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Abstract: Identifying dangerous events from driving behavior data has become a vital challenge in
intelligent transportation systems. In this study, we compared machine and deep learning-based
methods for classifying the risk levels of near-crashes. A dataset was built for the study by considering
variables related to naturalistic driving, temporal data, participants, and road geometry, among others.
Hierarchical clustering was applied to categorize the near-crashes into several risk levels based on
high-risk driving variables. The adaptive lasso variable model was adopted to reduce factors and
select significant driving risk factors. In addition, several machine and deep learning models were
used to compare near-crash classification performance by training the models and examining the
model with testing data. The results showed that the deep learning models outperformed the machine
learning and statistical models in terms of classification performance. The LSTM model achieved the
highest performance in terms of all evaluation metrics compared with the state-of-the-art models
(accuracy = 96%, recall = 0.93, precision = 0.88, and F1-measure = 0.91). The LSTM model can improve
the classification accuracy and prediction of most near-crash events and reduce false near-crash
classification. The finding of this study can benefit transportation safety in predicting and classifying
driving risk. It can provide useful suggestions for reducing the incidence of critical events and
forward road crashes.

Keywords: near-crash events; driving risk levels; classification; statistical methods; machine learning;
deep learning

1. Introduction

As a result of the considerable increase of motor vehicles, traffic crashes have become
one of the most serious and threatening challenges that significantly influence people and
society and result in economic losses, injuries, and fatalities. According to World Health
Organization (WHO) [1], every year more than 1.2 million people lose their lives in road
crashes. In addition, 20–50 million people suffer non-fatal injuries or become disabled as a
result of their injury. Due to these increasing numbers, traffic safety-related issues have
received considerable research attention [2–5]. Although various approaches have explored
driving behaviors for avoiding and reducing road crashes, key questions remain: how can
driving performance be effectively evaluated, and how can driving risk be predicted and
classified by the information acquired from the driver, vehicle, weather, and road geometry
scheme [6,7]. Driving risk analysis is still challenging [8] for a number of reasons.

Firstly, crash severity-related datasets regarding quality and quantity are lacking.
Secondly, there is a need to provide an effective method to select the significant variables
of driving risk before conducting crash severity analysis. Thirdly, in studies on crash risk
prediction and classification, a method that analyzes the high risk levels of driving variables
and classifies driving events is needed, and a validation process needs to be included. To
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the best of the authors’ knowledge, these problems are still neglected in road safety-related
studies. There is a need to compare predictive performance using statistical, machine, and
deep learning methods.

Through this study, we explore the significant variables associated with near-crash
events using a multi-source dataset. Near-crash events are identified by exploring signifi-
cant driving behavior actions. Subsequently, near-crashes are classified and grouped into
several levels according to their driving risk parameters. As there are many variables in the
collected data, we adopted the selection feature method to choose only significant variables
for near-crash events. Many classification models of statistical, machine, and deep learning
are applied for near-crash classification. To sum up, the main contributions of this paper are
concluded as follows: (1) Hierarchical clustering is adopted to group the near-crashes based
on high-risk driving features. (2) Adaptive lasso regression is utilized to select significant
variables related to high driving risks. (3) Various classification models are applied on
near-crash data to predict and classify their risk levels. Seven machine, deep, and statistical
models are trained and tested using the near-crash dataset, and evaluation metrics validate
the performance of the classification models in terms of accuracy and running time.

The remainder of the paper is organized as follows. Section 2 introduces the related
work. A description of the proposed methodology is presented in Section 3. The results of
the experiments are provided in Section 4. A discussion of the results and a comparison with
other related classification approaches are presented in detail in Section 5, and the study
conclusions are finally discussed, along with the value of the findings and future work.

2. Related Work

In recent decades, many approaches have been taken to analyze and understand crash
injury severity.

