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Abstract: The decommissioning of nuclear power plants (NPPs) is rapidly increasing because NPPs
are not only no longer profitable in many cases but are also being decommissioned due to a lack
of public acceptance or political reasons in many countries, particularly in Europe, following the
explosion of the Fukushima Daiichi NPP. Accordingly, a significant body of research has focused on
achieving safe, environmentally sound, and sustainable decommissioning in many countries where
there is demand for NPP decommissioning. In order to achieve sustainable decommissioning that
restores the NPP site to its pre-NPP environmental state, it is necessary to understand the safety,
technology, and cost aspects as well as having the process and strategy to systematically promote them.
Although there are a limited number of countries with experience and knowledge in the management
of decommissioning multiple NPPs, researchers in countries just starting NPP decommissioning need
diverse research information on how to formulate a sustainable decommissioning strategy as well as
related factors. In particular, a systematic review of decommissioning strategies, such as DD, ID, and
ET, and the influencing factors associated with each strategy is needed from the researcher’s point
of view. In this regard, this study reviews the research literature on decommissioning strategies for
nuclear power plants with a sustainable perspective. A systematic method involving a meta-analysis
is used. The results of this study confirm that many researchers are most interested in DD and are
dealing with ID and ET at the same level, but in reality, DD and ID are being adopted at similar rates.
Thus far, only three ETs have been adopted in the United States. Most countries that have adopted ID
are deemed to have been influenced by political decisions.

Keywords: sustainable decommissioning; nuclear power plant; strategy; social impact; systematic
literature review

1. Introduction

Nuclear power plants (NPPs) produce more than half of America’s carbon-free electric-
ity due to their superior reliability, enormous clean-air compliance value, and large capacity
for power generation [1]. Due to these advantages, as of 31 December 2020, 442 reactors
were in operation worldwide, and 52 reactors were under construction [2].

The international nuclear and radiological event scale (INES) has seven levels, where
which levels 1–3 and 4–7 are called ‘incidents’ and ‘accidents’, respectively [3]. The de-
scriptions of the levels are as follows: level 1—anomaly, level 2—incident, level 3—serious
incident, level 4—accident with wider consequences, level 5—accident with wider conse-
quences, level 6—serious accident, and level 7—major accident. Since the Shippingport
NPP in the USA started its operation in 1957, NPP accidents have been classified according
to the INES classifications as follows: Chernobyl in the Soviet Union (level 7), Fukushima
Daiichi in Japan (level 7), Three Mile Island in the USA (level 5), and Saint-Laurent in France
(level 4) [4]. Additionally, a critical nuclear accident occurred at the Tokai factory, Japan

Sustainability 2022, 14, 5947. https://doi.org/10.3390/su14105947 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14105947
https://doi.org/10.3390/su14105947
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1349-5586
https://orcid.org/0000-0002-7350-4483
https://doi.org/10.3390/su14105947
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14105947?type=check_update&version=2


Sustainability 2022, 14, 5947 2 of 21

(level 4). The Chernobyl and Fukushima Daiichi NPP disasters caused a lot of casualties
and property damage.

The cost of decommissioning based on the International Structure for Decommissioning
Costing can be described by eleven principal activities, as follows: (1) pre-decommissioning
actions; (2) facility shutdown activities; (3) additional activities for safe enclosure or entomb-
ment; (4) dismantling activities within the controlled area; (5) waste processing, storage,
and disposal; (6) site infrastructure and operation; (7) conventional dismantling, demolition,
and site restoration; (8) project management, engineering, and support; (9) research and
development; (10) fuel and nuclear material; and (11) miscellaneous expenditures. Each
activity incurs labor costs, capital/equipment/material costs, expenses, and contingencies.

The cost for each activity differs among nations and among sites in the same country.
The cost is not dependent on the size of the NPP. In the USA, the total cost of decommis-
sioning, including site remediation, is in the range of 300 to 840 million USD per unit
(2013 value). The cost of decommissioning for Kori unit 1 in Korea was estimated to be
800 million USD.

Once a nuclear facility ends its life, decontamination and decommissioning (D&D) of
the facility should be considered. Nowadays, decommissioning strategies involve immedi-
ate dismantling, deferred dismantling, and entombment. The stages after the shutdown of
a nuclear facility for decommissioning include (1) safe enclosure preparation (site prepara-
tion and initial dismantling), (2) a safe enclosure period (updated final decommissioning
plan, surveillance, and maintenance), and (3) the final stage (final dismantling, final survey,
and license termination).

The decommissioning process must be well planned and optioneered to allow safe and
successful completion. This requires interactive processes between the operator, regulator,
and other stakeholders. The regulatory body needs to be informed of plans, and project
documentation submittals and reviews are essential. The shutdown of a facility should be
safe, so surveillance and maintenance programs are necessary. Facilities, including nearby
sites, should be characterized, and a detailed plan, including engineering, should be set up.
The plan should include health and safety, quality assurance, waste management, project
management, permitting and procurement, safety analysis, project baseline, emergency,
and training components. After the decommissioning process has been finished as planned,
a final survey of the site is performed.

