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Abstract: The impacts of conflicting aerodynamic forces and side drifting forces are the primary
unstable elements in automobiles. The action of an unstable environment in automobile vehicles
increases the chance of an accident occurring. As a result, much study is required to determine how
opposing aerodynamic forces and side drifting force affects function, as well as how to deal with
them for safe and smooth navigation. In this work, an intercity bus is chosen as a main object, and
computational fluid dynamics (CFD) analysis is used to estimate aerodynamic forces on the bus
in all major directions. Experimentation is also carried out for validation reasons. CFD findings
for a scaled base model and a dimple-loaded model based on experimental results from a subsonic
wind tunnel are demonstrated to be correct. The drag forces generated by CFD simulations on test
models are carefully compared to the experimental drag findings of same-dimensioned models. The
error percentages between the results of these two methods are acquired and the percentages are
determined to be within an acceptable range of significant limitations. Following these validations,
CATIA is used to create a total of nine distinct models, the first of which is a standard intercity bus,
whereas the other eight models are fitted with drag reduction techniques such as dimples, riblets,
and fins on the surface of their upper cumulus side. A sophisticated computational tool, ANSYS
Fluent 17.2, is used to estimate the comparative assessments of the predictions of aerodynamic
force fluctuations on bus models. Finally, dimples on the top and side surfaces of the bus model
(DESIGN–I) are proposed as a more efficient model than other models because dimples are a vital
component that may lower pressure drag on the bus by 18% in the main flow direction and up to
43% in the sideslip direction. Furthermore, by minimizing the different aerodynamic force sources
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without impacting the preparatory needs, the proposed model may provide comfortable travel. The
real-time bus is created, and the finalized drag reduction is applied to the optimized places over
the whole bus model. In addition, five distinct size-based bus models are developed and studied in
terms of aerodynamic forces, necessary energy to resist aerodynamic drag, required forward force
for successful movement, instantaneous demand for particular power, and fuel consumption rate.
Finally, the formation of aeroacoustic noise owing to turbulence is estimated using sophisticated
computer simulation. Last, for real-time applications, multi-parametric studies based on appropriate
intercity buses are established.

Keywords: bluff body aerodynamics; computational fluid dynamics; dimples; riblets; sideslip

1. Introduction

Nowadays, most people utilize the road for transportation, and buses play an impor-
tant role because of their low cost [1]. Because of the widespread use, bus operators, both
government and commercial, are constantly improving the amenities on board to entice
customers. Anti-lock braking systems, completely air-conditioned systems, and shock
absorption systems are significant features introduced in existing buses to ensure comfort
during bus travel [2]. In addition to these amenities, operators must focus on maintaining
a smooth, comfortable ride, which includes avoiding obstacles such as uneven road condi-
tions, potholes, surface type, condition, and gradient, to mention a few. The crosswind of
the bus is one of the key issues related to comfortable travel [3]. Crosswind is nothing more
than side force to buses caused by the environment and/or other heavily laden vehicles.
The crosswind impact might compress a bus’s indentation direction, decreasing the bus’s
comfort. At most, a serious collision may occur as a result of a massive cascade effect from
other heavily loaded cars. This work examines the effect of sideslip and ways to reduce it
using advanced engineering methodologies [1,3].

1.1. Literature Survey

The main platform in this study is an intercity bus and its aerodynamic impact.
Previous research revealed that crosswind is the most important element affecting the
comfort of bus travel, with the origins of crosswind being natural conditions and/or
external influences from heavy vehicles [3]. The CFD and its experimental validation
were mostly used in the analysis of the aerodynamic force on buses [4,5]. As a result, this
work also employed CFD-based research on side force impact on intercity buses, with
subsonic wind tunnel-based practical testing carried out to validate CFD results [4,5].
The key benefit of a CFD-based simulation study is the availability of correct boundary
conditions, which facilitate the convergence process in the CFD solver [5]. Because the
working fluid is turbulent in nature in the presence of tiny disturbances, the turbulence
model and its subordinate parameters play an important role in the aerodynamics study.
Thus, the fundamental objective for implementing the turbulence model in this CFD study
was accomplished and finished in order to determine which type of turbulence model is
appropriate for this article. Furthermore, the kind of solver, the type of inlet conditions and
their values, and an appropriate approach to link pressure and velocity were discovered [6].
Previous works performed extensive investigations of drag on automotive vehicles, in
which drag reduction strategies such as the implementation of streamline shapes at the
frontal area, the implementation of riblets, and the implementation of zigzag cuts were
soundly applied [7]. Furthermore, the use of the aforementioned procedures was applied
to limit airflow separation at potential areas such as stagnation points, curved forms, side
mirrors, and so on [8]. As a consequence of these successes, the pressure drags on the
automobile vehicle can be reduced, wherein aerodynamically two separate forms of drags
such as pressure drag and skin friction drag have been contributing significantly to the
lowering of performance of an automotive vehicle. As a result, pressure drag reduction
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techniques are inevitably utilized in automotive vehicles to lessen the opposing force (drag)
that operates in the opposite direction of forward-moving vehicles [9]. Similarly, drag
reduction strategies are employed in this study to minimize turbulence caused by the
primary aerodynamic force in the major direction and crosswind at the side section of an
interstate bus. In general, the geometrical variation occurs at the side face of the bus (top
of the window), which allows for the occurrence of flow separation of crosswinds [10].
Because of these turbulence forms, pressure imbalances are formed at the side face, pushing
the buses away from the main highways. As a result, the loss of side force owing to pressure
drag must be addressed using appropriate drag reduction techniques.

1.2. Proposed Concept

In this research, eight distinct drag reduction approaches are utilized, and their aero-
dynamic performance studies are done using CFD [11]. Taking these eight models into
consideration, four versions were created with the addition of dimples. As a result, the au-
thors of this present work think that the dimple-based drag reduction strategy can lower the
dynamic pressure increase at flow separation zones, reducing the production of undesirable
turbulence over the intercity bus. Because the authors are mainly interested in exploring
the presence of dimples and their side effects, four alternative dimple-based models are
imposed in this work. Figure 1 depicts a visual depiction of this suggested notion.
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2. Proposed Methodologies

The competence of the problem-solving approach adds substantially to the creation
of trustworthy output in research efforts. The key evaluation elements involved in the
approach selection process are the nature of the problem and its criticality. Aside from
the problem viewpoint, the capability study of the approach is also critical in providing
an acceptable solution to complex situations [12]. As a result, reciprocal relevance and
integration between real-time issues and their solution approaches are necessary. This
study analyzes comparative aerodynamic force calculations on several intercity bus types,
with a total of eight models built. In addition, three alternative operating velocities are
examined for each model to gain a better understanding of the aerodynamic forces and
their impacts on all directions. The eight models are as follows: the base bus model, a
bus with dimples on the side and top surfaces, a bus with inverted dimples, a bus with
more dimples on the side and top surfaces, a bus with alternate square cuts on the side
surface, a bus with fins with a gap of 10 mm at the top and side surfaces, a bus with
fins with a gap of 20 mm at the top and side surfaces, and a bus with riblets. In order
to handle such large and crucial issues, an appropriate and adaptable technique, such as
CFD-based simulation, is required [13]. Fluid property simulation is generally based on the
Navier–Stroke equation [13–26] and is assisted by numerical methods-based solutions. The
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following factors contributed to the selection of this simulation methodology: flexibility at
any level, minimal processing time, the user-friendly approach, and the ability to forecast
complicated situations.

2.1. Conceptual Design

The main frame of an intercity bus was selected as this paper’s main design platform,
and is a dual viewpoint component when compared to others. The multiple viewpoints
are structurally important in transporting passengers and aerodynamically important in
producing more drag than other components such as tires, windows, mirrors, and so on.
The initial phase in the conceptual design was to display three-dimensional bus models.
This was a necessary step before employing the CFD approach.

