machine learning paradigms. Appl. Soft Comput. 2019, 84, 105748.
[CrossRef]

26. Ahmad, A.; Ghritlahre, H.K.; Chandrakar, P. Implementation of ANN technique for performance prediction of solar thermal
systems: A Comprehensive Review. Trends Renew. Energy 2020, 6, 12–36. [CrossRef]

27. Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z. Study on deep reinforcement learning techniques for building energy consumption
forecasting. Energy Build. 2020, 208, 109675. [CrossRef]

28. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [CrossRef]
29. Ren, Z.; Motlagh, O.; Chen, D. A correlation-based model for building ground-coupled heat loss calculation using Artificial

Neural Network techniques. J. Build. Perform. Simul. 2020, 13, 48–58. [CrossRef]
30. Mohammadhassani, M.; Nezamabadi-Pour, H.; Suhatril, M.; Shariati, M. Identification of a suitable ANN architecture in

predicting strain in tie section of concrete deep beams. Struct. Eng. Mech. 2013, 46, 853–868. [CrossRef]
31. Sadeghi, A.; Younes Sinaki, R.; Young, W.A.; Weckman, G.R. An Intelligent Model to Predict Energy Performances of Residential

Buildings Based on Deep Neural Networks. Energies 2020, 13, 571. [CrossRef]
32. Sholahudin, S.; Han, H. Simplified dynamic neural network model to predict heating load of a building using Taguchi method.

Energy 2016, 115, 1672–1678. [CrossRef]
33. Khalil, A.J.; Barhoom, A.M.; Abu-Nasser, B.S.; Musleh, M.M.; Abu-Naser, S.S. Energy Efficiency Predicting using Artificial Neural

Network. Int. J. Acad. Pedagog. Res. 2019, 3, 1–7.
34. Ryu, J.-A.; Chang, S. Data Driven Heating Energy Load Forecast Modeling Enhanced by Nonlinear Autoregressive Exogenous

Neural Networks. Int. J. Struct. Civ. Eng. Res. 2019. [CrossRef]
35. Zhao, D.; Ruan, H.; Zhang, Z. Application of artificial intelligence algorithms in the prediction of heating load. In AIP Conference

Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; p. 020040.
36. Adedeji, P.A.; Akinlabi, S.; Madushele, N.; Olatunji, O.O. Hybrid adaptive neuro-fuzzy inference system (ANFIS) for a multi-

campus university energy consumption forecast. Int. J. Ambient Energy 2022, 43, 1685–1694. [CrossRef]
37. Ahmad, T.; Chen, H. Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy

management systems. Sustain. Cities Soc. 2019, 45, 460–473. [CrossRef]
38. Namlı, E.; Erdal, H.; Erdal, H.I. Artificial Intelligence-Based Prediction Models for Energy Performance of Residential Buildings.

In Recycling and Reuse Approaches for Better Sustainability; Springer: Berlin/Heidelberg, Germany, 2019; pp. 141–149.
39. Yepes, V.; Martí, J.V.; García, J. Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability 2020,

12, 2767. [CrossRef]
40. Jamal, A.; Tauhidur Rahman, M.; Al-Ahmadi, H.M.; Ullah, I.; Zahid, M. Intelligent intersection control for delay optimization:

Using meta-heuristic search algorithms. Sustainability 2020, 12, 1896. [CrossRef]
41. Jitkongchuen, D.; Pacharawongsakda, E. Prediction Heating and Cooling Loads of Building Using Evolutionary Grey Wolf