Globally, 192 reactors have been permanently shut down, and 158 reactors are in the
decommissioning process or have a decommissioned status [1]. The decommissioning
of NPPs is rapidly increasing because NPPs are no longer profitable in many cases. In
addition, decommissioning can occur due to a lack of public acceptance or political reasons
in many countries, particularly in Europe, following the explosion of the Fukushima Daiichi
NPP [5]. To guarantee public safety while conducting sustainable decommissioning, vari-
ous factors, including economic, technological, and social impacts, should be considered to
establish strategies, and related decisions should be made. In order to establish sustainable
decommissioning strategies, a wealth of relevant knowledge and experience is needed.
The USA has a lot of experience and knowledge in this area, as it has decommissioned
nine NPPs, and currently, 19 NPPs are under decommission [6]. However, countries that
have just started decommissioning need a variety of information to ensure sustainable
decommissioning is carried out. In many previous studies, information and procedures in
relation to nuclear-decommissioning strategies have been proposed [7–14], and a significant
amount of research has been conducted in various areas. In addition, research has been
focused on sustainable decommissioning that is guaranteed to be safe and environmentally
sound. In this regard, systematic reviews with up-to-date information are needed so that
persons and researchers in charge of establishing a sustainable decommissioning strategy
for NPPs can acquire information quickly. Although a large number of review articles
have been published in relation to NPP decommissioning, most are reviews related to
nuclear engineering and technology rather than being literature reviews of sustainable
decommissioning strategies [15–21]. After surveying a literature database related to nuclear
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engineering, it was concluded that there are also no systematic review articles involving a
meta-analysis of sustainable decommissioning strategies. Thus, in this study, we review
the research literature on decommissioning NPPs from a sustainable perspective using a
systematic method with a meta-analysis. The results of this review research will be used
to propose a research direction for the achievement of safe, economical, and sustainable
nuclear decommissioning in the future.

2. Sustainable Decommissioning Strategy of NPPs

Since its first mention by the Roman Club in the 1972 report ‘The Limits to Growth’, sus-
tainability has been considered in a variety of areas, including human activities, economics
and management, climate and environment, and national policy [22,23]. Sustainability
can be defined in many ways. We present some of the typical definitions in relation to
sustainable NPP decommissioning. First, ‘Sustainability is based on a simple principle: Ev-
erything that we need for our survival and well-being depends, either directly or indirectly,
on our natural environment’ [24]. In the charter for the UCLA Sustainability Committee,
sustainability is defined as ‘the integration of environmental health, social equity, and
economic vitality in order to create thriving, healthy, diverse, and resilient communities
for this generation and generations to come. The practice of sustainability recognizes how
these issues are interconnected and requires a systems approach and an acknowledgement
of complexity’ [25]. In the Oxford dictionary, sustainability is defined as ‘the ability to be
maintained at a certain rate or level’ [26].

Reflecting on these definitions, sustainable decommissioning of NPPs involves the
restoration of the NPP site and the surrounding environment to its pre-NPP state to
promote the health and prosperity of the present and future generations. That is, after
NPP decommissioning, hazardous substances harmful to human health and nature in
the site and the surrounding environment must be maintained below the pre-NPP level.
Although each NPP site has its own requirements, the following principles should be
considered in the implementation of sustainable decommissioning: (a) the participation of
surrounding community members and other external stakeholders in the decision-making
process; (b) the application of integrated, long-term thinking; and (c) the viewing of all
parts as potential assets and the creation of a post-decommissioning vision [27].

A strategy is a general plan that is used to achieve one or more long-term or overall
goals under conditions of uncertainty [28]. Thus, the sustainable decommissioning strategy
for NPPs can be defined as a long-term plan to implement sustainable decommissioning
of NPPs. Strategies are important because the resources available to achieve goals are
usually limited. A strategy generally involves setting goals and priorities, determining
actions to achieve the goals, and mobilizing resources to execute the actions [29]. A
strategy can be purposeful or can emerge as a pattern of activity as the organization
adapts to its environment or competition [29]. It can involve activities such as strategic
planning and strategic thinking [30]. A successful decommissioning strategy for NPPs
requires clear direction, a defined end point, planning time, upfront resources, investment,
and communication [31]. The best technical and engineering solution can be worthless
if it is not a financially, socially, and politically acceptable way to deliver the selected
decommissioning strategy while achieving the selected end state [31].

According to literature published by many international organizations, the three main
decommissioning strategies are ‘immediate dismantling (ID)’, ‘deferred dismantling (DD)’
or ‘safe enclosure and entombment (ET)’ [6–9,32]. These are the top strategic decision-
making strategies, and, to determine which to use, many factors from the following three
categories should be reviewed: (a) policy and socio-economic factors; (b) technological and
operational factors; and (c) long-term uncertainties [32]. The International Atomic Energy
Agency (IAEA) proposed that the following seven general factors should be considered
when selecting a decommissioning strategy [8,9]: (1) the national policies and regulatory
framework; (2) financial resources/cost of implementing a strategy; (3) spent fuel and
waste management system; (4) health, safety, and environmental impacts; (5) knowledge
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management and human resources; (6) social impacts and stakeholder involvement; and
(7) suitable technologies and techniques. Y.A. Suh et al. [7] added reactor and site charac-
teristics, which were introduced in the report from the European Commission [33] as the
eighth factor.

For sustainable decommissioning of NPPs, the appropriate strategy, either DD, ID,
or ET, should be decided after sufficiently considering the above eight factors. In order
to successfully carry out the strategy, a detailed plan, including the budget, technology,
manpower, and schedule, should be established. In the current study, the authors conducted
a systematic literature review after examining the literature published in this area so far.
We focused on the three above-mentioned top strategies and eight general factors.