In general, the most popular methods used for road crash-related analysis are sta-
tistical models. For instance, ordinal logistic regression and multinomial regression are
adopted to explore the important variables for severe truck and vehicle crashes. Their result
showed that factors such as being a non-resident, driving in off-peak hours, and driving on
weekends may increase the risk of truck crashes [2]. Wang et al. [3] used a CART classi-
fication model to investigate the correlations among driving behavior, vehicle attributes,
road geometry condition, and driver characteristics. Naji et al. [4] used a mixed-ordered
regression model to evaluate the dangerous levels using near-crash events. Their findings
showed that many variables influence driving risk, including the deceleration average, road
congestion, the road type, the time of day, and the driver’s mileage, experience, and age.

Although statistical models have been largely utilized for crash prediction and classifi-
cation, these models suffer from poor data quality, require knowledge of data distributions
in advance, and require a large amount of data. Therefore, machine learning (ML)-based
models, such as support vector machines (SVMs), the K-nearest neighbor (KNN), and
random forests (RFs), have been adopted and have achieved better results in many trans-
portation systems [5,7]. Duong [8] adopted a multilayer perceptron (MLP) for a binary
classification of crash fatalities. An SVM was applied to investigate the injury severity
factors of zone crashes [9]. Princess et al. [10] adopted the k-nearest neighbor and support
vector machine to classify the severity of road accidents. Jie Xie and Mingying Zhu [11]
utilized a random forest for classifying maneuver-based driving behaviors and analyzing
aggressive driving.

Mokhtarimousavi [12] analyzed naturalistic diving data by extreme gradient boosting
(in short, XGBoost) and AdaBoost to determine the significant factors of near-crashes. Wang
et al. [13] utilized machine learning methods to analyze and predict driving risk and found
that artificial neural networks (ANNs) achieved better performance results compared to
other methods. Many other studies [14–16] compared various ML methods for crash risk
classifications and prediction and achieved perfect results.

With the rapid advance and increase in new methods in deep learning, these models
have proved to be reliable tools for crash risk analysis [17]. Li et al. [18] introduced a
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real-time crash risk prediction approach by merging long short-term memory (LSTM) and a
convolutional neural network (CNN). Another approach proposed for analyzing real-time
crash risk is to consider time series dependency using an LSTM model [19]. Jiang et al. [20]
adopted LSTM networks for crash identification based on freeway traffic data. In [21], a
convolutional neural network (CNN) approach with refined loss functions was adopted to
analyze crash risk severity. Zhao et al. [22] proposed a convolutional neural network with
gated convolutional layers (G-CNN) to analyze crash risk in each traffic state.

However, there is a need to explore driving behavior analysis using near-crash events
to classify and predict driving risk levels. Moreover, for investigating the correlation
between high-risk driving and behavior variables, there is a need to provide an efficient
and effective variable selection method of choosing significant variables related to high-risk
driving. Hierarchical clustering has been applied to categorize near-crashes into several
risk levels according to driving behavior to address these issues. In addition, adaptive lasso
regression has been adopted for variable selection, which reduces the data dimensions and
time complexity.

With the recent advance in data collection, many researchers have begun considering
using naturalistic driving data to investigate and analyze high-risk driving. For instance,
NHTSA presented the “100-Car Naturalistic Driving Study” project to obtain naturalistic
driving data. [23]. With the availability of such data, traffic safety researchers have devel-
oped new methods to better explore the risk levels associated with the driving behavior of
individual drivers.

As traffic crash data are scarce and not always available [24,25], naturalistic driving
studies have become one of the best methods for collecting driving behavior data and
presenting near-crashes as surrogate measures. Osman et al. [26] compared several machine
learning models for predicting near-crashes from observed vehicle kinematic variables.
Seacrist et al. [27] utilized naturalistic driving data to compare and analyze the frequency
and characteristics of a high-risk driver’s near-crashes. Naji et al. [4,28] adopted two
logit regression models to explore the affecting factors of driving risk on near-crashes and
individual drivers. Perez adopted a method for identifying and validating near-crash
events using different kinematic thresholds [29]. In [30], the authors proposed an approach
for investigating the involvement of secondary tasks in near-crashes to study the impact of
driving behavior factors on traffic safety.