A standard bus and its dimensions were employed, as determined by earlier re-
search [2,14]. Because the technique is time-consuming, only a 1/10th scaled model of
the original bus was employed for the full comparative CFD study. The following are the
scaled dimensional parameters of the present bus base model: The bus’s length is 1006 mm,
its width is 208 mm, and its height is 263 mm, with a radius of 10 mm at each corner.
CATIA (Computer Aided Three-dimensional Interactive Application) was used to create
the bus design. Drag reduction methods such as dimples, riblets, and inverted dimples are
particularly difficult to represent in geometry; hence, a sophisticated modeling tool such as
CATIA is best suited for these stages. Figure 2 depicts both the reference and the base bus
models. Table 1 contains all the data of the imposed drag reduction approaches.
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Figure 2. A typical view of the base design of the intercity bus’s main body.

All the main flow directions (drag force developing direction) except Model V are
taken as the z-direction. The main flow directions in Model V are taken as the x-direction.

2.1.1. Model I—Bus Body Equipped with More Dimples on the Top and Side Surfaces

The specification for the bus model is covering the top, front, and sides with dimples
5 mm in diameter with the help of groove options. In addition, the frontal portion is
covered with more dimples than the rear due to its adverse effect on pressure. Since
most comparative drag investigations dealt only with the scaled model, these kinds of
low design data dimples were acceptable. The authors recommend that the proportional
multiplication of this dimple design be a mandatory process to be done in real-time. The
design of a bus equipped with a greater number of dimples at its top and side surfaces is
shown in Figure 3.
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Table 1. Comprehensive explanations of various drag reduction techniques.

Bus Model Corresponding Figure Number Description about the Proposed Drag Reduction Techniques

Base model 2 The modeled bus is considered the base, so no modifications are imposed
on this model.

Model I 3 A blunt body (outer shape of the bus model) equipped with more dimples
on the top and side surfaces

Model II 4 A blunt body (outer shape of the bus model) equipped with inverted
dimples on the top and side surfaces

Model III 5 A blunt body (outer shape of the bus model) equipped with dimples on the
side and top surfaces

Model IV 6 A blunt body (outer shape of the bus model) equipped with square cuts on
the side surface

Model V 7 A blunt body (outer shape of the bus model) equipped with fins with a gap
of 10 mm on the top surface

Model VI 8 A blunt body (outer shape of the bus model) equipped with fins with a gap
of 20 mm on the top surface

Model VII 9 A blunt body (outer shape of the bus model) equipped with riblets on the
top surface

Model VIII 10 A blunt body (outer shape of the bus model) equipped with dimples on the
top surface
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Figure 3. An isometric view of the main body of an intercity bus loaded with many dimples located
partially on the top and side faces.

2.1.2. Model II—Bus Equipped with Inverted Dimples on the Top and Side Surfaces

The unique design specification imposed on this bus model is inverted dimples on the
top and side faces, where the dimple diameter is 5 mm and the distance between dimples in
each row is 15 mm. The fillet radius is 10 mm, where the initiation of the dimple modeling
is 10 mm from the origin point with respect to the bus. Figure 4 reveals the bus model with
inverted dimples on the top and side surfaces.
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Figure 4. An isometric view of the main body of an intercity bus loaded with a medium number of
inverted dimples located partially on the top and side faces.

2.1.3. Model III—Bus Equipped with Dimples on the Side and Top Surfaces

In this design, as shown in Figure 5, the dimple diameter is 5 mm and the distance
between dimples in each row is 15 mm, whereas the fillet radius is taken as 10 mm. In
the fillet region, the inter-distance between dimples is 10 mm, ordered in two rows with
respect to both sides of the fillet at the bus edge. On the front side bus model, 6 rows and
2 rows of dimples are presented on the top of the front of the bus model and at the rear of
the bus model, respectively.
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2.1.4. Model IV—Bus Equipped with Square Cuts on the Side Surface

The design characteristics of bus model IV include the removal of rectangular space of
10 mm in the lengthwise direction and a frontal blend diameter of 10 mm, as depicted in
Figure 6.
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Figure 6. An isometric view of the main body of an intercity bus loaded with a small number of
square cuts located on the side faces in the longitudinal direction.

2.1.5. Model V—Bus Equipped with Fins with a Gap of 10 mm on the Top Surface

In this design, the bus is modeled with a rectangular cut section with a length of 5 mm
and a breadth of 5 mm running through the entire width of the top surface of the bus at a
distance of 10 mm from each other, as depicted in Figure 7.
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2.1.6. Model VI—Bus Equipped with Fins with a Gap of 20 mm on the Top Surface

In this bus model, the rectangular cut section of the length is kept at 5 mm and the
depth is kept at 5 mm, whereas the inter-distance spacing varies from 20 mm for the flow
passage. Figure 8 clearly shows the bus modeled with fins at a distance of 20 mm from one
another on the top surface.
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2.1.7. Model VII—Bus Equipped with Riblets on the Top Surface

In this design, the bus is modeled with a saw-toothed or triangular cut section on
the top with a height of 5 mm. These proposed geometrical representations, which are
implemented on the top of the intercity bus, are referred to as riblets. Because of the area
variations throughout the longitudinal directions of the bus, the free stream velocity in
these imposed regions may decrease. The bus modeled with riblets is shown in Figure 9.
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2.1.8. Model VIII—Bus with Dimples on the Top Surface

The bus modeled with dimples on the top surface, as shown in Figure 10, has dimples
predominantly on the top surface. The dimple diameter is 5 mm, and they are placed very
close to one another. As a bonus, two rows of dimples cover the bus’s corner edges as well.
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2.2. Discretization on the Bus Body

The discretization approach, in general, serves as the foundation for numerical integra-
tion, which is an unavoidable step in the CFD technique [1]. The discretization technique
was carried out with the assistance of an analytical program, specifically ANSYS Mesh
17.2. The ANSYS Workbench 17.2 version of both academic and research licenses has
been offered for all types of computational simulations. The CATIA design is provided in
the geometry component of the computational tool, which is included in the Fluid Flow
(ANSYS Fluent 17.2) analysis system [1]. The flow field over the bus was constructed in
the design modeler by selecting the Enclosure option from the Tools menu. The created
enclosure was of the box type, with 4 m on each side of the bus in the x-direction and
2 m on each side of the bus in the y- and z-directions. Using the Create menu’s Boolean
option, the bus was removed from the contained box. The flow field was then discretized
in the meshing phase by setting the relevance center to fine, the smoothing to high, and the
transition to fine [15]. The grid data for each discretized piece of music had 643,964 nodes
and 3,458,589 elements [1].

Figures 11–14 depict typical viewpoints of several forms of discretized structured
control volume with intercity bus models. All of these mesh structures were built with the
intention of conducting grid independence research on sideslip force-based investigations.
The mesh for main flow aerodynamics analysis was generated in the same way as the
mesh for sideslip analysis. Figures 15 and 16 depict a typical internal cut-plane-based
elemental view of the whole control volume with the bus, as well as a zoomed projection
view of the bus. For the main flow and sideslip flow computations, the reference lengths
for control volume formation were taken as the length of the bus and the width of the
bus, respectively. All 10 mesh instances (five mesh cases for sideslip analysis and five
mesh cases for main flow aerodynamics analysis) were projected to have a mesh quality of
between 0.975 and 0.99.



Sustainability 2022, 14, 5948 10 of 51Sustainability 2022, 14, x FOR PEER REVIEW  10  of  54 
 

 

Figure 11. Solid model view of the discretized structure of the base bus model—curvature‐based 

unstructured mesh. 

 

Figure 12. Wireframe model view of the discretized structure—fine curvature with face mesh 

setup on model VI. 

 

Figure 13.Wireframe model view of the discretized structure of model IV—area proximity‐based 

unstructured mesh. 

Figure 11. Solid model view of the discretized structure of the base bus model—curvature-based
unstructured mesh.

Sustainability 2022, 14, x FOR PEER REVIEW  10  of  54 
 

 

Figure 11. Solid model view of the discretized structure of the base bus model—curvature‐based 

unstructured mesh. 

 

Figure 12. Wireframe model view of the discretized structure—fine curvature with face mesh 

setup on model VI. 

 

Figure 13.Wireframe model view of the discretized structure of model IV—area proximity‐based 

unstructured mesh. 

Figure 12. Wireframe model view of the discretized structure—fine curvature with face mesh setup
on model VI.