3. Methods

We searched for articles on NPP sustainable decommissioning strategies in Science
Direct, the Web of Sciences (WoS), Taylor and Francis Online, Springer Link, and the
Willey Online Library. In the Willey Online Library and the Web of Sciences (WoS), we
searched articles published in all journals corresponding to the Science Citation Index
Expanded (SCIE) classified by the Institute for Scientific Information (ISI). We searched
articles published in SCIE journals in the field of Engineering and Technology in Taylor and
Francis Online, Chemistry, Engineering, Material Science, and Physics in Springer Link,
and Physical Sciences and Engineering in Science Direct.

The literature was searched sequentially in the aforementioned literature database using
the following keywords: nuclear, nuclear decommissioning, and nuclear-decommissioning
strategy. Since the nuclear-decommissioning strategy discussed in this review article is a
very specific topic, most literature was retrieved from the databases. Google Scholar was
used only for the search of literature sources such as books, magazines, and dissertations
that could not be found easily in the above databases or for which the original copy could
not be downloaded from the above databases.

Out of the records searched, as of 30 December 2021, 1471 records were selected,
as shown in Figure 1. This excludes records that were not related to the topic of this
study, as well as duplicate records. After removing 324 duplicated records, a total of
302 full-text articles were selected. We excluded 537 records that were not related to nuclear-
decommissioning work and 308 that were not related to strategy. Thereafter, 183 articles
that were not closely related to the eight general factors mentioned in Chapter 2 were
removed. Accordingly, 119 articles related to the eight general factors were targeted for
the quantitative and qualitative analyses, and the decommissioning strategies that are
performed in each nation were compared. Finally, future research directions to establish a
sustainable NPP decommissioning strategy were proposed.
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4. Descriptive Analysis

Nuclear decommissioning requires the use of technology with a high level of difficulty.
Thus, thorough preparation and strategies are needed [34]. Decommissioning takes more
time than building an NPP, and more waste is produced at once than that produced during
operation [35]. To perform nuclear decommissioning in a safe, economical, and eco-friendly
manner, decommissioning strategies should be established according to the NPP type
and characteristics, and then highly advanced technologies, including decontamination
technology, remote cutting and management technology, waste treatment technology, and
environment recovery technology should be secured.

Up until now, research in the nuclear-decommissioning field has focused on various
areas such as decommissioning costs and technology, radioactive waste management, and
treatment and environmental impact assessments. However, compared with research on
decommissioning strategies, most studies were focused on a narrow and in-depth level of
studies [36,37] to specifically realize the aforementioned eight factors [7–9].

As mentioned in Chapter 2, which of the main decommissioning strategies, ID, DD,
and ET, to be used is chosen by considering various factors such as national policies, finan-
cial resources, the waste management system, the environmental impact, social impacts,
and suitable technologies [15,38–46].

The most suitable strategy should be established by considering the type and char-
acteristics of the NPP and the standpoint of the nation it is located in after analyzing
the relationships among the main decommissioning strategies and the eight sustainable
nuclear-decommissioning factors or their subfactors. After integrating and analyzing the
relationships among the main decommissioning strategies and impact factors through the
literature search, no articles with proposed decommissioning strategies were found. Thus,
related studies should be continued. In this research, a systematic literature review (SLR)
of 119 articles was conducted, as presented in Figure 1, to support related studies.
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Table 1 presents the 119 included articles by the country of the main author. South
Korea has produced the largest number of papers (25), followed by Russia with 23, Germany
with 12, the UK with 9, the USA with 8, and Japan with 7. Eight nations, including China,
have published two to six papers. Finally, eight nations, Canada, Italy, Iraq, Switzerland,
Sweden, Belgium, Denmark, and South Africa, have published one paper. Two nations,
including Slovakia, have published three papers. Four nations, including Austria, have
published two papers. Eight nations, including Canada, have published one paper.

Table 1. Number of paper produced by country (Source: research results).

Country Articles References Remarks

South Korea 26 [7,42–44,47–68]

Russia 23 [46,69–90]

Germany 12 [13,34,39,91–99]

UK 9 [16,100–107]

USA 8 [15,36,45,108–112]

Japan 7 [14,113–118]

China 6 [108,119–123]

Spain 5 [124–128]

Austria, Slovakia, Taiwan 9 [35,129–136] 3 papers each in three countries

Czech Republic, Brazil,
Lithuania 6 [41,42,137–140] 2 papers each in three countries

Canada, Italy, Iraq,
Switzerland, Sweden,

Belgium, Denmark, South
Africa

8 [37,38,141–146] 1 paper each in eight countries

Total 119

As of October 2021, there were 441 nuclear reactors in operation in 30 countries around
the world [147]. More specifically, in the US, France, China, Russia, Japan, and South
Korea, there were 93, 56, 51, 38, 33, and 24 nuclear reactors in operation, respectively.
The USA has decommissioned nine NPPs and is decommissioning a further 19 NPPs [6].
The ‘Nuclear Power Reactors in The World’ published in 2021 by the IAEA disclosed that
Germany, the UK, Japan, and France had decommissioned or were decommissioning 29,
26, 22, and 10 reactors, respectively [2]. While major NPP-leading nations have decom-
missioned or are decommissioning many reactors, the literature data on decommissioning
strategies in the articles presented in Table 1 are scarce. The reason for this is that these
NPP-leading nations had experience with the decommissioning of nuclear reactors and
secured technology independently. We also verified that advanced research on technolo-
gies to strengthen the safety, efficiency, and ecofriendliness of such operations is actively
underway for commercial purposes. Since NPP decommissioning technology is related
to business strategy and know-how, leading decommissioning nations are reluctant to
disclose academic presentations about key technologies.

