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Abstract: In this study, the effect of seven industrial waste materials as mineral fillers in asphalt
mixtures was investigated. Silica fume (SF), limestone dust (LSD), stone dust (SD), rice husk ash
(RHA), fly ash (FA), brick dust (BD), and marble dust (MD) were used to prepare the asphalt mixtures.
The obtained experimental results were compared with ordinary Portland cement (OPC), which is
used as a conventional mineral filler. The physical, chemical, and morphological assessment of the
fillers was performed to evaluate the suitability of industrial waste to replace the OPC. The volumetric,
strength, and durability of the modified asphalt mixes were examined to evaluate their performance.
The experimental data have been processed through artificial neural networks (ANNs), using k-fold
cross-validation as a resampling method and two different activation functions to develop predictive
models of the main mechanical and volumetric parameters. In the current research, the two most
relevant parameters investigated are the filler type and the filler content, given that they both greatly
affect the asphalt concrete mechanical performance. The asphalt mixes have been optimized by means
of the Marshall stability analysis, and after that, for each different filler, the optimum asphalt mixtures
were investigated by carrying out Indirect tensile strength, moisture susceptibility, and abrasion
loss tests. The moisture sensitivity of the modified asphalt mixtures is within the acceptable limit
according to the Indian standard. Asphalt mixes modified with the finest mineral fillers exhibited
superior stiffness and cracking resistance. Experimental results show higher moisture resistance in
calcium-dominant mineral filler-modified asphalt mixtures. Except for mixes prepared with RHA and
MD (4% filler content), all the asphalt mixtures considered in this study show MS values higher than
10 kN, as prescribed by Indian regulations. All the values of the void ratio for each asphalt mix have
been observed to range between 3–5%, and MQ results were observed between 2 kN/mm–6 kN/mm,
which falls within the acceptable range of the Indian specification. Partly due to implementing a
data-augmentation strategy based on interpolation, the ANN modeling was very successful, showing
a coefficient of correlation averaged over all output variables equal to 0.9967.

Keywords: recycling; cement; asphalt mixtures; machine learning; data augmentation

1. Introduction

Rapid growth in society leads to the intensive use of natural resources and further
increases waste generation. The disposal of these waste materials is a massive challenge for
almost every country. Therefore, the need for sustainable and eco-friendly materials has
risen. The researchers are continuously looking forward to exploring sustainable strategies
to minimize waste generation and the use of natural resources. Along with 180 other
countries, India has signed an agreement under the United Nations (UN) to restrict the
average global temperature increase to 1.5 ◦C (Paris Agreement, 2015) [1]. The UN also
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developed the 2030 Agenda for Sustainable Development Goals (SDGs), and SDG-9 and
SDG-11 are focused on sustainable and resilient infrastructure and cities (The 17 Goals,
Sustainable Development, 2015). In order to achieve SDG-9 and SDG-11, researchers
are striving to develop and adopt sustainable practices in infrastructure development by
minimizing the use of natural materials in construction, and incorporating industrial waste
in construction practices, to reduce the disposal issues [2].

Eco-friendly and durable pavement construction enhances the overall sustainability of
smart cities, and it takes a step toward achieving SDG-11. Flexible pavement construction
is the most-used pavement system in the world; therefore, any improvement in the asphalt
concrete will enhance the overall performance of the flexible pavement structure. The use
of industrial waste materials in road pavement construction is an effective way to increase
sustainability in the construction industry and minimize waste disposal issues. The use of
waste materials in road pavement also reduces the greenhouse gas emissions due to the use
of materials such as cement, which is the conventional filler for asphalt concretes in India.
Moreover, the recycling of industrial waste materials in pavement construction supports the
on-time supply of the required construction aggregates, reduces the consumption of natural
resources, and minimizes air, water, and land pollution [3,4]. However, it is imperative
to identify suitable replacements for the conventional natural resources in construction
without compromising the engineering properties of the modified material.

The effective utilization of industrial wastes to improve the engineering properties
of asphalt concretes has been demonstrated by several researchers, in terms of the partial
or total replacement of the coarser part of the limestone aggregate structure [5–13]. The
largest part of the world’s road network (almost 95%) is built with flexible pavements [14];
therefore, the use of waste materials in flexible pavement construction can be more ad-
vantageous. The surface layer of any flexible pavement is built with asphalt mixes, which
are prepared with aggregates and bitumen. The performance of asphalt concretes depend
on the packing of the aggregates and on the adhesion provided by the bitumen [15]. The
finest part of the aggregate, also termed a mineral filler, highly influences the mechanical
properties and durability of the asphalt concrete [14]. The mineral filler is added to the
asphalt concrete for reducing the voids and improving the strength, density, and water
resistance. The physico-chemical properties of asphalt mastic (bitumen and mineral filler
combination) affect the viscosity of the mixes [3,14]. The various properties of the min-
eral filler, including shape and size, specific surface area, specific gravity, and chemical
composition, are among the most critical parameters that affect the asphalt mixes’ overall
performance [16,17]. Therefore, an extensive and deep characterization of the industrial
waste is required in order to properly optimize the performance of the asphalt mixes.

The conventional mineral filler for asphalt pavements in India is cement; however, its
production leads to the emission of greenhouse gases. Therefore, a suitable alternative filler
needs to be identified. However, it has to be ensured that the addition of such alternative
filler materials does not compromise the performance of the asphalt concrete. Various waste
materials such rice dust [18], coal ash [19–21], empty palm fruit bunch ash [22], limestone
dust [23], marble dust [19], stone dust [18], brick dust [18,24], bauxite residue [25], rice
husk ash [18], and copper slag powder [26] have been investigated as alternative fillers.

It has been observed that some industrial wastes effectively improve the engineering
properties of the asphalt mix, and acceptable performances of asphalt mixes have been obtained.

For example, Awed et al. [27] showed that the use of fillers obtained from marble,
granite, and steel slag wastes returned technically acceptable mixture performance, with
marble being preferable to the other two wastes. In general, according to Hamedi et al. [28],
higher amounts of CaO and lower amounts of SiO2 in the aggregate, for instance, what
happens with marble fillers, provide great resistance against moisture-induced damage.
Finally, Sherre and Liao [29] have verified that using hollow concrete block powder as a
filler, in contrast to brick powder, extends asphalt mixtures’ service life by improving their
moisture, rutting, and cracking resistance.
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The results of such investigations encourage the use of waste materials in flexible
pavement construction. In conclusion, the effective use of some waste materials, on one
hand, enhances the performance of the asphalt concrete, and on the other hand, reduces
waste disposal problems.

Even if several extensive studies have been carried out successfully on individual
waste fillers, their use in the field is still very limited. Therefore, a detailed investigation of
mixes prepared with various waste fillers is needed to properly evaluate their performance
in comparative terms. This study is focused on evaluating the effect of silica fume (SF),
limestone dust (LSD), stone dust (SD), rice husk ash (RHA), fly ash (FA), brick dust (BD),
and marble dust (MD) as mineral filler in asphalt concrete, and presenting a detailed
comparative analysis.