Sustainability 2022, 14, x FOR PEER REVIEW  10  of  54 
 

 

Figure 11. Solid model view of the discretized structure of the base bus model—curvature‐based 

unstructured mesh. 

 

Figure 12. Wireframe model view of the discretized structure—fine curvature with face mesh 

setup on model VI. 

 

Figure 13.Wireframe model view of the discretized structure of model IV—area proximity‐based 

unstructured mesh. 
Figure 13. Wireframe model view of the discretized structure of model IV—area proximity-based
unstructured mesh.



Sustainability 2022, 14, 5948 11 of 51Sustainability 2022, 14, x FOR PEER REVIEW 11 of 51 
 

 
Figure 14.Typical view of the fine curvature and proximity with face mesh setup on model VIII. 

 
Figure 15. Typical internal cut-plane view of the entire control volume—sideslip analysis. 

 
Figure 16. Typical internal cut-plane view of the entire control volume—sideslip analysis. 

Because the coordinate system played an important role in the development of 
discretization and the achievement of appropriate processing time, Figure 15 clearly 
shows the enforced global coordinate system for these extensive studies. For all other 
circumstances, the same coordinate system was used. 

Figure 14. Typical view of the fine curvature and proximity with face mesh setup on model VIII.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 51 
 

 
Figure 14.Typical view of the fine curvature and proximity with face mesh setup on model VIII. 

 
Figure 15. Typical internal cut-plane view of the entire control volume—sideslip analysis. 

 
Figure 16. Typical internal cut-plane view of the entire control volume—sideslip analysis. 

Because the coordinate system played an important role in the development of 
discretization and the achievement of appropriate processing time, Figure 15 clearly 
shows the enforced global coordinate system for these extensive studies. For all other 
circumstances, the same coordinate system was used. 

Figure 15. Typical internal cut-plane view of the entire control volume—sideslip analysis.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 51 
 

 
Figure 14.Typical view of the fine curvature and proximity with face mesh setup on model VIII. 

 
Figure 15. Typical internal cut-plane view of the entire control volume—sideslip analysis. 

 
Figure 16. Typical internal cut-plane view of the entire control volume—sideslip analysis. 

Because the coordinate system played an important role in the development of 
discretization and the achievement of appropriate processing time, Figure 15 clearly 
shows the enforced global coordinate system for these extensive studies. For all other 
circumstances, the same coordinate system was used. 

Figure 16. Typical internal cut-plane view of the entire control volume—sideslip analysis.

Because the coordinate system played an important role in the development of dis-
cretization and the achievement of appropriate processing time, Figure 15 clearly shows the
enforced global coordinate system for these extensive studies. For all other circumstances,
the same coordinate system was used.
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2.3. Boundary Conditions

The boundary conditions and governing equations are the most important compo-
sitional elements in the mathematical modeling of CFD-based boundary value issues. In
general, the boundary value issue has both natural and artificial boundary conditions, with
no and free slips falling under natural boundary circumstances [16]. As a result, boundary
condition requirements are critical in CFD-based situations, since accurate conditions can
only deliver acceptable results. The current geometry was separated into pieces, namely,
inlet, outlet, wall, and bus, using the named selection option for the ease of defining the
beginning and boundary conditions. Figure 17 clearly depicts the information imposed
on the computation’s beginning circumstances. The analytical solver in this study was
pressure-based, using a constant time and absolute velocity formulation. The majority of
the time, the working environment and its fluid were regular atmospheric conditions based
on one, which did not vary over time due to the usual surroundings with extremely mini-
mal external disturbances. As a result, although the majority of the preceding publications
finished their CFD studies under constant flow circumstances, steady flow was used in
this analysis as well. Because it is simple to use, the conventional k-model was chosen as
the viscous and turbulence model [17–19]. The air flowing over the bus had a density of
1.225 kg/m3 and a viscosity of 1.7894 × 10−5 kg/(ms). The operating pressure was set
at 101,325 Pascal [1], the usual static pressure acting on the bus’s working environment
(atmospheric pressure). The inlet was a velocity inlet with magnitudes of 5 m/s, 10 m/s,
and 15 m/s for each of the three situations. The outlet had a gauge pressure of 0 Pascal
and was a pressure outlet. The bus and the wall were both considered fixed walls with
no-slip properties. To be linked, the solution technique for pressure-velocity coupling was
chosen. Second-order upwind was specified for the spatial discretization gradient, pressure,
momentum, turbulent kinetic energy, and turbulent dissipation rate. Under the monitors,
drag, lift, and moment monitors were constructed. The hybrid initialization method was
used to start the solution. In order to obtain a flawless solution, the residuals of all the
solving parameters were given a value of 10−6. As a result, the convergence criteria for
all residuals were given as 10−6. The force operating in the x-direction was estimated in
the post-processing window using the force calculator. The pressure contour and velocity
stream were also recorded, and the results for all design alterations were compared in three
distinct ways [16].
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2.4. Governing Equations

CFD-based issues rely heavily on numerical integration, which is carried out using
the finite volume technique, finite difference method, mesh-less method, finite element
approach, and so on [20]. In general, finite volume techniques are utilized everywhere, with
the volume integral and surface integral of each mesh element playing a significant role.
This numerical integration is the simplest version of CFD’s governing equations, in which
averaging principles are used to anticipate complex fluid phenomena using numerical
calculations. All of these computations, including the continuity equation, momentum
equation, and energy equation, are essential for the DNS (direct numerical simulation)
approach, and the Reynolds averaged Navier–Strokes equations are essential for the finite
volume method. The generalized term of the continuity and momentum equations is
given in Equations (1) and (3), which comprise all of the components. Thus, the fluid’s
working nature and its working circumstances for the issues guide the equations included
in this governing equation. Because the working condition was low speed, incompressible
and steady flow was employed throughout the whole analysis, and Equation (1) was
changed and is presented in Equation (2). In every non-nuclear continuum mechanics
study, mass conservation is reflected in the continuity equation. The equation is created
by taking the flow rate of mass in and out of a control volume and setting the net flow
rate equal to the rate of change in mass within the control volume. The conservation rules
have a more powerful local version in the form of continuity equations. Isolated systems
cannot change mass via chemical reactions or physical changes, according to the law of
conservation of mass.

∇ ·
→
V = 0 (1)

∂(u)
∂x

+
∂(v)
∂y

+
∂(w)

∂z
= 0 (2)

Equation (3) comprises important terms, which is termed as a momentum equation.
Using Newton’s second law of motion, the momentum equation is derived. The law of
motion may be summarized as mass times acceleration equals force. Body forces and
surface forces are the primary contributors of force. These include the gravitational force,
electromagnetic forces, and so on. The pressure force, viscous forces, etc., all play a role in
surface forces. Then there are the viscous forces, which include normal and shear stress.
Depending on their nature, normal stress forces are exerted outside the control volume.
Based on its nature, the control volume is compressed by pressure forces.

−∇p + µ∇2
→
V + F = ρ (

→
V· ∇)

→
V (3)

Equations (4) and (5) describe the terms in the generalized equations in further
detail, where

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
(4)

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (5)

More crucially, this aerodynamics analysis was entirely dependent on reducing drag by
reducing pressure drag caused by the creation of turbulence over the buses. As a result, the
incorporation of turbulence models into complex calculations in order to adequately capture
turbulence was both an unavoidable and required procedure. According to the survey, two
equation turbulence models based on k-epsilon and k-omega are good for determining the
presence of turbulence in incompressible flow calculations. The governing relationships
of the aforementioned turbulence models [21–26] are represented by Equations (6)–(9).
Firstly, the governing equations of k-epsilon are given in Equations (6) and (7), wherein
Equation (6) comprises the analytical representation of turbulent kinetic energy (k) and
Equation (7) comprises the analytical representation of turbulent dissipation (ε).
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The model equation for the turbulent kinetic energy (k) is as follows:

Dk
Dt

=
∂k
∂t

+ uj
∂k
∂xj

=
∂

∂xj

[
vt

σk

∂k
∂xj

]
+ P− ε (6)

where the term ∂k
∂t is denoted as the rate of increase of k, the term uj

∂k
∂xj

is convective

transport, the term ∂
∂xj

[
vt
σk

∂k
∂xj

]
is diffusive transport, the term P is the rate of production,

and the term ε is the rate of destruction.
The model equation for the turbulent dissipation (ε) is as follows:

Dε
Dt

=
∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[
vt

σg

∂ε

∂xj

]
+ Cg1

Pε
k
−Cg2

ε2

k
(7)

where the term ∂ε
∂t is denoted as the rate of increase of ε, the term uj

∂ε
∂xj

is convective trans-

port, the term ∂
∂xj

[
vt
σg

∂ε
∂xj

]
is diffusive transport, the term Cg1

Pε
k ’ is the rate of production,

and the term Cg2
ε2

k ’ is the rate of destruction, so Cg1 = 1.44; Cg2 = 1.92; σk = 1; σg = 1.3.
Secondly, the governing equations of k-omega are given in Equations (8) and (9). This

model comes under two equation categories, in which a modified version of the k equation
is used in the k-ω model. A transport equation for ω is dissipation per unit of kinetic
energy. Equation (8) comprises the analytical representation of modified turbulent kinetic
energy (k) and Equation (9) comprises the analytical representation of dissipation per unit
of kinetic energy (ω).