Because South Korea has focused on the construction, operation, and lifetime exten-
sion of NPPs, its related technologies are at the world’s top level. However, South Korea
lacks decommissioning technology in comparison to other leading NPP decommissioning
nations, which is why a lot of research is underway to secure key decommissioning technol-
ogy. Despite South Korea being at an early stage in the decommissioning of two reactors,
it published the most closely related articles on the topic of decommissioning strategies,
as exhibited in Table 1. It is said that Russia has decommissioned or is decommissioning
four reactors, but no accurate information is available [2]. However, it is assumed that a
large number of articles on decommissioning have been published, since Atomic Energy,
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the oldest journal in the nuclear energy field, is based in Russia. Finally, at the time that the
research was conducted, China was operating 50 reactors and had 13 under construction,
but there were no reactors undergoing the decommissioning process [2]. Thus, there were
few articles on the decommissioning strategy from China, as presented in Table 1, but we
expect China to have many NPP decommissioning cases. As a result, we predict that China
will actively research to prepare for this.

Figure 2 shows an analysis of the 119 articles by year. The number of nuclear-
decommissioning-related papers increased rapidly, with two papers published from 1988
to 1991 (1.7%), 12 papers from 1992 to 2001 (10.1%), 30 papers from 2002 to 2011 (25.2%),
and 75 papers from 2012 to 2021 (63.0%). Since commercial power generation using NPPs
started in the 1950s, research on nuclear decommissioning has been conducted in advanced
nuclear-decommissioning nations, such as the USA and Germany, and this included the
early days of the arrival of the shutdown of nuclear facilities. After the 1970s, a large num-
ber of countries constructed NPPs, and when the shutdown arrived in the 2000s, related
research suddenly increased in South Korea and Japan, where the security of NPP decom-
missioning technology was urgently needed. In particular, it was verified that research
on the technical upgrade of nuclear decommissioning has increased since the Fukushima
Daiichi nuclear accident. It is predicted that the increasing trend in the number of published
articles shown in Figure 2 will accelerate if research on the technical upgrading of nuclear
decommissioning is conducted in China, India, Japan, and Russia—areas with planned
construction or current construction of large-scale NPPs.
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5. Results and Discussion
5.1. Results of the Quantitative and Qualitative Review
5.1.1. Summary by Adopted Decommissioning Strategy

In the reference data from the IAEA, decommissioning strategies are categorized into
four types: immediate dismantling and removal of all radioactive materials (ID), deferred
dismantling and placing all radiological areas into a safe enclosure (DD+SE), deferred dis-
mantling, including partial dismantling and placing remaining radiological areas into a safe
enclosure (DD+PD+SE), and in situ disposal (ISD), involving the encapsulation of radioac-
tive materials and subsequent restriction of access [2]. This shows that decommissioning
strategies can be subcategorized according to political concerns, safety or environmental
requirements, technical considerations, local conditions, or financial considerations. How-
ever, most articles generally classify the three main decommissioning strategies as ID, DD,
and ET.

Table 2 presents a summary of the relevance of nuclear-decommissioning strategies in
terms of their use in the 119 articles, as determined by the PRISMA flow diagram shown in
Figure 1. As presented in Table 2, DD was mentioned in 117 out of a total of 119 articles
(98.3%), while ID and ET were mentioned in 61 articles (51.3%) and 60 articles (50.4%),
respectively, resulting in a total of 238 mentions. This result verifies that nearly all articles
mentioned DD, whereas ID and ET were mentioned similarly. The number of articles was
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119, in which DD, ID, and ET were mentioned 239 times. This means that DD, ID, and ET
were mentioned simultaneously in many articles. This means that the subject of the above
articles was related to more than one decommissioning strategy.

Table 2. Summary by the adopted decommissioning strategy (Source: research results).

Description Articles References Ratio (%) Remarks

Deferred dismantling (DD) 117 [2–61,69–88,91–102,108–110,113–117,119–122,124–
126,129–133,137,141–144] 98.3

Ratio for
119 articlesImmediate dismantling (ID) 61 [6–8,10,12–16,21,27–29,31,35–37,54–56,58,59,69–88,95–

98,103,109–113,116,117,119,121,122,132,137,142] 51.3

Entombment (ET) 60 [1,6–8,13–16,21,27–29,31,35–37,69–71,73,74,85–122,128] 50.4

For DD, which was mentioned in most articles, decommissioning takes a long time,
around 60 years, but radioactivity is reduced by spontaneous decay during that period.
Thus, radioactive waste is dramatically reduced compared to when ID is used. DD also
has the advantage that it can significantly reduce the probability of occupational expo-
sure compared with ID. On the other hand, DD has drawbacks, such as difficulty in
maintaining the same personnel until the completion of decommissioning, an increase in
maintenance and safety management costs, and a delay in site reuse, as it takes a long
time [8,9,41,44,45,79,113,116,137].

ID takes around 15 years for decommissioning, which allows the use of consistent per-
sonnel and reduces the decommissioning cost compared with DD. It also has the advantages
of possible decommissioning schedule prediction and fast site reuse. On the other hand, ID
has a high probability of occupational exposure compared with DD and must involve the
use of additional shielding and remote control equipment [8,9,40,43,48,49,53,69,72,77,115].