A recent overall trend in evaluating pavement performance and condition is to apply
machine learning techniques. In recent years, it has been observed that the performances
of support vector machine, random forest, artificial neural network, and deep learning
models are sometimes faster and more accurate than the empirical and/or statistical
techniques [30,31], providing an alternative to the fundamental, rational constitutive laws
of the mechanics of materials [32–35]. Automatic approaches for asphalt pavement crack
detection and classification have been established by many authors [36–38], whereas other
researchers have focused their efforts on modeling performance in terms of the international
roughness index [39,40] or tensile strength ratio and fatigue life ratio [41,42].

For these reasons, the experimental data have been analyzed by means of machine
learning techniques, namely, artificial neural networks (ANNs), in order to develop pre-
dictive models of the main mechanical and volumetric parameters considered. Predictive
equations that can estimate the asphalt mixes’ mechanical and volumetric response accu-
rately represent a useful tool to enhance the conventional mix design, based on expensive
and time-consuming laboratory tests; in fact, the numerical prediction would allow reduc-
ing the number of experiments to optimize the mix, without penalizations in terms of the
results’ reliability.

The feasibility to fit laboratory data in order to identify predictive equations of the
Marshall parameters have already been successfully discussed by Tapkın et al., as well as
by Baldo et al. [43,44]. In those studies, large datasets were available. In general, extensive
training datasets are needed to properly train the model in order to reduce the over-estimation
of out-of-sample results. Nevertheless, most of the time, the available laboratory datasets are
quite small, with respect to what is required by conventional neural approaches.

In the present study, a mechanical characterization of seven industrial waste materials
used as mineral fillers to improve the performance of asphalt concrete, including silica
fume (SF), limestone dust (LSD), stone dust (SD), rice husk ash (RHA), fly ash (FA), brick
dust (BD), and marble dust (MD), has been carried out. An integrated experimental and
machine learning approach has been used to investigate the effect of the waste mineral
fillers on the performance of the asphalt concrete and to develop the prediction model. The
experimental analysis has been carried out by conducting the material characterization
of each of the seven filler materials. The mechanical performance has been evaluated for
asphalt mixes consisting of different proportions of the filler content. Based on a dataset
obtained from an experimental investigation, an unconventional approach, namely, the
k-fold cross-validation and data augmentation, has been used to properly train the neural
network model to maximize its reliability, despite the relatively few experimental data
available. This research study has been articulated in three major sections. The industrial
waste mineral filler, bitumen, and aggregate material characterization, along with the
detailed experimental and machine learning approach, are discussed in Section 2. In-
depth results and discussion obtained from the experimental study and ANN analysis are
presented in Section 3. The conclusions, obtained from the detailed results and discussion,
are mentioned in Section 4, along with the future scope and limitations of this study.
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2. Materials and Experimental Investigation
2.1. Materials

This section presents the properties of various materials used in the present research.
Detailed physical and chemical characterizations of bitumen, aggregates, and mineral fillers
are carried out to analyze the behavior of the materials composing the asphalt concrete.
In this study, the utilization of waste materials as a sustainable filler in asphalt mixtures
for the base course of road pavements, in substitution of OPC, has been studied. The base
course layer has been considered to evaluate the effect of waste materials as mineral fillers
for heavy load requirements in the Indian scenario.

2.1.1. Aggregate and Bitumen Properties

Sharp-edged crushed quartz aggregates were used in this study. The material was
provided by Safew Tech Systems Indore (India). The various physical aggregates’ properties,
as per the requisites of the Indian Ministry of Road Transportation and Highway [45], are
investigated for the collected samples.

To assess the properties of the aggregates, various laboratory experiments (cleanliness,
grain size distribution, bulk specific gravity, Los Angeles abrasion, soundness, shape
and flaking, impact strength, and water absorption) have been carried out. The physical
properties of the aggregates are shown in Table 1. The grading curve of the aggregate
investigated has been compared with the reference envelope prescribed by MoRTH [45] for
flexible road pavements, leading to the classification of the material as grade II.

Table 1. Properties of aggregate and bitumen.

Material Test Parameters Specified Limit
(MoRTH) Test Results Test Method

Aggregate Cleanliness (dust) (%) Max 5 % 3 IS 2386 Part I
Bulk specific gravity (g/cm3) 2–3 2.68 IS 2386 Part III

Percent wear by Los Angeles abrasion (%) Max 35 % 10.6 IS 2386 Part IV
Soundness loss by sodium sulphate solution (%) Max 12% 3.4 IS 2386 Part V

Soundness loss by magnesium sulphate solution (%) Max 18% 3.7 IS 2386 Part V
Flakiness and elongation index (%) Max 35% IS 2386 Part I

20 mm 27.93
10 mm 32.13

Impact strength (%) Max 27% IS 2386 Part IV
20 mm 4.15
10 mm 5.91

Water absorption (%) Max 2% 1.67 IS 2386 Part III

Bitumen Absolute viscosity at 60 ◦C (poises) 2400–3600 2855 IS 1206 (P-2)
Kinematic viscosity at 135 ◦C (cSt), Min. 350 392 IS 1206 (P-3)

Flash point Cleveland open cup, (◦C), Min. 250 304 IS 1448 (P-69)
Penetration at 25 ◦C, 100 gm, 5 sec, (1/10 mm), Min 45 49 IS 1203

Softening point (R&B), (◦C), Min 47 48 IS 1205
Matter soluble in trichloroethylene, (% by mass), Min. 99 99.45 IS 1216

Viscosity ratio at 60 ◦C, Max 4.0 1.3 IS 1206 (P-2)
Ductility at 25 ◦C, (cm) after TFOT min. 40 75 IS 1208

Specific gravity (gm/cc) 0.97–1.02 0.987 IS 1202

Viscosity grade (VG-30) bitumen, conventionally used for road pavement construction
in India, has been considered in this research. The used binder is manufactured by Tiki Tar
Industries (Vadodara) Limited, Gujarat, India. The various physical properties of the bitumen
have been investigated as per Indian standards. The physical properties of the bitumen used
in the study are presented in Table 1, along with the MoRTH [45] acceptance requisites.
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2.1.2. Mineral Filler

In India, ordinary Portland cement (OPC) is the conventional mineral filler used in the
asphalt mix for heavy-load road pavement. To evaluate the effectiveness of the selected
waste materials as mineral filler, grade-43 OPC has been used in the study. As per IS
8112-1989 [46], grade-43 OPC has to provide a designed strength of 28 days that is at least
equal to 43 MPa. In this analysis, oven-dried filler with a fraction that is finer than 0.075 mm
was used. The properties of the waste materials and those of the OPC were assessed by
measuring density, specific surface area, and grain size distribution, mineralogical and
chemical composition, German filler, and pH value, and conducting methylene blue value
analysis. The porosity of fillers was determined as per the German filler test, prescribed
by the National Asphalt Pavement Association [47]. The porosity of filler is inversely
proportional to its German filler value. The various chemical and physical properties of the
fillers are reported in Table 2.