The equations for k andω are as follows:

Dk
Dt

=
∂k
∂t

+ uj
∂k
∂xj

=
∂

∂xj

[
v +

vt

σk

∂k
∂xj

]
+ vt

(
∂[ui]

∂xj
+

∂
[
uj
]

∂xi

)
∂[ui]

∂xj
− β∗kω (8)

Dω
Dt

=
∂ω

∂t
+ uj

∂ω

∂xj
=

∂

∂xj

[
v +

vt

σ∞

∂ω

∂xj

]
+ αvt

(
∂[ui]

∂xj
+

∂
[
uj
]

∂xi

)
∂[ui]

∂xj
− β1ω

2 (9)

where the term ∂k
∂t is denoted as the rate of increase of k, the term uj

∂k
∂xj

is convective

transport, the term ∂ω
∂t is denoted as the rate of increase of ω, and the term uj

∂ω
∂xj

is convective transport. Similar to the k-epsilon equations, the other terms such as
rate of production, rate of destruction, and diffusive transport are incorporated into
Equations (8) and (9). The standard values of all the model constants are β1 = 0.075;
β∗ = 0.09; vt = 0.553; σk = σ∞ = 2.0.

2.5. Grid Independence Studies (GIS)

Grid independence studies are widely performed to reduce numerical issues such
as erroneous findings and a lack of mesh quality. To increase the consistency of their
conclusions, challenging engineering topics should be treated to a grid independence study.
In recent years, one of the critical issues involved in the selection of an advanced engi-
neering approach has been the verification of CFD-based projected data estimates [24–29].
Because the purpose of this work is to limit the creation of vortices on the bus’s bound-
ary layer separation zones using different difficult drag reduction strategies, the counter
check process of the outcome through a grid independence study is a crucial one, capable
of delivering acceptable outputs. Two different GIS studies were done on bus model I
for forward direction calculation and model VIII for sideslip analysis in this study. Both
experiments consisted of five separate unstructured-mesh instances with a 10 m/s input
velocity. Because bus models I and VIII are more advanced in terms of design and simu-
lation, they were purposely chosen as reference models for these convergence studies in
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order to fine-tune the results. Table 2 has a detailed description of the meshes and their
primary components, such as nodes and elements. The results of extensive investigations
on bus models I and VIII utilizing the aforementioned boundary conditions are displayed
in Figures 18 and 19. Figures 18 and 19 clearly illustrate that case 3 outperformed all other
mesh instances; hence, case 3 mesh approaches were chosen for all further analyses.

Table 2. Comparative information of all the mesh cases.

Types of Meshes
Details of Statics of Mesh

Number of Nodes Number of Elements

Case 1—coarse mesh 101,163 554,695
Case 2—medium mesh 252,276 1,369,327

Case 3—fine mesh 523,346 2,818,069
Case 4—fine with face mesh set-up 696,383 3,843,318

Case 5—fine with inflation mesh
set-up 643,964 3,458,589
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Figure 18. Comprehensive drag value in N at 10 m/s on model I. Figure 18. Comprehensive drag value in N at 10 m/s on model I.

The evaluation parameters for forward and side force-based computations in these
GISs were aerodynamic drag and side-slip forces, respectively. Both of the previously stated
parameters were crucial for their calculations; more precisely, they served as judges in the
optimization of an appropriate model. Regardless of the enormous counts of components
imposed, the projected drag values were quite similar to each other when the discussion
was carried out on the first GIS, following mesh scenario III. The same environment
was extended for the next GIS as well; thus, the mesh scenario III was well suited to
offer trustworthy results, taking into account other important qualities such as minimal
computation time consumption, attainment of repeatability of discoveries, and so on.
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2.6. Validational Study on the Proposed Methodology

In general, numerical simulation solutions are influenced by boundary and initial
conditions such as turbulence model selection, initial value provision, selection of a second-
order solution, and so on. As a result, rather than an approximate solution, previous
fieldwork should be necessary to achieve an acceptable (highly efficient outcome of an
approximate) response. Although numerical simulation is a sophisticated technique that
may address critical issues, the addition of a systematic platform-based procedure may raise
questions about the output’s dependability. As a result, the validation of the simulation-
based technique provides confidence regarding the estimated output’s correctness. In this
work, practical experiments with a low-speed wind tunnel were performed to examine the
basis of an intercity bus model, and the results are supported by computer models.

2.6.1. Experimental Results

The experimental platform was a subsonic wind tunnel with a maximum capacity
of 40 m/s fluid velocity across a 1 m length of test section. Figure 20 depicts the whole
configuration of the subsonic wind tunnel used in these comparative experimental tests.
This subsonic wind tunnel was modified with a data collection system that can give a
numerical output of aerodynamic forces such as lift and drag, as well as input conditional
factors such as rotor RPM and fluid particle entrance velocity [18]. In this systematic
data collection system, hot film-based air velocity measurement was primarily imposed.
The working ranges of this developed data collection system are capable of measuring
aerodynamic outcomes efficiently for velocity ranging from 0.1 to 40 m/s, temperature
ranging from 0 to 120 ◦C, and electrical output ranging from 4 to 20 mA. Because the output
measurement format is completely digitalized, this data gathering system includes a small
reconfigurable input and output controller. The main specs of the electronics controller
are a 667 MHz dual-core A9 processor, plus a field programmable gate array processor,
512 MB of base read-only memory, and 256MB of DDR3 relayed random access memory.
This computer has four USB ports and four Ethernet ports that it can use to connect. This
computer runs a real-time Linux operating system.



Sustainability 2022, 14, 5948 17 of 51

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 51 
 

configuration of the subsonic wind tunnel used in these comparative experimental tests. 
This subsonic wind tunnel was modified with a data collection system that can give a 
numerical output of aerodynamic forces such as lift and drag, as well as input conditional 
factors such as rotor RPM and fluid particle entrance velocity [18]. In this systematic data 
collection system, hot film-based air velocity measurement was primarily imposed. The 
working ranges of this developed data collection system are capable of measuring 
aerodynamic outcomes efficiently for velocity ranging from 0.1 to 40 m/s, temperature 
ranging from 0 to 120 °C, and electrical output ranging from 4 to 20 mA. Because the 
output measurement format is completely digitalized, this data gathering system includes 
a small reconfigurable input and output controller. The main specs of the electronics 
controller are a 667 MHz dual-core A9 processor, plus a field programmable gate array 
processor, 512 MB of base read-only memory, and 256MB of DDR3 relayed random access 
memory. This computer has four USB ports and four Ethernet ports that it can use to 
connect. This computer runs a real-time Linux operating system. 

 
Figure 20. Typical full view of the subsonic wind tunnel with the data acquisition system (bottom 
right). 