ET is a method with no concern about the residual activity as facilities are completely
sealed using concrete without the complete removal of radioactive materials. Here, the
sites are considered a kind of waste disposal [8,9,57,74,81,98,110,117].

According to the reference data from the IAEA, 158 reactors were going through the
decommissioning process or had been decommissioned in 19 countries as of 31 December
2020. DD was selected for the decommissioning of 72 reactors in 12 countries, as presented
in Table 3.

Table 3. Decommissioning strategy used for reactors going through the decommissioning process
and already decommissioned reactors (Source: research results).

Decommissioning Strategy No. of Reactors and Ratio
No. of Countries Remarks

No. of Reactors Ratio (%)

Deferred dismantling (DD) 72 45.6 12 Dd + PD + SE 46
Dd + SE 26

Immediate dismantling (ID) 60 38.0 13 ID
Entombment (ET) 3 1.9 1 ISD

Others 23 14.5 7 None of the above

Total 158 100.0 19

ID has been adopted in 13 nations to decommission 60 reactors, and ISD, which
involves entombment, has been adopted in the USA for the decommissioning of three
reactors. As presented in Table 2, DD has been academically discussed the most, while
ID and ET have been studied at nearly the same rates. However, ID has been adopted
less often than DD, as indicated in Table 3. However, practically, it has been adopted at
a much higher rate than ET. Major nations that have adopted DD (Table 3) are Bulgaria,
Canada, Japan, the UK, and the USA, while major nations that have adopted ID are France,
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Germany, Italy, the USA, and South Korea. If we investigate the data shown in Table 3 in
more detail, we can see that national policy and socio-economic factors, which reflect public
opinion, played major roles in the adoption of decommissioning strategies for reactors in
countries where ID has been used. Note that ISD, which belongs to the ET category, has
only been adopted in the USA.

5.1.2. Summary of the Eight Influencing Factors

A decommissioning policy is a set of established goals or requirements for the safe,
effective, and efficient decommissioning of nuclear facilities. A decommissioning strategy
is the means for achieving the goals and requirements set out in the national policy for the
decommissioning of nuclear facilities [9]. However, selecting a sustainable decommission-
ing strategy is a difficult problem in which many factors are intertwined, as mentioned
in Chapter 2. In this study, eight factors are proposed that should be considered when
selecting a sustainable decommissioning strategy. These were chosen after investigating
the IAEA [8,9] and other articles [7,33]. In addition, the relationships of the 119 articles
with the eight factors were studied, as summarized in Table 4.

Table 4. Summary by the eight influencing factors (Source: research results).

Factors Articles Ratio (%) Remarks

Policies and regulatory framework (F1) 15 12.6

Ratio for 119 articles

Financial resources/Cost of implementing a strategy (F2) 28 23.5
Spent fuel and waste management system (F3) 36 30.3
Health, safety, and environmental impact (F4) 44 37.0

Knowledge management and human resources (F5) 5 4.2
Social impacts and stakeholder involvement (F6) 14 11.8

Suitable technologies and techniques (F7) 25 21.0
Reactor and site characteristics (F8) 9 7.6

The analysis results show that the number of articles related to ‘Health, safety, and
environmental impact’ was 44 (37.0%) out of the 119 studied articles, making this the most
commonly mentioned factor. This was followed by ‘Spent fuel and waste management
system’ with 36 articles (30.3%), ‘Financial resources/Cost of implementing a strategy’
with 28 articles (23.5%), ‘Suitable technologies and techniques’ with 25 articles (21.0%),
‘Policies and regulatory framework’ with 15 articles (12.6%), ‘Social impacts and stakeholder
involvement’ with 14 articles (11.8%), ‘Reactor and site characteristics’ with 9 articles (7.6%),
and ‘Knowledge management and human resources’ with 5 articles (4.2%), as presented in
Table 4. Table 4 verifies that the eight factors are related to one another in the 119 articles in
a duplicate manner because the sum of F1 to F8 is 176. This means that not only one factor
was studied, but multiple factors were related in many articles according to the NPP type
and characteristics.

The results shown in Table 4 indicate that studies in relation to F4 were the most
common, followed by those that mentioned F3. The results verified that the foremost
considerations had been the reduction of occupational exposure, blocking radioactiv-
ity leaks, and safety improvements during decommissioning, as shown by the focus on
F4 [44,46,48,50,57,69,87,95,97]. In order to do this, the following studies were actively
conducted on the development of decontamination technology to safely remove only
radioactive materials [46,57], technology to remotely cut and handle high-radioactivity
facilities [50,91], technology to safely handle various types of waste produced during de-
commissioning processes [59,95], and recovery technology to restore contaminated facilities
and sites to their original states [49,87]. It was also shown that these detailed technologies
are mutually and organically related to safe and efficient decommissioning processes.

We verified that radioactive waste produced during decommissioning for F3 could
cause serious damage that cannot be recovered in the future if it is not systematically
managed, so this aspect was provided priority [36–38,63,67,71–73,108,113,145,148]. For
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advanced decommissioning nations, such as the USA, France, and Germany, technologies
to handle concrete and metal waste, which accounts for most of the dismantled waste, have
reached the commercialization level [108,113], and radioactive waste is reused in various
areas, including in NPPs, through the deregulation of radioactive waste [75,76]. However,
their safe handling methods are not secured for some specialized waste, so the waste is
temporarily stored, and studies on how to handle this are currently underway [62,138].