Table 2. Properties of the mineral filler considered.

Property
Type of Mineral Filler

OPC LSD FA RHA SD MD BPD SF

Specific gravity (g/cm3) 3.04 2.65 2.32 2.02 2.69 2.695 2.56 2.2

MBV (g/kg) 3 3.75 3.86 4.72 3.67 4.45 6.25 3.85

German filler (g) 85 97 75 65 85 70 40 94

Fineness modulus (FM) 4.96 3.03 3.77 3.21 5.38 2.12 5.17 1.96

Surface area (m2/g) 1.75 2.70 2.193 2.31 2.701 4.372 2.688 16.45

pH 12.9 10.22 7.3 10.86 12.57 8.5 8.67 6.98

SiO2 (%) 21.43 0.48 48.24 89.67 82.37 0.6 39.55 93.5
CaO (%) 66.58 96.57 13.4 1.88 2.79 55.6 12.88 0.89
Al2O3(%) 3.01 0.41 24.15 1.62 8.23 0.4 15.71 0.08
MgO(%) 1.39 0.46 1.46 0.97 1.47 0.1 3.29 0.82
Fe2O3(%) 4.68 0.32 6.48 1.06 5.27 0.2 14.05 0.5

Particle shape

Granules
and

sub-angular
particles

Granular
particles Rounded Honeycombed Angular

particles e
Sub-

angular

Sub-
angular
particles

Spherically
shaped

2.2. Designing and Testing of Asphalt Concrete
2.2.1. Sample Preparation and Determination of Marshall and Volumetric Properties

Aggregate type, grain size distribution, and bitumen type have been kept constant for
all the mixtures investigated in order to assess only the effect of the different filler materials
on the physical-mechanical response of the asphalt mixes. Four levels of waste mineral
filler have been considered, namely, 4.0%, 5.5%, 7.0%, and 8.5%, by volume of mix; OPC has
been used with the same contents as a comparative term. The optimum binder content has
been evaluated for each asphalt mixture. The detailed methodology used in this research is
shown in Figure 1.

Aggregate, RSH, BPD, MD, SD, FA, LSD, SF, OPC, and bitumen were separately pre-
heated at 150 ◦C for mixing. Dry samples of the required amount of aggregate and fillers were
initially mixed at 170 ◦C in a planetary mixer with a speed of 140± 5 rpm; hereafter, varying
percentages of bitumen were added for the preparation of the asphalt mixture specimens,
according to the Indian MoRTH regulations. Complete laboratory work has been conducted
on three replicates, and experimental results are reported with standard deviation.

The Marshall method, based on the impulsive compaction principle, has been used
to prepare the specimens for the subsequent physical-mechanical tests. With respect to
other laboratory techniques, such as, for instance, the gyratory compaction widely used in
the USA within the SUPERPAVE method (NAPA, 1995), the Marshall compaction leads
to volumetric properties of the compacted specimens that are quite different from those
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observed in road pavement as a result of the rollers’ compaction [48]. However, the Marshall
compaction is still widely used in many road laboratories [49–54] due to its simplicity, low
cost, and extensive database available in the literature.

Figure 1. Detailed research methodology used in this research.

Cylindrical specimens of 67 ± 3 mm thickness and 102 mm diameter were compacted
by means of a Marshall hammer with 75 blows per side of the specimens, then air-dried
for 4 h after compaction, and finally, kept in a water bath at 60 ± 1 ◦C for 35 ± 5 min
prior to the Marshall testing [55]. Three specimens of each type of mix were prepared to
investigate the effect of repeatability, and the mean results have been computed along with
the standard deviation. A load cell of 100 kN and a 50 mm LVDT with a data acquisition
system were used to measure and record the maximum load resistance and respective
deformations at a constant strain rate of 50.4 mm/min. The results of the experiments have
been reported as Marshall’s stability, flow, and quotient.

The volumetric properties are related to the volume of the binder, the mineral filler,
and the coarse-aggregates necessary to produce an asphalt mixture of desirable physical
and mechanical characteristics. Actually, the volumetric properties of the asphalt mixtures
significantly affect the strength and long-term durability of a road pavement. The various
volumetric properties, which include maximum theoretical specific gravity, dry density,
percentage of air voids (Vv), voids in mineral filler, and voids filled with bitumen, have
been determined according to the relevant standards specified by the Indian Ministry of
Road Transport and Highways (MoRTH) [45]. The details of the testing equipment used in
this study are tabulated in Table 3.
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Table 3. Specifications of the equipment used for testing.

No. Name of Equipment Specification

1. Digital Marshall Stability Apparatus

Ref. standards—ASTMD 1559, ASTM D6927-06
Capacity—100 kN single speed

Sample size—4” and 6” dia
Load cell: 100 kN

LVDT: 50 mm
Maximum vertical clearance—470 mm
Minimum vertical clearance—250 mm

Horizontal clearance—265 mm
Platen diameter—133 mm

Platen travel—25 mm
Platen speed—50.8 mm/min

Rated power—375 W
Dimension (l × w × h)—550 × 400 × 870 mm

2. Automatic Compactor for
Bituminous Mixes

Ref. standards: ASTM D 5581:1996, ASTM D 6926-04
Weight of hammer—4.5 kg (4” sample dia) and 10.2 kg (6”sample dia)

Sample ejector: 4” and 6” sample dia
Falling height: 457 mm

Suitable for operation—440 V and 50 Hz
Power supply—three-phase AC supply

3. Indirect Tensile Strength Test
Machine

Ref. standard: ASTM D6931
Ram stroke—400 mm

Ram speed range—50 to 70 mm/min
Load cell—250 kN

Deformation transducer—400 mm
Clearance between columns—530 mm

Electrical supply—three-phase 415 Volts 50 Hz
Dimensions (W × D × H)—2100 × 616 × 2111 mm

Working space required (W × D × H)—2300 × 1616 × 2300 mm

4 Los Angeles Abrasion Machine

Ref. Standard: AASHTO T 96, ASTM C535
Revolutions per minute—30–33

Drum diameter—700 mm
Inside height—500 mm
Electrical—220 V/50 Hz

Product dimensions (W × D × H)—965 × 1016 × 1181 mm

2.2.2. Rutting Resistance

The asphalt concrete’s rutting performance is empirically correlated with the Marshall
quotient (MQ) parameter of the mix [56]. The MQ of the waste-modified and conventional
asphalt concrete has been calculated as the ratio between the Marshall stability and flow.
A higher MQ value indicates a stiffer asphalt mix, which can perform adequately with
respect to permanent deformations due to the traffic load. The higher resistance to creep
deformation is offered with the more stiffened asphalt mix. The waste-modified asphalt
mixes have been prepared with three replicas (a total 24 samples for 8 fillers) to assess the
asphalt mix’s performance.