As a reference test specimen, the base intercity bus model with no drag reduction 
was employed, which is a scaled model with a 1/10th ratio of the original model. The 
primary goal of these experiments was to evaluate the CFD-based aerodynamic forces on 
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of the foundation and drag reduction of the equipped bus types was wood. Wind velocity 
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from 14 m/s to 35 m/s employed as the inlet velocity for this experiment. In this imposed 
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As a reference test specimen, the base intercity bus model with no drag reduction was
employed, which is a scaled model with a 1/10th ratio of the original model. The primary
goal of these experiments was to evaluate the CFD-based aerodynamic forces on an intercity
bus model, with the diffuser, test specimen stand, and data gathering equipment heavily
employed for output extraction. The material utilized for the building of the foundation
and drag reduction of the equipped bus types was wood. Wind velocity ranges were
calculated based on fieldwork and a literature review, with velocities ranging from 14 m/s
to 35 m/s employed as the inlet velocity for this experiment. In this imposed wind tunnel,
in-built equipment measured flow velocities of 14 m/s, 17 m/s, 20 m/s, 22 m/s, 25 m/s,
28 m/s, and 35 m/s at the site of the test section where the test specimen was situated. The
drag force generated on the bus model for various input velocities was measured and is
presented in Table 2 using a data-gathering device. Figure 21 depicts typical cross-section
and front views of the base bus model-based test configuration. As shown in Figure 22,
each dimple on the test specimen had a front view like this one.
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2.6.2. Numerical Results—Validation Case

In the subsequent phase of validation, the CFD technique was used to evaluate the
aerodynamic parameters on the same scaled bus model. The literature review was quite
useful in this CFD validation analysis, particularly with regard to the pressure solver, tur-
bulent flow implementation, details of starting circumstances, and appropriate techniques
of mesh representation in the solver [13]. The aforementioned velocities were subjected
to CFD simulations, which principally investigated changes in dynamic pressure acting
on the whole bus area, velocity distributions over the entire bus, turbulence creation, and
aerodynamic force computation. Figure 23, which depicts the flow over the bus, also
depicts the velocity streamlines together. Drag estimations and coefficient of drag values
were also expected to be compared as significant post-processing evaluation factors. The
data shown are all for a fluid input velocity of 35 m/s.
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As shown in Figure 24, the pressure variations of the basic bus model were used to
calculate the drag force acting on the bus as a result of aerodynamic forces.
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After the experiment and acquiring the CFD results, both the case outcomes were
noted and are listed in Table 3. The aerodynamic drag values were carefully monitored
when they went above 20 m/s due to the bus’s nature [26].

Table 3. Comparison of drag on the bus models.

Velocity (m/s)
Drag (N) (Without Dimples) Drag (N) (With Dimples)

Experimental Numerical Error
Percentages Experimental Numerical Error

Percentages

14 0.26 0.2428 6.615385 0.489 0.45 7.97546
17 0.59 0.394 33.22034 0.4855 0.45 7.312049
20 0.7 0.67 4.285714 0.71 0.66 7.042254
22 1.01 0.98 2.970297 1.01 0.996 1.386139
25 1.3 1.194 8.153846 1.15 1.073 6.695652
28 1.37 1.2613 7.934307 1.25 1.1973 4.216
35 1.695 1.55 8.554572 1.6 1.56 2.5

The following information may be gleaned from Table 3: The coefficient of the drag
value was observed during the convergence of iterations, and it was noticed that at a
velocity of 22 m/s, the coefficient of the drag decreased from 0.51 to 0.306. The drag
also decreased from 22 m/s to 1 to 8.5% by constructing dimples in the front and rear
sections of the intercity bus. At low speeds, the drag forces in the model with dimples
were somewhat higher than in the type without dimples. At high speeds, the drag force
was smaller in the dimpled models than in the non-dimpled models, and the drag values
decreased by 15 to 20% in the bus with dimples compared to the bus without dimples.
Furthermore, the predicted drag values were quite similar to one other, indicating that
the established boundary conditions are valid and capable of solving additional complex
bus models. Despite this tiny discrepancy, the error % was computed using Equation (10)
for confirmation.

Error rate =
[Experimental Result−CFD Result]

[Experimental Result]
(10)
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Error rate =
[1.15− 1.073]

[1.15]
⇒ Error rate = 0.06695

From Equation (10), the error percentage between the computational results and the
experimental result was estimated to be 6.69%. Because engineering calculations can have
an error rate of less than or equal to 10%, the proposed methods for reducing drag are
better for future automotive vehicles.

3. Results and Discussions

All of the previously defined boundary conditions, governing equations, and numer-
ical integrations were included in the remaining modified and complicated bus models.
Comparative studies of various conceptual bus models tried to achieve an optimistic
conclusion as a result of the conceptual design’s pressure gradient, flow separation, and in-
cremental change in velocity rather than the current reality. Every bus model was imposed
with small geometrical processes that may have enhanced eddy production; thus, com-
plex as well as adaptable engineering methods were necessary to deal with such intricate
settings, and computational fluid dynamics-based methodologies were applied [21].

3.1. Numerical Results—Forward Direction

The CFD technique was used on numerous bus models in the condition of forward
speed maneuvers in the first experiment. Pressure forces acting on the frontal region of the
bus, velocity distributions of fluid particles over the bus, and the production of turbulence
in and around the bus were the primary results in this scenario. All of the previously
discussed variables were calculated for each bus model and are shown in Figures 25–42.
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Figure 25. Typical isometric and zoomed-in frontal views of aerodynamic pressure distributions on
the base model.

In general, the streamline and vector-dependent representations (Figure 26) were used
to characterize the behavior of fluid particles within and around intercity buses. In order
to comprehend the creation of eddies, the prospective flow separation zones were also
tracked using total pressure prediction (Figure 25). According to the results of the base
model, the velocity increase on the intercity bus occurred proportionately to distance. The
top surface of the bus began perpendicularly at the ends of the frontal section to allow for
extremely efficient flow separations. Based on these findings, the additional models were
subjected to identical boundary conditions imposed by the CFD calculations. The imposed
drag reduction approaches were chosen based on their ability to minimize the magnitude
of free stream velocity once geometrical differences were considered.
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3.1.1. Model I

Figures 27 and 28 depict the changes in aerodynamic pressure and velocity on and
above the first bus model. Furthermore, the existence of dimples and their related impacts
on fluid characteristics were collected and are shown in a zoomed-in view to provide
further clarity. The primary findings were that the dynamic pressure fluctuations that
occurred in and around the dimples lowered the high production of turbulence around
these dimples.

3.1.2. Model II

Figures 29 and 30 depict the aerodynamic pressure distributions and associated veloc-
ity fluctuations of the second bus model. The imposed inverted dimples reduced dynamic
pressures as well, although the decrement zones occurred exclusively near the inverted
dimples. This inverted dimple did not result in a reduction in dynamic pressure at the flow
separation zones; hence, this way of reducing drag is insufficient for this high-speed work.

3.1.3. Model III

Figures 31 and 32 show typical views of the aerodynamic pressure fluctuations gener-
ated on and over the third bus model. The crucial aspect to remember about this strategy
is that the fluid velocities were linearly lowered in a meaningful way along the bus’s
longitudinal direction. This impression was caused by the continual projection of dimples
on the bus’s side faces.
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3.1.4. Model IV

The drag reduction methodology’s square-cut character influenced the conventional
flow across the fourth simulated bus, as seen in Figures 33 and 34 using vector and
streamline-based representations. This fourth option, like the second drag reduction result,
failed to accomplish a constant velocity decrease in the bus along its longitudinal direction.
Furthermore, from the base model to model IV, a distinct coordinate system was generated
in which the main flow direction (drag force developing direction) is designated as the Z-
direction, the upward direction is designated as the Y-direction, and the side flow direction
is designated as the X-direction.

3.1.5. Model V

The fluid characteristics of 10 mm fins varied when they were utilized in the bus
models, as seen in Figures 35 and 36. In terms of output production, this drag reduction
strategy was undoubtedly unique in comparison to other strategies. Figure 35 shows that
pressure fluctuations across the longitudinal locations of the bus significantly lowered,
whereas Figure 36 shows that the induction level of eddies was significantly larger than in
previous circumstances. As a result, this approach was incapable of delivering superior
results. For this model, a unique coordinate system was created, with the X-direction
representing the main flow (drag force-generating direction), the Z-direction representing
the upward direction, and the Y-direction representing the side flow.