As such, the related articles tell us that decommissioning strategies that are suitable
for NPP types and characteristics should be established and prioritized to allow nuclear
decommissioning to be performed in a safe, economical, and eco-friendly manner. After
this, suitable decommissioning technologies for decommissioning, remote cutting and
handling, waste treatment, and environmental recovery should be secured according to the
adopted decommissioning strategy; that is, suitable decommissioning strategies should be
established and prioritized with consideration of the nation, region, and environment, and
F1 to F8 in Table 4 should be fully considered.

5.2. Co-Occurrence Network Analysis

In Section 5.2, nuclear-decommissioning strategies and the eight general factors
adopted in articles were analyzed in terms of each strategy’s adoption process. When
using the analyzed results, VOSviewer software was used to conduct a co-occurrence net-
work analysis. The subfactors of the eight general factors were also analyzed in the article
keywords. For reference, the subfactors included policy, commercial issues, spent fuel,
health and safety, knowledge management, social impacts, technologies and techniques,
reactor and site characteristics, the regulatory framework, the waste management system,
the environmental impact, human resources, and stakeholder involvement. As a result, a
network between the index keywords was generated, as shown in Figure 3.
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The thicknesses of the connecting lines between nodes in the co-occurrence network
reflect the link frequency of the keywords [149]; that is, the higher the link frequency
between two keywords is, the thicker the connecting line is. This provides an indication of
factors that were more closely related in the selection of strategy in a relative sense.

As shown in Figure 3, the co-occurrence network for the decommissioning strategy
largely consists of four clusters. The index keywords in the surveyed articles are classified
into blue (Cluster 1), red (Cluster 2), green (Cluster 3), and yellow parts (Cluster 4).

Cluster 1 is a cluster that is connected with six items: ‘DD’, ‘health and safety’, ‘envi-
ronmental impact’, ‘reactor and site characteristics’, ‘suitable technologies and techniques’,
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and ‘technologies and techniques’. This part is composed of two factors, ‘health and safety’
and ‘environmental impact’, which are closely located in ‘DD’, which is the most frequent
keyword and is linked with ‘reactor and site characteristics’, ‘suitable technologies and
techniques’, and ‘technologies and techniques’; that is, articles that adopted the DD strategy
mentioned health, safety and environmental impact (F4), reactor and site characteristics
(F8), and suitable technologies and techniques (F7) frequently. Figure 4a shows detailed
results of the keyword analysis in relation to the DD strategy.
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These results imply that the most important factor to consider when adopting a
deferred dismantling strategy is to minimize the impact on the health and safety of workers
and the environment. Subfactors related to these general factors show that reactor and
NPP site characteristics should be strongly considered, and advanced reactor dismantling
technology should be secured. In particular, when establishing a decommissioning strategy,
potential accidents by workers should be reviewed, and the exposure doses of workers and
residents should be managed and minimized. In addition, in order to prevent radiation
exposure accidents, management procedures for workers should be prepared for each stage
of dismantling.

Cluster 2 is a cluster that is connected with seven items: ‘ID’, ‘entombment’, ‘com-
mercial issue’, ‘financial resources/cost of implementing a strategy’, ‘human resources’,
‘knowledge management’, and ‘knowledge management and human resources’. Both ID
and entombment belong to this part of the decommissioning strategies. Out of the eight
factors, it is closely related to financial resources/cost of implementing a strategy (F2) and
knowledge management and human resources (F5). In particular, among the subfactors, the
‘commercial issue’ was mentioned often in research on the ID strategy and the entombment
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strategy, although its co-occurrence frequency was not that high. Figure 4b,c show the
detailed analysis results for the ID and entombment strategies.

These results confirm that, for the immediate dismantling and entombment strate-
gies, the financial resources for implementing these strategies are prioritized because the
radioactive-material-contaminated structures, operating systems and devices, and sites
must be demolished or removed as soon as possible after the permanent shutdown of the
NPP. By analyzing the subfactors linked to these factors in the co-occurrence network, it was
confirmed that elements of systematic decommissioning project management technologies,
including their cost, schedule, and contaminated waste management, must be secured in
order to secure economic feasibility. Therefore, when adopting the immediate dismantling
and entombment strategy, more attention should be paid to not only the safety of workers
but also to the evaluation of dismantling costs and the establishment of schedules.

Cluster 3 is a cluster that is connected to six items: ‘policies and regulatory framework’,
‘social impacts and stakeholder involvement’, ‘policy’, ‘regulatory framework’, ‘social
impacts’, and ‘stakeholder involvement’. In addition, Cluster 4 refers to a cluster that is
connected to three items: ‘spent fuel and waste management system’, ‘spent fuel’, and
‘waste management system’. The factors included in Clusters 3 and 4 are all connected
to the three decommissioning strategies in a balanced manner, as shown in Figure 4; that
is, of the eight general factors, policies and regulatory framework (F1), the spent fuel and
waste management system (F3), and social impacts and stakeholder involvement (F6) were
considered when determining a decommissioning strategy.s

As such, the network of the strategies visually displays the connection structures between
index keywords and can be used in research to set a sustainable nuclear-decommissioning
strategy in the future.