2.2.3. Cracking Resistance

The cracking resistance of AN asphalt concrete can be empirically estimated by means of
the indirect tensile strength (ITS) test results. Therefore, for all the mixes investigated, its tests
have been carried out as per ASTM D 6931 at 25 ◦C temperature [57]. The specimens have
been prepared according to the protocol used for the preparation of the Marshall specimens.
A constant loading rate of 50.8 mm/min has been applied on each Marshall specimen on its
diameter in compression. The waste-modified asphalt mixes have been prepared with three
replicas (a total 24 samples for 8 fillers) to assess the asphalt mix’s performance.
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2.2.4. Moisture Susceptibility

Water sensitivity (WS) was evaluated by means of a modified Lottman test [58]. The
indirect tensile strength ratio (ITSR) has been computed as the ratio between the ITS values
determined before and after moisture conditioning, with the latter carried out according to
AASHTO T-283 [59]. Cylindrical specimens of 63.5 mm thickness and 150 mm diameter
were prepared by Marshall hammer, with a target air voids content equal to 7 ± 0.5%. The
compacted specimens have been stored at room temperature for 24 ± 3 h before moisture
conditioning. The specimens were saturated for 10 min at 50 kPa absolute vacuum pressure
and then left submerged for an additional 10 min in a vacuum container. The target degree
of saturation of the cured specimens was 75 ± 5%. The cured specimens were covered
using thin plastic film and sealed in a plastic bag having 10 ± 0.5 mL water. After that,
the sealed specimens were placed for freezing at −18 ± 3 ◦C for 24 h. Subsequently, the
frozen specimens were removed from the plastic bag and placed in a water bath for 24 h
at 25 ± 5 ◦C. After the conditioning of the specimens, their indirect tensile strengths were
investigated in accordance with ASTM D6931 [57].

2.2.5. Cantabro Abrasion Loss Test

The Cantabro abrasion loss test was carried out to investigate the degradation behavior
of the asphalt mix in accordance with [60]. The cylindrical specimens of 50.8 ± 1.5 mm
thickness and 101.6 ± 1.5 mm diameter were compacted with 50 blows per side of the
specimens using the Marshall compactor. The initial mass (mi) of the prepared AM has
been noted at room temperature (25 ◦C). After 24 h, the compacted AM specimen was
placed in the 700 mm diameter cylinder of the Los Angeles abrasion test machine (500 mm
inside height). The test was conducted by removing the metal balls from the cylinder and
applying 300 revolutions at 32 rmp speed. Loose material from the specimen was removed
and the final mass (m f ) of the broken specimen was noted. The loss in mass was calculated
using Equation (1):

CL =
mi −m f

mi
× 100 (1)

where CL is the Cantabro loss percentage, mi is the initial weight of the test specimen, and
m f is the final weight of the test specimen.

2.3. Theory of Machine Learning Modeling
2.3.1. Artificial and Shallow Neural Networks

Artificial neural networks (ANNs) are optimization algorithms built on the idea of the
brain’s functioning, and that can be classified as non-linear parametric functions [61,62].
Such networks are usually represented by layered structures composed of elementary
units called neurons. All the neurons belonging to the first layer constitute the input
layer; those belonging to the last layer constitute the output layer, and all the intermediate
layers are called hidden layers. The connections between the layers are total and in
only one direction: each unit receives a signal from all the units of the previous layer and
transmits its own output value, opportunely weighted, to all the units of the next layer. This
output value, commonly called “activity”, is defined on the basis of a typically non-linear
activation function that characterizes each neuron. These functions generate the neuron’s
response signal, which usually varies in the range (0, 1) or (−1, 1), as well as (0, infinity)
or (−1, infinity), which can be interpreted as a yes/no answer about whether information
needs to be transmitted. Everything is aimed at deriving an analytical relationship between
the input features and the target variables. In fact, by means of supervised learning
algorithms, the network is able to adjust the weights and biases of each connection in order
to minimize the prediction errors on the experimental targets.

This study implements an ANN with a single hidden layer: this particular architecture
is called a shallow neural network (SNN), and it has been demonstrated that it is possible
to solve almost all the multidimensional input-target fitting problems by providing the
hidden layer with a sufficient number of neurons [63]. Therefore, information goes from the
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input layer to the output layer, passing through one hidden layer. Specifically, the proposed
SNN consists of a 3− N− 4 architecture (Figure 2); it is composed of 3 neurons in the input
layer (the components of the input features vector), N neurons in the hidden layer (with
N a variable integer in the range 1÷ 50), and 4 neurons in the output layer (2 empirical
and 2 rational mechanical parameters of asphalt concretes). Moreover, the best activation
function for the hidden layer was searched among two different non-linear functions ϕ:
the hyperbolic tangent (TanH) and the exponential linear (ELU) (Figure 3). The former is
the most widely used when dealing with input-target fitting problems, whereas the latter
has proved to be very successful in image classification and deep learning applications
(although it is still seldom used in fitting problems). The output layer was associated with
a simple linear activation function. To identify the proper number of neurons and the
activation function that produced the best prediction performance on a statistical metric,
a grid search was performed, which consists of training all the models defined by the
possible pairs (N, ϕ) and testing their generalization capabilities.

Figure 2. SNN structure diagram.

Figure 3. Exponential linear (ELU) and hyperbolic tangent (TanH) activation functions.

The variables used as inputs were the air void contents of each sample, the respective
filler percentages, and a categorical variable that accounted for the 8 different filler-types. As
is well-known in the asphalt technology, filler type and content greatly affect the mechanical
properties of any asphalt mixture; therefore, in the current research paper, both the filler
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type and content have been considered as the two major parameters. It can be noticed
that the input layer of the proposed SNN has a neuron for each input feature. The target
variables, predicted all at once, are the Marshall stability (kN) and the Marshall quotient
(kN/mm) (two empirical mechanical parameters from the Marshall test), along with the
indirect tensile strength (MPa) and the indirect tensile strength ratio (%) (two rational
mechanical characteristics). Finally, in order to allow the model training algorithm to be
optimally performed and, at the same time, the computational times to be reduced, both the
input and output variables have been standardized before being inputted to the network,
so that they had zero mean and unitary standard deviation.