3.1.6. Model VI

The expanded version of fifth drag reduction was used, which was designed with a
20 mm fin gap over the bus model’s top face. The primary flow was diffused and, as a
result, the fluids produced the subordinate routes due to their somewhat increased length
and depth-wise sections. Figures 37 and 38 depict vivid visual depictions of these fluid
behaviors. This sixth strategy, like the fifth, produced more eddies, which had an impact
on the bus’s performance.

3.1.7. Model VII

The fluctuations in aerodynamic pressure and velocity of air particles over the riblet-
equipped bus model are shown in Figures 39 and 40. This forced approach was ineffective
at achieving a focused result since it generated a large number of tiny circulations.

3.1.8. Model VIII

The impact on the dimples’ effect grew even more as the results of the first, second,
and third bus models were seen. As a result, the eighth bus model was created using all of
the aforementioned strategies. Figures 41 and 42 show typical depictions of aerodynamic
pressure and velocity fluctuations across the eighth bus type. The velocity fluctuations
were adjusted in a zigzag fashion due to the existence of dimples placed on the top face,
which was not necessary for the targeted output. Additionally, from model VI through
model VIII, a unique coordinate system was developed, with the Z-direction representing
the main flow (drag force-generating direction), the Y-direction representing the upward
direction, and the X-direction representing the side flow.

3.1.9. Discussion

The pressure effect and shear stress contributions, which are primary drag-generating
variables in vehicle aerodynamics, were the most important aspects studied in this paper.
The wake forms at separation areas were recorded by precisely meshing the flow-separating
regions with the inflation setup. As a result of this, it was shown that flow wakes were
also produced in drag reduction approaches, which had both advantages and problems.
The main benefit is that flow velocities at flow separation places were lowered, resulting
in reasonable reductions in vacuum areas forming. The velocity reductions were mostly
caused by the application of different drag reduction strategies. To explore the behavior of



Sustainability 2022, 14, 5948 28 of 51

the skin friction drag effect on the performance effects of buses, high skin friction effects
were included in the computation. Finally, Table 4 summarizes the aerodynamic forces
generated by each bus type.

Table 4. Comprehensive outcome of drag generated on various bus models—forward direction.

Bus Model Upward Force (N) Sideslip Force (N) Drag Force (N)

Base model 1.10147 0.29927 7.037
Model I 0.0660117 0.356574 5.76606
Model II 0.0616214 0.0105042 9.83527
Model III 1.82655 0.450884 7.49661
Model IV 0.212934 0.4451 6.5703
Model V 0.236562 0.0588171 12.0567
Model VI 0.13367 0.248186 11.836
Model VII 0.270574 0.640371 6.93219
Model VIII 1.1323 0.209187 7.0459

From Table 4, it was concluded that model I is good technique to provide low drag,
and it could also have the capacity to increase the performance by means of providing high
concentration on the speed of the bus instead of overcoming the opposing force.

3.2. CFD Results for Bus in Sideslip Investigation

Apart from the primary issue of intercity bus performance, passenger comfort must
be maintained during the journey, especially when the bus is nearing lengthy endurance
and overnight operation. The displacement of buses is one of the key causes that com-
promise passenger comfort. Vertical direction-based dislocation is common as a result of
the existence of speed breakers and uneven road construction. The lateral direction-based
dislocations occur mostly as a result of side forces caused by significant aerodynamic gust
loads created naturally or intentionally by other vehicles. This work was completed in
order to evaluate the influence of side forces and their reductions using the previously
mentioned drag reduction approaches. As a result, nine distinct bus models were used in
CFD computations in this study.

3.2.1. Model I

Figures 43 and 44 are shows the fluctuations in aerodynamic pressure and free stream
velocity across the initial bus model. Figure 43 depicts the behavior of air flow in the side
flow direction over an intercity bus. Figure 44 depicts the pressure outline used to calculate
the drag force of the bus simulated with a higher number of dimples on the top and side
surfaces, with evident changes in pressure measurements owing to the presence of dimples.

3.2.2. Model II

Figures 45 and 46 depict airflow behavior using velocity changes and aerodynamic
pressure distributions over a bus modeled with inverted dimples on the top and side
surfaces using velocity streamlines. Based on sideslip velocity, the given velocity in this
situation was 10 m/s.

Figure 46 shows that dynamic pressure fluctuations occurred for these inverted dimple
cases as well, albeit at a much slower rate than for other regular dimple cases. This approach
is no longer suitable for reducing the sideslip impact.

3.2.3. Model III

Figures 47 and 48 show the frontal view of dynamic pressure fluctuations over bus
model III, as well as the rear view-based turbulence formations.
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Figure 47 shows that aerodynamic pressure decrements transpired in the initial stage
of the top surfaces and so remained constant on the same surfaces. This effect was designed
to prevent undesirable disruptions in the direction of sideslip. Figure 48 shows that the
turbulence production was relatively high in this scenario. This extreme turbulence was
characterized by the lack of dimples. As a result, the dimples must be expanded, which is
the main result of this third approach.
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3.2.4. Model IV

Figures 49 and 50 show the different stagnation point-based portrayal of dynamic pressure
fluctuations across the fourth bus model, as well as the rear view-based turbulence forms.
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Turbulence was heavily created in the rear regions of this bus model, and aerodynamic
pressure decrements occurred slowly throughout the top surface of the bus in the lateral
directions. As a result, each of the aforementioned problems can undoubtedly diminish
bus comfort.

3.2.5. Model V

An idiosyncratic stagnation point-based view of dynamic pressure variations over
the fifth bus model and representations of the turbulence formations through isometric
projection are revealed in Figures 51 and 52, respectively.
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The fifth bus model, like the fourth bus model, had a lot of turbulence at the back.
Aerodynamic pressures decreased on the bus’s top surface occur in a non-linear and
unimportant manner in the lateral directions. As a result, each of the aforementioned
problems potentially jeopardizes bus comfort.

3.2.6. Model VI

Figures 53 and 54 demonstrate computed and presented isometric projection-based
depictions of aerodynamic pressure on the bus and variations in speed through streamlines
across the vehicle.

Because the fifth bus model was found to be too flabby to provide comfort at high gust
loads, an extra fin design-based method was applied, resulting in an enlarged version in
the sixth bus model. However, the same drawbacks existed and will continue to exist in
this sixth bus type.

3.2.7. Model VII

Figures 55 and 56 show the fluctuations in aerodynamic pressure and free stream
velocity across the seventh bus model. Figure 55 depicts the behavior of air flow in the side
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flow direction over the region. Figure 56 properly depicts the pressure map used to calculate
the drag force of the bus simulated with a higher number of fins on the top surfaces.
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3.2.8. Model VIII

Figures 57 and 58 demonstrate the velocity-relayed airflow behavior and aerodynamic
pressure distributions across the bus, simulated with a medium number of dimples on the
top and side surfaces, using a velocity vector and a pressure map.
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Although similar to the dimple cases, this model also performed better than other
non-dimple-based models. In this case, the bus’s breadth-wise position was chosen as
the main air flow direction. This means that the dimples on the top faces of the bus
acted as drag reducers more than in other models. In Figure 58, it was observed that the
aerodynamic velocities were initially increased and, afterwards, they started swallowing
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the kinetic energy of the fluid. Thus, the drag in the sideslip direction was reduced in a
considerable manner.

3.2.9. Discussion

In comparison with the base bus model, the outcomes of all three scenarios for eight
models are reported. For varied crosswind velocities, Table 5 compares the side force on
various models.

Table 5. Comparison of side forces on various bus models.