Algorithms. In Proceedings of the 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern

http://doi.org/10.1016/j.engstruct.2020.111599
http://doi.org/10.1016/j.engstruct.2018.04.029
http://doi.org/10.1007/s11771-021-4708-8
http://doi.org/10.3390/su14095371
http://doi.org/10.1109/TPEL.2022.3153797
http://doi.org/10.1016/j.renene.2021.05.092
http://doi.org/10.1080/19475705.2019.1650126
http://doi.org/10.1007/s10973-020-10452-0
http://doi.org/10.1016/j.jngse.2021.104175
http://doi.org/10.1016/j.jhydrol.2018.03.001
http://doi.org/10.1017/S0962492900002919
http://doi.org/10.1016/j.asoc.2019.105748
http://doi.org/10.17737/tre.2020.6.1.00110
http://doi.org/10.1016/j.enbuild.2019.109675
http://doi.org/10.1016/0893-6080(91)90009-T
http://doi.org/10.1080/19401493.2019.1690581
http://doi.org/10.12989/sem.2013.46.6.853
http://doi.org/10.3390/en13030571
http://doi.org/10.1016/j.energy.2016.03.057
http://doi.org/10.18178/ijscer.8.3.246-252
http://doi.org/10.1080/01430750.2020.1719885
http://doi.org/10.1016/j.scs.2018.12.013
http://doi.org/10.3390/su12072767
http://doi.org/10.3390/su12051896


Sustainability 2022, 14, 5924 18 of 19

Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON), Nan,
Thailand, 30 January–2 February 2019; pp. 93–97.

42. Ghahramani, A.; Karvigh, S.A.; Becerik-Gerber, B. HVAC system energy optimization using an adaptive hybrid metaheuristic.
Energy Build. 2017, 152, 149–161. [CrossRef]

43. Katebi, J.; Shoaei-parchin, M.; Shariati, M.; Trung, N.T.; Khorami, M. Developed comparative analysis of metaheuristic optimiza-
tion algorithms for optimal active control of structures. Eng. Comput. 2020, 36, 1539–1558. [CrossRef]

44. Martin, G.L.; Monfet, D.; Nouanegue, H.F.; Lavigne, K.; Sansregret, S. Energy calibration of HVAC sub-system model using
sensitivity analysis and meta-heuristic optimization. Energy Build. 2019, 202, 109382. [CrossRef]

45. Bamdad Masouleh, K. Building Energy Optimisation Using Machine Learning and Metaheuristic Algorithms. Ph.D. Thesis,
Queensland University of Technology, Brisbane, Australia, 2018.

46. Moayedi, H.; Mu’azu, M.A.; Foong, L.K. Novel Swarm-based Approach for Predicting the Cooling Load of Residential Buildings
Based on Social Behavior of Elephant Herds. Energy Build. 2020, 206, 109579. [CrossRef]

47. Moayedi, H.; Mosavi, A. Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion
and Satin Bowerbird Searching Optimizers. Sustainability 2021, 13, 2336. [CrossRef]

48. Yang, F.; Moayedi, H.; Mosavi, A. Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based
Artificial Neural Networks. Sustainability 2021, 13, 9898. [CrossRef]

49. Zhou, G.; Moayedi, H.; Bahiraei, M.; Lyu, Z. Employing artificial bee colony and particle swarm techniques for optimizing a
neural network in prediction of heating and cooling loads of residential buildings. J. Clean. Prod. 2020, 254, 120082. [CrossRef]

50. Bui, D.-K.; Nguyen, T.N.; Ngo, T.D.; Nguyen-Xuan, H. An artificial neural network (ANN) expert system enhanced with the
electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings. Energy 2020, 190, 116370.
[CrossRef]

51. Moayedi, H.; Nguyen, H.; Foong, L. Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray
wolf optimization for weight adjustment of neural network. Eng. Comput. 2021, 37, 1265–1275. [CrossRef]

52. Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping
using optimized PSO-ANN technique. Eng. Comput. 2019, 35, 967–984. [CrossRef]

53. Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire
susceptibility. J. Environ. Manag. 2020, 260, 109867. [CrossRef]

54. Mehrabi, M.; Moayedi, H. Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms.
Environ. Earth Sci. 2021, 80, 804. [CrossRef]

55. Mehrabi, M.; Pradhan, B.; Moayedi, H.; Alamri, A. Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of
landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors 2020, 20, 1723. [CrossRef]

56. Zhou, G.; Moayedi, H.; Foong, L.K. Teaching–learning-based metaheuristic scheme for modifying neural computing in appraising
energy performance of building. Eng. Comput. 2021, 37, 3037–3048. [CrossRef]

57. Tsanas, A.; Xifara, A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine
learning tools. Energy Build. 2012, 49, 560–567. [CrossRef]

58. Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical Analysis; Springer: Berlin/Heidelberg,
Germany, 1978; pp. 105–116.

59. Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Elsevier: Amsterdam, The
Netherlands, 1992; pp. 65–93.

60. Yang, X.-S. Firefly algorithm. Nat. Inspired Metaheuristic Algorithms 2008, 20, 79–90.
61. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. arXiv 2010, arXiv:1003.1409. [CrossRef]
62. Yang, X.-S. Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 2013, 29, 175–184. [CrossRef]
63. Zeng, Y.; Zhang, Z.; Kusiak, A. Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly

algorithms. Energy 2015, 86, 393–402. [CrossRef]
64. Kashan, A.H. A new metaheuristic for optimization: Optics inspired optimization (OIO). Comput. Oper. Res. 2015, 55, 99–125.

[CrossRef]
65. Kashan, A.H. An effective algorithm for constrained optimization based on optics inspired optimization (OIO). Comput. Aided

Des. 2015, 63, 52–71. [CrossRef]
66. Jalili, S.; Husseinzadeh Kashan, A. Optimum discrete design of steel tower structures using optics inspired optimization method.

Struct. Des. Tall Spec. Build. 2018, 27, e1466. [CrossRef]
67. Özdemir, M.T.; Öztürk, D. Optimal PID Tuning for Load Frequency Control using Optics Inspired Optimization Algorithm.

IJNES 2016, 10, 1–6.
68. Duan, Q.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J.

Optim. Theory Appl. 1993, 76, 501–521. [CrossRef]
69. Ira, J.; Hasalová, L.; Jahoda, M. The use of optimization in fire development modeling, The use of optimization techniques for

estimation of pyrolysis model input parameters. In Proceedings of the International Conference, Prague, Czechia, 19–20 April
2013.

70. Meshkat Razavi, H.; Shariatmadar, H. Optimum parameters for tuned mass damper using Shuffled Complex Evolution (SCE)
Algorithm. Civ. Eng. Infrastruct. J. 2015, 48, 83–100.

http://doi.org/10.1016/j.enbuild.2017.07.053
http://doi.org/10.1007/s00366-019-00780-7
http://doi.org/10.1016/j.enbuild.2019.109382
http://doi.org/10.1016/j.enbuild.2019.109579
http://doi.org/10.3390/su13042336
http://doi.org/10.3390/su13179898
http://doi.org/10.1016/j.jclepro.2020.120082
http://doi.org/10.1016/j.energy.2019.116370
http://doi.org/10.1007/s00366-019-00882-2
http://doi.org/10.1007/s00366-018-0644-0
http://doi.org/10.1016/j.jenvman.2019.109867
http://doi.org/10.1007/s12665-021-10098-7
http://doi.org/10.3390/s20061723
http://doi.org/10.1007/s00366-020-00981-5
http://doi.org/10.1016/j.enbuild.2012.03.003
http://doi.org/10.1504/IJBIC.2010.032124
http://doi.org/10.1007/s00366-012-0254-1
http://doi.org/10.1016/j.energy.2015.04.045
http://doi.org/10.1016/j.cor.2014.10.011
http://doi.org/10.1016/j.cad.2014.12.007
http://doi.org/10.1002/tal.1466
http://doi.org/10.1007/BF00939380


Sustainability 2022, 14, 5924 19 of 19

71. Stewart, I.; Aye, L.; Peterson, T. Global optimisation of chiller sequencing and load balancing using Shuffled Complex Evolution.
In Proceedings of the AIRAH and IBPSA’s Australasian Building Simulation 2017 Conference, Melbourne, Australia, 15–16
November 2017.