5.3. Discussion

As of 31 December 2020, France had the highest share of nuclear electricity generation
at 71%, and 17 nations accounted for more than 20% of the share of nuclear electricity
generation worldwide. Currently, 442 power reactors are running in 34 nations around the
world, and 158 reactors are going through the decommissioning process or have already
been decommissioned in 19 nations [2]. According to the global ‘Nuclear Decommissioning
Market’ analysis report, it is predicted that 183 and 127 nuclear reactors will be decommis-
sioned in the 2020s and 2030s, respectively [150]. The withdrawal of nuclear power has been
actively sought in many nations in the European Union through the use of various types
of renewable energy. Since the Fukushima Daiichi incident, countries such as Germany,
France, and South Korea have taken drastic measures to phase out their nuclear power
programs [150].

When establishing a decommissioning strategy for nuclear facilities, a process that
is on the verge of expansion, radiological conditions, spent fuel and radioactive waste
management and economics, and the development of suitable technology should be taken
into consideration [130]. In this study, an SLR was conducted with a focus on three
strategies, DD, ID, and ET, and eight general factors which should be considered when
determining a strategy. These factors were selected using various study articles along with
the IAEA publications. During the process of performing the quantitative and qualitative
analyses, several noteworthy findings were verified, as follows:

First, the frequencies of selections of DD, ID, and ET as decommissioning strategies
by the nations that are undergoing nuclear reactor decommissioning processes or where
reactors have been decommissioned around the world (as presented in Table 3) are sum-
marized in Table 5. As presented in Table 5, 5 out of the 17 nations account for 65 reactors,
which is 90.3% of the total number that have undergone DD, and the UK, USA, and Japan
account for the majority of these with 56 units. Out of the other 12 nations, 7 nations have
adopted DD only for one reactor. ID has mostly been adopted in France, Germany, and the
USA, while Belgium, Italy, South Korea, and Lithuania have only adopted ID. One of the
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reasons for nations to adopt ID is to allow the reuse of the sites, but public opinion also
seems to play an important role in policy decision-making.

Table 5. Decommissioning strategies used by country (Source: research analysis results).

Country DD ID ET Total Remarks

Belgium - 1 - 1

Only DD, ID,
and ET are

summarized.

Bulgaria 4 - - 4
Canada 5 - - 5
France - 10 - 10

Germany 1 22 - 23
Italy - 3 - 3

Japan 11 3 - 14
Kazakhstan 1 - - 1
South Korea - 2 - 2

Lithuania - 2 - 2
The Netherlands 1 - - 1

Slovakia 1 2 - 3
Spain 1 2 - 3

Sweden 1 2 - 3
Switzerland 1 1 - 2

UK 25 1 - 26
USA 20 9 3 32

Total 72 60 3 135

Second, Table 5 verifies that DD, ID, and ISD have been adopted unequally in all
nations, except for the USA. This is because policy or political decision-making (F1) has
played the most important role in choosing a strategy out of the eight general factors,
as shown in Table 4. However, only 15 articles (12.6%) are mentioned, as presented in
Table 4, from a research viewpoint. The reason for this is that F2, F3, F4, and F7 are easier to
discuss academically than policy or political decision-making in terms of the researcher’s
standpoint. Furthermore, knowledge management (F5) has had a significant impact on the
determination of the decommissioning strategy, but only five articles (4.2%) discussed the
subject academically, which was the smallest number. This implies that more studies on F1
and F5 should be conducted in the future.

Third, the UK, the USA, and Japan, which own key player companies [150] in the
global nuclear-decommissioning market, were found to have published relatively few
articles, as shown in Table 1, compared with their numbers of owned NPPs and decom-
missioning records. This is because these countries have high levels of decommissioning
technology and records already, so they are reluctant to publish academic papers in terms of
a commercial viewpoint and the management of intellectual property rights. Nonetheless,
the experience and knowledge of those nations should be more actively shared to promote
the use of safe, economical, eco-friendly, and sustainable decommissioning strategies for
NPPs while maintaining the health and prosperity of mankind. This is because all nuclear
issues are not a problem of just one nation; they are global issues that should be of common
concern to all nations.

6. Conclusions

The sustainable decommissioning of NPPs refers to the restoration of various types of
NPP facilities whose service time has been terminated, and the surrounding environment
is returned to its pre-NPP state to promote the safety, health, and prosperity of the current
and future generations. The main sustainable NPP decommissioning strategies are DD,
ID, and ET, and eight general factors are considered to guide the decommissioning policy.
In this study, an SLR on decommissioning strategies involving eight general factors was
conducted, and the following results were obtained.
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First, the descriptive analysis results verified that nations with vast experience and
knowledge of NPP decommissioning, such as the USA, the UK, Germany, and Japan, have
not published corresponding research articles. Instead, nations, such as South Korea and
Russia, that have just started NPP decommissioning and do not have major companies
that are key players in the global nuclear-decommissioning market have published many
research articles related to NPP decommissioning strategies, as presented in Table 1.

Second, this study verified that the number of articles on the NPP decommissioning
strategy has rapidly increased since 1992 when the design life of many NPPs began globally.
As shown in Figure 2, 105 (88.2%) out of 119 articles were published between 2001 and 2021.
This trend will continue as the number of reactors to be decommissioned increases. As of
2020, globally, 158 reactors are undergoing the decommissioning process or have already
been decommissioned [2], and an additional 310 reactors will be decommissioned by the
2030s [150].

Third, DD was mentioned in 117 articles (98.3%), while ID and ET were mentioned
nearly the same number of times, in 61 (51.3%) and 60 (50.4%) articles, around half that
of DD, as presented in Table 2. However, actual strategies applied to nuclear facility
decommissioning showed that DD had been adopted for 72 units (45.6%), ID for 60 units
(38.0%), and ET for three units (1.9%), as shown in Table 3. Despite the fact that ET has not
been adopted in nations other than the USA, researchers have discussed ET as much as ID
in their papers. This verifies there is a difference between the researchers’ interests and the
adopted strategies.