2.3.2. SNN Optimization

The series of sequential steps aimed at identifying the best values of the interneural
connections weights and biases is called the learning phase. Since the input/output pairs
are available, this process becomes supervised and is divided into two distinct phases: the
first is the “forward step”, in which the feature input vector x is assigned to the network
in order to predict the output vector ŷ; the second is the “backward step”, in which the
target vector y is compared with its prediction ŷ. From the comparison between ŷ and
y, it is possible to define a function F(ŷ, y), commonly called the performance function
or the loss function, which helps with determining the adjustments to be made to the
weights and biases matrix W, so that a subsequent iteration can produce better results.
These adjustments are indicated with the name of learning rule. The analytical expression
of the one employed in this study is the following:

We+1 = We −
(
∇2F(We)

)−1
∇F(We), e ∈ {1, · · · , E} (2)

where E is the total number of iterations, and the superscript e stands for the e-th iteration,
whereas the notations ∇2 and ∇ represent the Laplacian and gradient operators, respec-
tively. Assuming a particular type of backpropagation algorithm, also called Levenberg–
Marquardt (L.M.) [64], the previous equation becomes:

We+1 = We −
[
JT(We)J(We) + µeI

]−1JT(We)v(We), e ∈ {1, · · · , E}
v(We) = ŷ(We)− y

(3)

in which W is the weights and biases matrix, J is the Jacobian matrix of the loss function
F(·) with respect to W, µ is a scalar related to the learning rate, I is the identity matrix, and
v represents the vector of the errors made by the network. The scalar µ is also an indicator
of the algorithm convergence rate. In fact, whereas the direction to reach the absolute
minimum of the loss function is identified by the gradient JT(We)v(We), the size of the step
to be taken in such a direction depends on the value assumed by µ. A high value involves
a small step, but consequently, the computational time is increased. On the other hand,
a low value implies a large step, and despite the lower computational time, could cause
a jump over the minimum. For this reason, to avoid both losing the absolute minimum
and excessive computational times, three additional hyperparameters (µinc, µdec, and µmax)
are introduced. µinc is a scalar > 1 that multiplies µe if the performance index between
iterations e− 1 and e is improved. Similarly, if the performance index has worsened, µe
is multiplied by µdec < 1. Finally, if the value of µe becomes too large (greater than µmax),
the LM algorithm is terminated. At the end of the algorithm (either because the maximum
number of iterations E or the µmax value has been reached), the best weights and biases are
kept fixed, and the test feature vector is processed in order to determine the performance
metrics on data never before processed. However, under the conditions outlined, there is
still the possibility of running into a problem known in machine learning as overfitting. In
fact, the neural model could adapt too much to the training dataset and return very poor
performance during a testing phase. For this reason, the so-called Bayesian regularization
has been introduced [63]. It consists in modifying the loss function F(·) by adding a term
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that penalizes networks characterized by high values of connection weights (which cause
overfitting problems) and, thus, encourages smoother data regressions. The modified loss
function becomes:

Fopt(ŷ(We), y, We) = β‖v(We)‖2
2 + α‖We‖2

2 (4)

The regularized loss function is the sum of the 2-norm of the network errors and
parameters, multiplied, respectively, by the scalars β and α, whose ratio α/β is in the range
[0, 1]. When this ratio is too small, it is still possible for the network to overfit. On the
other hand, a too-large value of α/β causes the underfitting (the opposite problem) that is
a too-smooth interpolation of the training set data. In order to optimize the regularization
parameters, David MacKay’s approach has been implemented [65], which provides an
automatic re-evaluation of α and β for each iteration with the goal of keeping small weights
and, at the same time, identifying the loss function’s absolute minimum. Regarding the
values to be assigned to the hyperparameters of the LM algorithm, it was decided to
implement them as defined within the MATLAB® ANN Toolbox. In fact, E has been set
equal to 1000, µinc to 10, µdec to 0.1, µmax to 1.0e+10, and the starting µ equal to 0.001.

2.3.3. k-Fold Cross-Validation

In order to generate a model from a given dataset, this has to be partitioned in at least
two subsets: one that will be used during the training phase, and one in the testing phase.
Such practice is known as the hold-out method, and consists of subdividing the available
dataset into two random subsets containing a different percentage of data (typically 75%
for training and the remaining 25% for testing). This approach often results in biased
performance, as subsets may not be well representative of the entire dataset, and some
information may, for example, be excluded from the training set. Such an effect becomes
more pronounced in smaller datasets [66]. To avoid the problems of the hold-out method, a
data-partitioning technique called k-fold cross-validation (CV) was implemented in this
paper. This is an iterative technique that consists in defining a number k of partitions:
each partition contains the same number of data, so that each of them can be used once in
testing and k− 1 times in training. This process is repeated k times and, for each iteration, a
performance metric of the individual model (e.g., the mean squared error) is recorded. The
overall performance will be calculated as an arithmetic average of the individual metrics.

MSEi = ‖ŷi − yi‖2
2

MSECV = 1
k

k
∑

i=1
MSEi

(5)

In this way, the results are less affected by performance estimation bias due to data
hold-out splitting [67]. In the current study setup, the value of k was set as equal to 4
and the partitioning was of the “stratified” type, so that all the 4 test folds contained one
experimentally observed datum for each of the 8 filler types.

During the grid search, it was necessary to define a method to choose the best among
the investigated network architectures. Particular attention was paid to the computational
efficiency of the model. A model trained through the Bayesian regularization algorithm,
thanks to the structure of the algorithm itself, hardly overfits (even for complex architectures
with a high number of neurons). However, the more neurons that characterize the hidden
layer, the greater the number of weights and biases that must be calculated. In addition, it
is possible that some of these parameters do not contribute to reducing performance errors,
as they have been set to small values, or even to zero, by the training algorithm. For this
purpose, the effective number of parameters (ENP) variable was calculated. It consists of
determining the ratio between how many weights and biases within the neural model are
actually employed in reducing the loss function [63] and the total number of parameters
δi in the network. Therefore, in order to find the network that is computationally more
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convenient, the difference between ENP and the averaged MSE of the 4 fitted models was
maximized:

LCV = ENP−MSECV = ∑4
i=1

δi−2αitr(∇2F(Wi))
−1

δi
−∑4

i=1 ‖ŷi(Wi)− yi‖2
2

{N, ϕ}best = arg max
(N, ϕ) ∈ (XN ,Xϕ)

LCV(N, ϕ) (6)

where Wi is the weights and biases matrix of the i-th SNN trained in the k-fold cross-
validation, δi is the total number of weights and biases of the same i-th SNN, while αi and
βi are the regularization terms that can be computed as explained in Hagan et al. [63].

2.3.4. Data Augmentation

In the field of machine learning, the performance of a model often improves as the size
of the dataset used to train it increases. For this reason, when dealing with small datasets,
it is becoming common practice to use mathematical techniques to increase the amount of
data available without having to perform additional expensive experimental campaigns.
Such techniques are called data augmentation strategies. Nevertheless, the generated
synthetic data have to keep the original meaning of the experimental data [67]. Although
this condition is easy to satisfy for image classification (rotating, cutting, or flipping an
image does not alter its meaning), such a condition becomes trickier with time-series data
forecasting or with input-target fitting problems.