Intercity Bus Models
Side Force Value in “Newton”

Crosswind Velocity
(5 m/s)

Crosswind Velocity
(10 m/s)

Crosswind Velocity
(15 m/s)

Base model 2.40392 9.18491 20.2098
Model I 1.35382 6.41537 13.7896
Model II 2.71512 11.3569 25.3571
Model III 1.42998 6.6384 14.2063
Model IV 1.39427 9.72601 21.5342
Model V 3.08994 12.4983 28.2582
Model VI 3.03373 12.4949 27.9074
Model VII 2.93207 13.1211 29.4811
Model VIII 1.30671 5.95073 12.8353

Model VIII emerged as the best model from the comparative analyses due to its
low side force induction. For side force velocities of 5 m/s, 10 m/s, and 15 m/s, the
dimple model (model VIII) reduced side force by 54.35%, 64.79%, and 63.51%, respectively,
compared to the base model. The model VIII intercity bus is equipped with dimples on
the upper surface to help prevent turbulence from developing. In general, dimples can
reduce fluid velocity; as a result of this lowered velocity, flow separation at geometrical
changes, such as the meeting zone of the top and side surfaces, is reduced. The speed of
the crosswind is lowered due to the presence of dimples at the appropriate locations on the
sides of the bus model, which minimizes pressure drag and hence side forces.

3.3. Aerodynamics Investigations on the Optimized Bus for Civilian Use

From Tables 4 and 5, the greatest performers were model I and model VIII, both
of which are equipped with the recommended dimple-based approach. As a result,
deployment-based section considerations were used to select the optimal option between
model I and model VIII. The application of dimples over the bus was easier in model I
than in model VIII, and the sideslip force was somewhat higher in model I, so model I was
chosen to offer high efficiency.

Figures 59–63 show the final intercity bus models that were modified and based on real-
time implementation. Figure 63 is the most important result of these comparative studies
since it shows the biggest decrease in aerodynamic drag and its associated impacts. First,
CFD studies were calculated over the final and complete bus model in a multi-parametric
study of the full bus model, and it was noticed that no harmful creation factors were formed
on this final offered idea.

Aside from the computing platforms, the volumes of all bus types are clearly shown
in Figures 59–63. Aluminum alloy 5052 is one of the lightest materials used in the building
of intercity buses; hence, it is heavily engaged in the estimating mass of this vehicle. The
density of the tire rubber and passenger details play a significant role in determining the
total mass of the vehicle. Incompressible flow-based CFD analyses were computed on five
different models based on the boundary conditions mentioned above, including the base
bus model that does not contain dimples, the bus model equipped with dimples 30 mm
in sized, the bus model equipped with dimples 50 mm in size, the bus model equipped
with dimples 75 mm in size, and the bus model equipped with dimples 100 mm in size.
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Figures 64–73 show the aerodynamic pressure distributions and speed changes for the
above five examples.
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The 30 mm dimple-equipped bus model induced lower drag force than all other
models, whereas the 100 mm dimple-loaded bus model caused less extra opposing forces
than other cases, as seen in Figures 64–73 and Table 6.

Table 6. Comprehensive aerodynamic forces on and over the optimized civilian intercity buses.

Bus Models Drag (FD) (N) Upward Force
(N)

Side Slip Force
(N)

Induced
Velocity (m/s)

Base bus model 1560.44 23.9324 114.237 59.179

30 mm
dimple-loaded

bus model
1550.41 0.940451 80.7699 61.351

50 mm
dimple-loaded

bus model
1574.78 42.3091 36.5971 61.330

75 mm
dimple-loaded

bus model
1806.74 30.8007 49.8049 55.950

100 mm
dimple-loaded

bus model
1904.09 16.3635 57.0211 52.135

3.4. Comprehensive Analyses of Energy Essential to Conquer External Resistances

To complete this investigation, the real-time performance of influencing and creating
factors on the proposed equipped bus model concept needed to be checked, so a detailed
literature survey [30] was conducted, wherein the focused parameters noted were the
energy of the automotive engine, which required tackling the resistance force of the bus; the
fuel consumption rate of the bus; the specific power of an intercity bus; the coefficient due
to resistance; and the mechanical efficiency of the bus. Equations (11)–(19) were developed
from pertinent fieldwork knowledge [30].

ER =
∫ D

0

(
FForward
ηm × t

)
d(D) (11)

It is evident from Equation (11) that estimating the required forward force to move the
desired intercity bus is a necessary factor that has been factored into the computation of the
automobile engine’s required energy level. As a result, the significant components were
examined and afterwards enforced in the relationship of the forward force needed to move
the intended intercity bus, as shown in Equation (12).

FForward = FRR + FD + FIB + FM + FA (12)

The first contributor to the required forward force is the force generated due to the
effect of rolling resistance. The rolling resistance force comprises the amount of pressure
supplied to the tires, the forward speed of the intercity bus, gravitational force, and the
gross mass of the intercity bus. The suitable relationship for the force required to oppose
rolling resistance is incorporated in Equation (13).

FRR = m× g×Ct (13)

A conventional relationship may be used to compute the rolling resistance term
coefficient of automotive vehicles, as indicated in Equation (14).

Ct = 0.005 +

[(
1

PT

)
×
(

0.01 +

(
0.0095×

(
VB

100

)2
))]

(14)
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According to the literature review [27], the tire pressure attained is 8 bars, and the
maximum velocity imposed on this intercity bus is 100 km/h. Thus, using Equation (14),
the rolling resistance term coefficient was calculated to be 0.0074375. A second source of
the FRR is Equation (15), which explains how inertia can create force on the bus.

FIB = m× a (15)

According to traditional real-time measurements, the acceleration of moving vehicles
is primarily determined by two factors: the vehicle’s induced velocity and its endurance to
finish the task. The velocities caused by the optimized bus models were estimated using
the CFD technique for these extensive investigations. Because dimple impositions can
certainly assault the traditional formations of aerodynamic velocity over the bus, CFD was
employed at this point. Table 6 shows the collected results of all the induced velocities
across the optimized bus models. The third source of FRR was the force imparted on the
bus as it performs various turning maneuvers. The connection of maneuvering forces is
represented in Equation (16).

FM = m× g× sin(α) (16)

The authors defined maneuvering in this study as the execution of different turning
actions by an intercity bus. The major activity highlighted in this study is the intercity
bus’s continuous level flight; hence, the force necessary to counteract the bus’s turning
movement is ignored. In addition, the writers finish the turning actions of the bus in a
future work. Furthermore, CFD successfully computed side forces in both vertical and
lateral orientations. Table 6 summarizes the total estimated extra forces. Drag caused
by pressure imbalance and skin friction effects was the most significant and inevitable
contribution to this FRR. Equation (17) reveals the standard drag force connection.

FD = 0.5× ρa × (Vb)
2 ×CD ×A (17)

From Figures 64–73 and Table 6, it is clearly observed that the CFD approach was
imposed on the perfect estimation of various aerodynamic forces on and over the optimized
intercity bus models. Thus, the values of drag force (FD) for all the cases were determined
through the CFD approach. Finally, the other forces contributing to the performance
affecting factors were sideslip forces due to crosswind and upward forces due to the
profiles of the buses. Along with the terms mentioned in Equation (18), all additional forces
must be included and upgraded.

FA = FS + FU (18)

The relevant forces needed to estimate the energy required of the automotive engine to
overcome air resistance were determined and are comprehensively listed in Table 7. As seen
in Table 7, the required energy to tackle the opposing force was greater in the base model
than in all other dimple-equipped bus models. In particular, the 100 mm dimple-loaded
bus model performed very well with lower required energy than the base model. Hence,
with the help of the relationship of required energy, the first 100 mm dimple-equipped bus
model was shortlisted as the best model.

3.5. Comprehensive Estimations of Specific Power and Fuel Consumption of the Optimized Bus

The association between specific powers and fuel consumption for the vehicle was
discovered through a literature review [30]. After that, the intercity bus’s unique fuel con-
sumption through a power relationship was calculated, as seen in Equations (19) and (20).

PS
IB =

((FRR + FD + FIB + FM + FA)×Vb)

m
(19)
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All of the compositional parts of Equation (19) were determined using CFD analysis
and hence substituted in the same equation. The relative specific power of all the models
was calculated and is presented in Figure 74.

FC =
[
0.622× PS

IB

]
+ 0.7 (20)

Table 7. Comprehensive estimated data of required energy and its associates of the optimized civilian
intercity buses.