72. Yang, T.; Asanjan, A.A.; Faridzad, M.; Hayatbini, N.; Gao, X.; Sorooshian, S. An enhanced artificial neural network with a shuffled
complex evolutionary global optimization with principal component analysis. Inf. Sci. 2017, 418–419, 302–316. [CrossRef]

73. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]

74. Talatahari, S.; Taghizadieh, N.; Goodarzimehr, V. Hybrid Teaching-Learning-Based Optimization and Harmony Search for
Optimum Design of Space Trusses. J. Optim. Ind. Eng. 2020, 13, 177–194.

75. Shukla, A.K.; Singh, P.; Vardhan, M. An adaptive inertia weight teaching-learning-based optimization algorithm and its
applications. Appl. Math. Model. 2020, 77, 309–326. [CrossRef]

76. Nguyen, H.; Mehrabi, M.; Kalantar, B.; Moayedi, H.; Abdullahi, M.A.M. Potential of hybrid evolutionary approaches for
assessment of geo-hazard landslide susceptibility mapping. Geomat. Nat. Hazards Risk 2019, 10, 1667–1693. [CrossRef]

77. Mehrabi, M. Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy. Nat.
Hazards 2022, 111, 901–937. [CrossRef]

78. Tien Bui, D.; Moayedi, H.; Anastasios, D.; Kok Foong, L. Predicting heating and cooling loads in energy-efficient buildings using
two hybrid intelligent models. Appl. Sci. 2019, 9, 3543. [CrossRef]

79. Guo, Z.; Moayedi, H.; Foong, L.K.; Bahiraei, M. Optimal modification of heating, ventilation, and air conditioning system
performances in residential buildings using the integration of metaheuristic optimization and neural computing. Energy Build.
2020, 214, 109866. [CrossRef]

80. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Engineering Faculty, Computer
Engineering Department, Erciyes University: Kayseri, Turkey, 2005.

81. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

82. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
83. Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic

competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp.
4661–4667.

84. Bayraktar, Z.; Komurcu, M.; Werner, D.H. Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and
its application to electromagnetics. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium,
Toronto, ON, Canada, 11–17 July 2010; pp. 1–4.

85. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
86. Dhiman, G.; Kumar, V. Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm for engineering

problems. Knowl. Based Syst. 2018, 150, 175–197. [CrossRef]
87. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
88. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
89. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
90. Park, J.; Lee, S.J.; Kim, K.H.; Kwon, K.W.; Jeong, J.-W. Estimating thermal performance and energy saving potential of residential

buildings using utility bills. Energy Build. 2016, 110, 23–30. [CrossRef]
91. Yezioro, A.; Dong, B.; Leite, F. An applied artificial intelligence approach towards assessing building performance simulation

tools. Energy Build. 2008, 40, 612–620. [CrossRef]
92. Wu, D.; Foong, L.K.; Lyu, Z. Two neural-metaheuristic techniques based on vortex search and backtracking search algorithms for

predicting the heating load of residential buildings. Eng. Comput. 2020, 38, 347–660. [CrossRef]

http://doi.org/10.1016/j.ins.2017.08.003
http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1016/j.apm.2019.07.046
http://doi.org/10.1080/19475705.2019.1607782
http://doi.org/10.1007/s11069-021-05083-z
http://doi.org/10.3390/app9173543
http://doi.org/10.1016/j.enbuild.2020.109866
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.knosys.2018.03.011
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.advengsoft.2017.01.004
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.enbuild.2015.10.038
http://doi.org/10.1016/j.enbuild.2007.04.014
http://doi.org/10.1007/s00366-020-01074-z

	Introduction 
	Materials and Methods 
	Data Provision 
	Methodology 

	Results and Discussion 
	Accuracy Indicators 
	Incorporated MLP with Optimizers 
	Prediction Results 
	Efficiency Comparison 
	Discussion 

	Conclusions 
	References