In general, the modeling of real-world problems would require large datasets that
collect information about all the correlated features parameters. However, in the context of
asphalt pavement engineering, experimental investigations are often limited to analyzing
the mechanical behavior (or evaluating the volumetric properties) of only a few variations
of a specific asphalt concrete, due to the implicit cost and time of laboratory testing. In
this study, given the efforts in preparing multiple Marshall specimens with different
bitumen/filler contents, the training set was augmented using an emerging technique in
input-target fitting problems [67]: the modified Akima cubic Hermite interpolation, also
called “MAKIMA”. Such an interpolation method is capable of considering the strong
nonlinearity of the problem, but at the same time, avoids excessive fluctuations of the data.
The MAKIMA technique represents an improvement of the Akima algorithm [66], and it is
easy to be implemented in MATLAB®: it consists in performing a cubic interpolation that
produces piecewise polynomials characterized by continuous first-order derivatives. In
other words, a generic piecewise cubic polynomial P(q) with q ∈ (qm, qm+1), an interval of
input nodes q to which correspond the values p of the function to be interpolated, has to
satisfy the following four interpolation conditions, two on the function values and two on
the (unknown) derivative values:

P(qm) = pm, P(qm+1) = pm+1, P′(qm) = dm, P′(qm+1) = dm+1 (7)

where dm and dm+1 are the first derivative values (the slope of the interpolant) at sam-
ple points qm and qm+1. Therefore, the key to the MAKIMA interpolation is the choice
of derivatives, which are defined as the weighted average of nearby interval slopes; for
example, if ρm = (pm+1 − pm)/(qm+1 − qm) is the slope on the interval (qm, qm+1) and
ρm−1 = (pm − pm−1)/(qm − qm−1) is that on the interval (qm−1, qm), then the Akima deriva-
tive value at qm can be computed locally as:

dm =
ω1

ω1 + ω2
ρm−1 +

ω2

ω1 + ω2
ρm (8)

in which the weights ω1 and ω2, used in the modified algorithm, are:

ω1 = |ρm+1 − ρm|+
|ρm+1 + ρm|

2
, ω2 = |ρm−1 − ρm−2|+

|ρm−1 + ρm−2|
2

(9)
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This particular definition reduces, in practice, the number and the amplitude of undu-
lations (or wiggles) of the interpolant with respect to “splines” that, otherwise, compute
derivatives by imposing the constraint of continuous second derivatives [66].

As recommended in Oh et al. [67], the augmented data should not outnumber the
amount of data in the original dataset. Given that the experimental investigation has
considered 4 different filler contents, from 4.0 to 8.5% at step 1.5%, for each of the 8 fillers
(the entire dataset counts 32 items), data augmentation aimed at identifying the target
values and the air voids corresponding to 0.75% increases incrementally with the filler
content (the experimental filler intervals were each divided into two sub-intervals of range
0.75%). Therefore, the size of the augmented dataset was nearly doubled, going from 32
to 56 items (which is also the dimension of the input feature vector). In particular, the
MAKIMA technique was applied on the entire experimental dataset, considering, for each
type of mineral, filler content increments as nodes, whereas target variables and air voids,
taken one at a time, were considered as values to be interpolated. All data obtained by
means of MAKIMA augmentation were used exclusively for training the SNN.

Figure 4 graphically shows the feature space points that were considered in the training
process: experimentally sampled data are represented by black plus sign markers, whereas
the augmented data are represented by red crosses. Furthermore, the curves represented in
Figure 4 are the result of MAKIMA interpolations between the filler content and air voids
for each of the 8 filler types: the SNNs that were developed in this study admit solutions
only along these curves, which reflect the univocal relationship existing between the two
main feature variables. In fact, as the type and content of bitumen, as well as the type of
coarse aggregate, have been kept constant in the preparation of the investigated mixtures,
the increase in the filler percentage by volume of the mix has to be reflected in a reduction of
the mixture’s air voids content; therefore, this physically observable behavior was properly
kept by the MAKIMA interpolation.

Figure 4. Experimental sampled data (black plus marker) and augmented data (red cross marker).

3. Results and Discussion
3.1. Performance of Modified Asphalt Mixes

The mechanical performance of the investigated asphalt concretes with varying filler
contents is discussed in this section.
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3.1.1. Marshall and Volumetric Properties

The volumetric properties of the asphalt mixes with waste and conventional mineral
fillers are shown in Figure 5. As was expected, for each bitumen content, the higher the
filler percentage, the lower the air voids; this result was verified for all asphalt mixes. The
air voids’ reduction significantly depends on the fineness modulus of the mineral filler.

Figure 5. Volumetric properties of the asphalt mixes with waste and conventional mineral fillers.

It can be noted that SF and LSD have a higher FM than the conventional mineral
filler OPC; therefore, a higher reduction in the air voids has been observed. The BD has a
lower FM, and therefore, less reduction in the air voids. MD and SD have almost similar
behaviors. Similarly, BPD and RHA show the same trends. However, all asphalt mixes
presented air voids within the acceptable range of 3–5%, as per the Indian Standard.

Voids in the mineral aggregate (VMA) are given by the volume of the intergranular
voids between the aggregate particles of a compacted asphalt mixture, including the air
voids and the volume of the bitumen not absorbed by the aggregates (Figure 6). Mixes
prepared with RHA (16.24%), BD (16.41%), MD (16.31%), SD (16.278%), and FA (15.99%)
also had higher VMA than OPC (15.87%), LSD (15.74%), and SF (15.52%) mixes at 8.5%
mineral filler content. Hence, a higher porosity of filler could increase the absorbance of
bitumen in its mix.

Voids filled with bitumen (VFB) are termed as the percentage of VMAs that is occupied
by bitumen. As a consequence of the air voids and VMA values previously determined,
mixes with SF (77.44%) and LSD (77.16%) had slightly higher VFB values with respect to
the asphalt mixtures made with OPC (77.01%), as shown in Figure 7. The values of VFB
for FA (75.10%), SD (74.49%), MD (74.27%), BD (73.45), and RHA (72.80) are lower than
the conventional filler OPC (77.01%) at 8.5% mineral filler content. Hence, these materials
can be preferred as fillers in regions with hot climates [68] due to their lower bleeding
possibilities. It can be also observed that the value of VFB has been increased with the
increase in the filler content. All the asphalt mixtures considered presented VFB values
within the range 65–85%, as prescribed by Indian regulations [45].
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Figure 6. Voids in the mineral aggregate of the asphalt mixes with waste and conventional mineral fillers.

Figure 7. Voids filled with bitumen of the asphalt mixes with waste and conventional mineral fillers.

The Marshall stability (MS) of a bituminous mixture is the ultimate load achieved at the
failure by the specimens, whereas the Marshall flow is the deformation of the specimen that
occurred under peak load. Therefore, from an empirical point of view, the Marshall quotient
describes the mechanical resistance of the asphalt mixtures to permanent deformation at
high temperatures caused by wheel loads. The MS of SF (13.98 kN) and LSD (13.86 kN)
was, resultingly, slightly higher with respect to the asphalt mixtures made with OPC
(13.74 kN), as shown in Figure 8. The values of MS for FA (12.39 kN), SD (12.93 kN), MD
(12.31 kN), BD (12.6 kN), and RHA (10.18 kN), instead, were lower than the one obtained
with conventional filler OPC (13.74 kN) at 8.5% content. It can be also observed that the
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value of MS increased with the increase in the filler content; therefore, higher a MS value
has been observed at 8.5% mineral filler content. All the asphalt mixtures considered, except
for the mixes prepared with RHA and MD (4% filler content), presented MS values higher
than 10 kN, as prescribed by Indian regulations [45]. Here, it can be also noted that the OPC,
LSD, and SF have shown more or less similar behaviors. This demonstrates that SF and LSD
can be effectively recycled in asphalt concrete mixes as a replacement for the OPC.