Bus Models FRR (N) FD (N) FIB (N) FA (N) ER (W)

Base bus model 1481.814 1560.44 564,151.1735 138.1694 18,114,050.15

30 mm dimple-loaded bus model 1481.736 1550.41 564,121.3957 81.71035 18,110,974.01

50 mm dimple-loaded bus model 1481.345 1574.78 563,972.5067 78.9062 18,106,896.28

75 mm dimple-loaded bus model 1480.21 1806.74 563,540.7286 80.6056 18,100,534.41

100 mm dimple-loaded bus model 1478.294 1904.09 562,811.1725 73.3846 18,080,057.28
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Following the calculation of specific powers, the fuel consumption rate (FCR) was
used as an inquiry factor, with Equation (20) taking precedence. The unique relationship
was derived and is given in Equation (20) based on the knowledge gathered via historical
relationships [30]. The fuel consumption rates for each of the five bus types were calculated
and are depicted graphically in Figure 75. As with prior parametric studies, this FCR-based
parametric research produced a 100 mm dimple-loaded bus model, which is ideal for
completing the objective with good performance.
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3.6. Comprehenisve Aeroacoustics Analyses on the Optimized Bus

Aeroacoustics are important in the analysis of the generation of unwanted noise over
a vehicle’s exterior surface caused by the impact of turbulence. Because this suggested
concept involved the imposition of dimples on the exterior surface of an interstate bus,
the possibility of turbulence formation was fairly considerable. As a result, the final
parametric analysis employed the aeroacoustics technique to examine noise forms across
all bus models using ANSYS Fluent 17.2. In addition to all of the standard boundary and
beginning conditions presented in the preceding CFD calculations, the broadband noise-
based computational model was used for the first time in this aeroacoustics analysis. The
intercity bus’s speed was estimated to be 100 km/h [31–41]. The computational simulations
were carried out using modern facilities loaded with tools, such as ANSYS Fluent 17.2.
Figures 76–82 depict the usual decibel fluctuations between bus types. Finally, Figure 83
shows the entire bar chart. To begin, the aeroacoustics calculation was run over the base
bus model, and the results are shown in Figures 76 and 77. Figures 78–80 show noise
fluctuations for 30 mm, 50 mm, and 75 mm dimpled bus models, respectively. One of the
most notable findings is that the highest sound levels created by the bus models exceeded
100 dB in just a few areas. Because of this minor contribution, sound induction would have
no negative impact on the passengers’ health. The primary sections of all bus models were
covered with acceptable noise levels for humans. Thus, the suggested idea has proven that
it will not interfere with the performance of the intercity bus and will help a lot in achieving
high performance.
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Figure 79. Typical representation of aeroacoustic outputs of 50 mm dimple-equipped intercity
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Figure 80. Typical representation of aeroacoustic outputs of 75 mm dimple-equipped intercity
bus—isometric view.
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Finally, the major bus model came into play, which was the 100 mm dimple-loaded
bus. The aeroacoustic outputs of the best model (100 mm dimple-loaded bus) are revealed
in Figures 81 and 82. The attained noise outcome over this bus model was a tiny level lower
than the base bus model. A bar chart shows all of the bus models’ full aeroacoustic outputs
in Figure 83.

4. Conclusions

The geometry of an intercity bus with and without dimples was modeled using CATIA,
and the dimensions of both cases were provided by prior research. The computational stud-
ies were performed using ANSYS Workbench 17.2 with the provided boundary conditions
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derived from fieldwork. Throughout the convergence of iterations, the coefficient of the
drag value was obtained, and it was noticed that the coefficient of the drag decreased from
0.51 to 0.306 at a velocity of 22 m/s. In addition, the drag was reduced from 22 m/s by
generating dimples in the front and back of the intercity bus. The subsonic wind tunnel
served as a platform for experimental testing, with the identical numerical circumstances
being used as the experimental input. The results were compared, and it was proven that
creating dimples on an intercity bus is an effective approach to reducing drag.

The pressure difference between turbulence and frictional behavior contributed signif-
icantly to this study, so side force production and reduction strategies were emphasized. A
total of eight actual bus types were modeled in this regard. The base bus design models
were contrasted with side force reduction strategies such as dimples, inverted dimples,
riblets, square cuts, and fins. In this research, the side force, pressure, and velocities for all
eight models were computed using a CFD-based numerical tool. ANSYS Fluent 17.2 is an
example. Finally, comparison studies were run for all models at various crosswind veloci-
ties. Table 4 shows that the bus models with dimples led to a reduction in interior force.
However, models with square-cuts, fins, and riblets deviated from the goal, preferring side
force. Among the dimpled bus models, the one with dimples clustered on the top surface
significantly reduced the side force of the bus in contrast to the basic bus model. When
compared to the base model, the dimple model (model VIII) reduced side force by 54.35%,
64.79%, and 63.51% for side force velocities of 5 m/s, 10 m/s, and 15 m/s, respectively. To
summarize, when compared to the basic bus model, the bus model with dimples grouped
on the top surface reduced side force by 61%. As a result, this research offers dimple-based
drag reduction approaches that should be adopted in intercity buses to reduce disturbance
affecting trip comfort. As seen in Tables 3 and 4, the top performers were model I and
model VIII, both of which were equipped with the dimple-based recommended approach.
As a result, deployment-based section considerations were used to select the optimal option
between model I and model VIII. The application of dimples over the bus was easier in
model I than in model VIII, and the sideslip force was somewhat higher in model I, so
model I was chosen to offer high efficiency.

The appropriate drag reduction strategies and ideal places to correct the dimples were
determined using scaled model-based simulations. The entire real-time bus model was
then enforced in multi-parametric research. During multi-parametric examinations of the
whole bus model, the drag, side, upward forces, and induced velocities were estimated
using CFD, and thus the appropriate opposing factors affecting the model were generated.
Second, the energy necessary to combat the opposing variables was computed, with the
base bus model requiring more energy than the drag reduction strategies used in the bus
models. Third, the specific power of the intercity bus models was determined using a
combination of analytical and computational methodologies. Based on the particular power
outputs, it was obvious that the 100 mm dimpled bus model did better than others in terms
of consuming less specific power. Fourth, the fuel consumption rate of all models was
calculated, and the same 100 mm dimpled bus model was nominated as the best performer
due to its lower fuel consumption rate than others. Fifth, aeroacoustics approach-based
calculations were applied to all models, resulting in noise creation owing to air turbulence.
According to the aeroacoustics investigation, the suggested dimple-based idea has no effect
on the health of the passengers as the bus approaches the maximum forward speed. Finally,
the suggested idea was confirmed to not interfere with the performance of the intercity
bus and greatly helped with the accomplishment of high performance. According to the
authors, the suggested dimple-based drag reduction approach can significantly improve
intercity bus performance by lowering the negative effect of current conventional buses
and boosting the positive effect of the same traditional base buses.
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Nomenclature
The governing equations implemented in the computational investigations and cal-

culations for the energy required of the engine are predominantly comprised of various
nomenclature. Thus, the complete details of the nomenclature involved in this work are
tabulated below:
A Frontal area of the intercity bus (m2)
a Acceleration (m/s2)
CD Coefficient of drag (no unit)
CRR Rolling resistance term coefficient (no unit)
D Distance traveled by the bus (m)

ER
Energy required to move the vehicle in forward direction with the inclusion
of drag force being conquered (W)

FC Fuel consumption of an intercity bus (g/s)
FForward Required force to move the intercity bus in forward direction (N)
FRR Force generated due to the effect of rolling resistance (N)
FIB Force generated due to the effect of the inertia of the bus (N)
FM Force imparted on the bus when it executes various maneuvers (N)
FD Force induced on the bus due to opposing factors (N)

FA
Force required to resist additional forces when the bus is approaching steady,
level movement (N)

FS
Force required to resist side forces when the bus is approaching steady, level
movement (N)

FU
Force required to resist upward forces when the bus is approaching steady,
level movement (N)

g Acceleration of gravity (m/s2)
m Gross vehicle mass (kg)
ηm Mechanical efficiency of the drive system (in most cases the values is 87%)
PT Fluid pressure loaded inside the tire of the bus (bar)
t Time taken to cover distance D (s)
VB Forward velocity of the bus (km/h)
Vb Forward velocity of the bus (m/s)
PS

IB Specific power of the intercity bus (W/kg)
ρa Density of the air fluid (kg/m3)
α Turning angle of the bus when executes various maneuvers (degrees)
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