Fourth, the general factors that determined the decommissioning strategy were stud-
ied, and the results show that the health, safety, and environmental impact factor was
the most commonly mentioned with 44 articles (37.0%), while the spent fuel and waste
management system factor was mentioned in 36 articles (30.3%), as shown in Table 4. This
result shows that researchers prioritize reducing occupational exposure, the blockage of
radiation leakage, and the improvement of safety during decommissioning, while there
should be more research on the safe handling of spent fuel and waste in the future.

Fifth, the co-occurrence network analysis result shows that DD strategy-related ar-
ticles were intensively connected to the following factors, in order: ‘health, safety, and
environmental impact’, ‘reactor and site characteristics’, and ‘suitable technologies and
techniques’. This means that the DD strategy should prioritize the health and safety of
workers and strive to minimize the impact on the environment. In addition, ID and ET
strategy-related articles were highly connected to ‘financial resources/cost of implementing
a strategy’ and ‘knowledge management and human resources’. This means that the ID
and ET strategies should prioritize the cost and financial resources of implementing the
strategy, as it is necessary to safely dismantle nuclear facilities as soon as possible after a
permanent shutdown. Factors such as ‘policies and regulatory framework’, ‘spent fuel and
waste management system’, and ‘social impacts and stakeholder involvement’ were not
mentioned often but were found to be connected to all three decommissioning strategies.

This study found that many researchers were most interested in DD and discussed ID
and ET at similar interest levels, but in the actual decommissioning industry, DD and ID
are adopted equally, whereas ET has not been adopted, except for in the USA. Furthermore,
in most nations that have adopted ID, political or policy decision-making seems to play an
important role. Moreover, this study verified that major nations with decommissioning
records and major companies do not actively share their experience or knowledge.

Based on the facts confirmed through this study, the authors suggest the following
research directions for sustainable NPP decommissioning. First, research should be focused
on DD and ID rather than on ET. Second, a study should be conducted to identify the cor-
relations and influences between the decommissioning strategy and eight general factors.
Third, it is necessary to study the techniques used for estimating the expected safety, cost,
time, and environmental impact when selecting a strategy. Fourth, in order to establish
the management of knowledge regarding safety, cost, time, and environmental impact, a
technique should be developed to ensure that the requirements defined in the strategy and
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the detailed execution procedure established at the time of NPP decommissioning are met
in a step-by-step manner. Fifth, it is necessary to develop a project management technique
that is systematically applied from the initial stage to the completion of the NPP decom-
missioning process to ensure that there is a high level of safety and economic feasibility.
Finally, it is necessary to establish a research hub where researchers from all over the world
can share technology and knowledge related to sustainable NPP decommissioning.
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Abbreviations

NPP Nuclear Power Plant
UCLA University of California, Los Angeles
ID Immediate Dismantling
DD Deferred Dismantling
ET Entombment
SE Safe Enclosure
PD Partial Dismantling
ISD In Situ Disposal
IAEA International Atomic Energy Agency
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
WoS Web of Sciences
SCIE Science Citation Index Expanded
ISI Institute for Scientific Information
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12. Szőke, I.; Louka, M.N.; Bryntesen, T.R.; Edvardsen, S.T.; Bratteli, J. Comprehensive support for nuclear decommissioning based
on 3D simulation and advanced user interface technologies. J. Nucl. Sci. Technol. 2015, 52, 371–387. [CrossRef]

13. Volk, R.; Hübner, F.; Hünlich, T.; Schultmann, F. The future of nuclear decommissioning–A worldwide market potential study.
Energy Policy 2019, 124, 226–261. [CrossRef]

14. Asahara, A.; Kawasaki, D.; Yanagihara, S. Study on strategy construction for dismantling and radioactive waste management at
Fukushima Daiichi Nuclear Power Station. Nucl. Eng. Des. 2021, 374, 111066. [CrossRef]

15. Lough, W.T.; White, K.P., Jr. A critical review of nuclear power plant decommissioning planning studies. Energy Policy 1990, 18,
471–479. [CrossRef]

16. Bond, A.; Bussell, M.; O’Sullivan, P.; Palerm, J. Environmental impact assessment and the decommissioning of nuclear power
plants—a review and suggestion for a best practicable approach. Environ. Impact Assess. Rev. 2003, 23, 197–217. [CrossRef]

17. Devgun, J.S. A review of decommissioning considerations for new reactors. In Proceedings of the WM2008 Conference, Phoenix,
AZ, USA, 24–28 February 2008.

18. Crompton, A.J.; Gamage, K.A.; Jenkins, A.; Taylor, C.J. Alpha particle detection using alpha-induced air radioluminescence: A
review and future prospects for preliminary radiological characterisation for nuclear facilities decommissioning. Sensors 2018,
18, 1015. [CrossRef]

19. Croudace, I.W.; Russell, B.C.; Warwick, P.W. Plasma source mass spectrometry for radioactive waste characterisation in support
of nuclear decommissioning: A review. J. Anal. At. Spectrom. 2017, 32, 494–526. [CrossRef]

20. Remeikis, V.; Grineviciute, J.; Duškesas, G.; Juodis, L.; Plukienė, R.; Plukis, A. Review of modeling experience during operation
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