Figure 8. Marshall stability of the asphalt mixes with waste and conventional mineral fillers.

Even the acceptance requisite for mixtures made with modified bitumen (MS higher
than 13 kN) is fully satisfied if the filler content is raised from 5.5% to 8.5% in the case of
LSD and SF, demonstrating the significant improvement of the mechanical response of the
asphalt mixes given by the filler. The Marshall flow of all the asphalt mixes considered
were within the range of 2 mm–4 mm, as specified by MoRTH: in particular, the lowest
flow values have been observed at 7% and 8.5%. Higher stability, along with a lower flow,
is an empirical indicator of an asphalt mixture’s resistance against permanent deformations
at high temperatures, namely, the rutting phenomenon. The Marshall quotient values
of all mixes are specified in Figure 9, and an increasing trend can be observed as the
filler content increases. This trend is in agreement with the results obtained in previous
studies [19,69]. Figure 9 demonstrates that the Marshall quotient (MQ) values of the SF and
LSD filler mixes are higher than those of the OPC mixtures. However, for all the mixtures
investigated, the MQ results are within the acceptance range (2 kN/mm–6 kN/mm) of the
Indian specifications; hence, the addition of industrial waste does not result in a highly
plastic mechanical response, even though the MQ values are lower than OPC for RHA,
BPD, SD, MD, and FA.
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Figure 9. Marshall quotient (kN/mm) of the asphalt mixes with waste and conventional mineral fillers.

3.1.2. Cracking Resistance

The cracking resistance of the asphalt concrete has been assessed with the indirect
tensile strength tests. An increase in the ITS values shows a higher resistance of the asphalt
concrete against fatigue cracking. The average ITS values for the different filler contents
are shown in Figure 10.

Figure 10. Indirect tensile strength of the asphalt mixes with waste and conventional mineral fillers.
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It can be observed that the ITS value of the LSD- and SF-modified asphalt mixture has
been improved in comparison to the OPC-modified asphalt concrete. The improvement in
the ITS values can be attributed to their higher specific surface area. It can be observed that
the ITS values of the LSD- and SF-modified asphalt mixtures were higher than those of the
OPC-modified asphalt concretes. It can also be ascertained from the test results that the
ITS values of the SD-modified asphalt concretes were closer to those of the OPC-modified
asphalt mixes. However, the ITS response of the MD, FA, BD, and RHA mixes was almost
similar, but their values were significantly lower than those of the OPC modified mix.
Therefore, it can be concluded that the fineness of the mineral filler effectively controls
the performance of the asphalt mix. It can also be concluded that the SF and LSD mixes
perform almost similar to the OPC mixtures and can suitably replace the OPC in asphalt
concrete for the heavy traffic loads. Dehghan and Modarres have verified that fine-mineral
fillers with uniform distributions produce an integrated sound structure, and therefore, the
ITS values of the asphalt mixes can be improved [70].

3.1.3. Moisture Susceptibility

The moisture susceptibility of the waste filler-modified asphalt concretes is shown
in Figure 11. The obtained values have been compared with the OPC-modified asphalt
concretes. The moisture susceptibility values have been expressed in terms of ITSR values.
As per the Indian standard [45], the ITSR value should be more than 75 %. In all the cases,
the waste mineral filler-modified mixtures presented ITSR values above the acceptable
limit of moisture susceptibility. The SD-, LSD-, and SF-modified asphalt concretes have
demonstrated higher performances than those of the OPC-modified asphalt mixtures. The
calcium-based mineral filler performed extremely well due to its higher moisture resistance.

Figure 11. Indirect tensile strength ratio of the asphalt mixes with waste and conventional mineral fillers.

The SF, OPC, SD, and LSD blends exhibited the highest ITSR values. The SF mix
had the highest ITSR value due to the presence of portlandite and calcite minerals in
its composition. These minerals are primarily constituent of hydrated lime and have
antistripping properties. Similarly, LSD has calcite in its composition, which enhances
bitumen filler adhesion [51]. This indicates that asphalt mixtures with waste filler SF and
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LSD have a better antistripping performance than conventional asphalt mixtures with OPC.
The RHA, BD, FA, and MD mixes had lower moisture resistance. The RHA mix had the
lowest ITSR value due to the high porosity of RHA. The presence of the fine clays also
reduces the performance of the asphalt concrete; therefore, the BPD-modified mixes have
shown poor ITSR values. Kuity et al. and Arabani et al. have also shown similar results for
the BD-modified asphalt concrete [18,24].

3.1.4. Abrasion Loss

From Figure 12, it can be observed that for all the asphalt mixtures, as the filler content
increases, the Cantabro abrasion loss parameter decreases.

Figure 12. Cantabro abrasion loss of the asphalt mixes with waste and conventional mineral fillers.

Furthermore, mixtures with waste filler SF and LSD perform even better than con-
ventional asphalt mixtures with OPC. The low mass loss rate of the asphalt mix may
result from the high cohesion of the filler–bitumen system and the high adhesion at the
aggregate–bitumen interface. It has been well reported that the tensile strength and fatigue
performance of waste-modified asphalt mixes are much higher than those of conventional
asphalt mixes. In fact, a low level of air voids is likely to provide fewer weak points for
raveling to occur.

3.2. Numerical Discussion

It is worth reminding the reader that the purpose pursued through the development
of a predictive model is to provide road construction companies and/or civil engineers
with a tool capable of producing reliable predictions of the asphalt concretes’ mechanical
behavior, based on their composition and physical properties, avoiding recourse to new
laboratory experiments (sometimes time-consuming and costly) when unforeseen events
occur during the construction of a road pavement or when different design solutions are
to be compared. A model cannot be derived from the simple interpolation of data, as this
mathematical operation is not able to capture the semantics of data and to properly identify
the complex relationship between them.

Regarding the neural network modeling, the results obtained from the implementation
of the k-folds resampling and MAKIMA data-augmentation methods in the SNNs learning
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process were satisfactory, considering the small number of experimental observations
available. Figure 13 shows graphically the predictive accuracy metrics, averaged over the
four test folds of the neural models obtained for each pair (N, ϕ). In red, the optimal SNNs
for each activation function are marked.

Figure 13. Grid search results with (a) ELU as the activation function and with (b) TanH as the
activation function. In these plots, the results for the correlation coefficient Rcv are represented with
blue dots, the mean squared error MSEcv with in orange dots, and the effective number of parameters
ENP, obtained by testing different possible neural configurations, in purple dots. The red dots
identify the optimal solutions for each activation function considered.

It is worth pointing out that the two activation functions considered in this study lead
to neural configurations with different efficiency and accuracy levels. In fact, the use of the
ELU unit, very common in computer vision problems, results in a compact neural configu-
ration (only N = 10 hidden neurons) that is computationally efficient but characterized
by a lower), although satisfactory, accuracy (Rcv = 0.9915 and MSEcv = 0.0193) than its
counterpart; in fact, the hyperbolic tangent function allows for a better interpretation of the
non-linearity problem, leading to the identification of the optimal model (Rcv = 0.9967 and
MSEcv = 0.0078). Therefore, the latter is hereafter referred to as SNNOPT. Nevertheless,
the better accuracy requires more computational power; the use of N = 24 neurons in the
hidden layer makes the structure complex and the calculation slightly more onerous than
the best ELU network solution. In addition, it should be noted that the δ = 196 parameters
(weights and biases) defining the SNNOPT contribute ENP = 95.27% to define the model’s
predictive capacity, whereas this value is reduced to 90.84% in the case of ELU function
use. Once the optimal solutions for each activation function have been reached, the ENP
value begins to gradually decrease (purple dots in Figure 13), indicating that adding any
new parameters to the model does not result in a significant improvement in its predictive
accuracy, but rather forces the regularization algorithm to minimize the effect of the added
parameters. Conversely, it can be observed that the solutions preceding the optimal SNN
models (red dots in Figure 12) are progressively improving in performance as the number
of hidden neurons increases.

To summarize, the highest score on the objective function LCV (equal to 0.9449,
Figure 11) was achieved by the neural configuration defined by N = 24 hidden neu-
rons and the ϕ = TanH activation function. This means that the best SNN for the modeling
problem in question presents a 3–24–4 architecture. The input layer consists of a neuron for
every input feature (the air voids property, the filler content, and the categorical variable
distinguishing the filler type). These are connected to 24 processing units in the hidden
layer, which, in turn, is characterized by the non-linear activation function TanH. Finally,
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the output of each hidden neuron is passed to the four-neuron output layer that, by means
of the linear activation function, provides the prediction of the asphalt concrete mechani-
cal parameters. The SNNOPT has very good generalization capability (Figure 12), as the
coefficient Rcv = 0.9967 is so high as to be representative of an almost perfect fit to the
experimental data (and, consequently, the normalized MSEcv = 0.0078 is actually small).
This is not to say that the model is overfitted if the trend of the data requires passing over
experimentally sampled points. Figure 14 shows the experimental observations (the dots)
and the SNNOPT predictions of the four mechanical parameters (the curves) for each of the
eight filler types considered in the study (indicated by eight different colors), according
to the filler content vs. air voids relationship curves presented in Figure 5. The analysis
of these graphs qualitatively confirms what was pointed out in the experimental discus-
sion: the SNNOPT model is a smooth regression of the experimental observations and
does not have any excessive fluctuations or strange oscillations typical of the overfitting
phenomenon. Indeed, it is able to preserve and properly reproduce the physical behavior
of asphalt concretes. In particular, as the percentage of filler by volume of the mix increases
(and consequently, according to the curves in Figure 4, as the air void content decreases),
all mechanical features are improved, whatever the type of filler is used.

Figure 14. Model prediction vs. experimentally observed target for each filler type: (a) MS, (b) MQ,
(c) ITS, and (d) ITSR. These plots show the fit of the model to the experimental data and allow the
modeling result to be interpreted in physical terms, to verify its correspondence to real-world scenarios.

4. Conclusions

This study investigated the effect of seven different industrial wastes in order to
improve the mechanical property of asphalt concrete. A detailed experimental assessment
has been carried out to develop the comparative evaluation of the mixes with different fillers
in similar conditions. Further, the ANN model is developed to predict the performance of
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the asphalt concrete. Based on the detailed experimental and machine learning assessment,
the following conclusions are drawn:

1. The chemical and physical properties of silica fume (SF), limestone dust (LSD), stone
dust (SD), rice husk ash (RHA), fly ash (FA), brick dust (BD), and marble dust (MD) have
been assessed, and it has been observed that all the fillers follow the required requisites
of the Indian Standard. Therefore, these fillers can be used in asphalt concrete;

2. The mechanical strength and moisture susceptibility tests on the waste-modified
asphalt mixtures have shown satisfactory results with respect to the acceptance requi-
sites, as per the MoRTH. Therefore, these mineral fillers can be effectively used for
field applications. The acceptance requisite for mixtures made with modified bitumen
(MS higher than 13 kN) is fully satisfied if the filler content is raised from 5.5% to 8.5%
in case of LSD and SF, demonstrating the significant improvement to the mechanical
response of the asphalt mixes given by the filler. It has been observed that LSD- and
SF-modified asphalt mixtures have demonstrated superior performance, compared to
the OPC-modified asphalt concretes;

3. The LSD and SF can be identified as the best alternatives to the OPC in asphalt concrete,
since the performances of these mixes were better than those of the OPC-modified
asphalt concretes. The MS of SF (13.98 kN) and LSD (13.86 kN) was slightly higher,
with respect to the asphalt mixtures made with OPC (13.74 kN). The calcium-based
mineral filler performed extremely well due to its higher moisture resistance, though
the other filler-modified mixtures also fulfilled the requirements of the MoRTH, since
ITSR values greater than 75%, and MS values greater than 10 kN have been observed;

4. Shallow neural networks have been successfully used to develop a predictive model
of the main empirical and rational mechanical characteristics of ACs prepared with
different filler types, namely, Marshall stability (kN), Marshall quotient (kN/mm),
indirect tensile strength (kPa), and indirect tensile strength ratio (%);

5. The results obtained from the implementation of the k-folds resampling and MAKIMA
data-augmentation methods in the SNN’s learning process were fully satisfactory
considering the small number of experimental observations available. The optimal
SNN for the modeling problem in question receives as input a three-component
features vector, the air voids content (%), the filler content (% by volume of the mix),
along with the categorical variable distinguishing the filler type; such features are
processed by a twenty-four-neuron hidden layer characterized by the hyperbolic
tangent activation function;

6. The optimal SNN model is a smooth regression of the experimental observations and is
able to properly reproduce the physical behavior of asphalt concretes: as the percentage
of filler by volume of the mix increases and, consequently, as the air voids content
decreases, all mechanical features are improved, regardless of the type of filler used;

7. The optimal model developed in this study admits solutions only along the univocal
relationship existing between the filler content and air voids, as the type and content
of bitumen, as well as the type of coarse aggregate, have been kept constant in the
preparation of the investigated mixtures. Therefore, this SNN represents a modeling
experience that, for the obtained results, encourages the development of an extensive
model that can be applied to other types of mixtures and allow the optimal filler
contents for each asphalt concrete in question to be properly identified.

For future research, in order to make use of these fillers in the field, this research is
required to be expanded by conducting the rutting and fatigue analyses. All the experiments
have been conducted at the laboratory scale; therefore, to understand the field behavior, an
accelerated pavement test (APT) can be conducted by incorporating the IoT-enabled sensors
system. The long-term performance under cyclic loading and the data obtained from APT
using IoT sensors can also be used for developing a robust prediction model considering a
large dataset. The use of the Bayesian method in order to improve the optimization of the
hyperparameters of the ANN model, such as the number of artificial neurons in the hidden
layer and the type of transfer function, is recommended.
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