However, the driving data collected by naturalistic driving experiments may not be
enough to understand the driving risk patterns; therefore, other data sources can enrich the
driving data and add more significant variables correlated to crash analysis. In addition to
the obtained variables from naturalistic driving data, we considered various variables from
driver input, geometry, time, and weather data in this study.

Regarding near-crash analysis, we found that no comprehensive study considers
near-crash analysis via statistical, machine, and deep learning models for classifying and
predicting high-risk levels. In addition, to the best of the authors’ knowledge, there is still
limited research comparing the classification performance of various statistical, ML, and
DL models with a detailed validation.

To sum up, the main goal of this study was to use the collected data from a natural-
istic driving study (NDS) along with related datasets for classifying and predicting the
dangerous levels of near-crash events. Our study utilized hierarchical clustering to group
near-crashes into risk levels using driving behavior variables. Adaptive lasso regression
was applied to filter the collected variables, considering significant variables only. In addi-
tion, seven statistical, machine, and deep learning models were adopted to classify the risk
levels of near-crashes. The classifier models were trained with training data and validated
with testing data. Finally, the classifier’s performance was compared and validated by
evaluation metrics, including accuracy, recall, precision, and F1-measure.
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3. Methodology

This section introduces the proposed model for classifying driving risk of near-crash
events in detail, including the driving experiment and collected dataset, data prepro-
cessing, classification models, and validation. Figure 1 depicts the framework of the
proposed model.
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3.1. The Driving Experiment and Collected Dataset

For classifying the driving risk levels of near-crashes, we needed to collect a robust
and suitable dataset. Here, we explain the experiment and collected data in detail.

Naturalistic driving experiments were performed via a carefully prepared vehicle
driven on various road types in Wuhan, China. An experimental vehicle was equipped
with various devices such as CAN BUS, MobilEye, LiDAR, and a video camera. These
devices can synchronously collect vehicle speed, acceleration-related variables, braking
signals, time headway, vehicle position, and road condition. Forty-one drivers joined the
experiment, including 11 female and 30 male drivers. Their age ranged between 18 and
56 years with various educational backgrounds. Regarding the driving experience, all
participants had driving experience from 2 years to more than 10 years. For the sake of
investigating the impact of road types on driving behavior, an experimental route was
planned to include all road types. Figure 2 shows the experimental route on the roads of
the city of Wuhan.
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The experiment route’s length was 90 km, and the ordinary driving period was 90 min.
As shown in Figure 2, the route was composed of four segments, namely an expressway, a
freeway, an expressway, and an urban road. The expressway segment had a 10 km length
and an 80 km/h speed limit. The freeway segment had a permitted speed of 100–120 km/h,
and the length was 38 km. The speed limit of the urban expressway segment was 80 km/h,
and the length was 31 km. The urban road segment had a permitted speed of 40–60 km/h
and the shortest length of 12 km.

In addition, experiments performed at different day times ranged from 8:00 to 20:00
and on different weather conditions. To sum up, all variables in the collected dataset are
listed in Table 1.

Table 1. Variables of the collected dataset.

Variable Symbol Type Details

Driving Behavior (Vehicle Status)
Beginning Speed Begin_Sp continuous Vehicle velocity once a near-crash happens (m/s)

Average of Deceleration Avg_Dec continuous Average of Deceleration (m/s2)
Average of Speed Avg_Sp continuous Average of Speed (m/s)

Time Headway Average Avr_THW continuous Average of Time Headway(s)
Braking Pressure Average Avr_Br continuous Average of Braking Pressure(MPA)

Minimum Deceleration Min_Dec continuous Minimum Deceleration(m/s2)
Minimum Time Headway MinTHW continuous Minimum Time Headway(s)

Max Braking Pressure Max_Br continuous Maximum Braking Pressure (mpa)
Kinetic Energy Eneg continuous Vehicle Kinetic Energy

Road Condition
Wet Wet nominal 1. Wet 2. Dry

Road Type R_ty nominal 1. Expressway 2. Freeway 3. Urban Expressway
4. Urban road.

Lane Numbers Lane_Nu nominal 1. 1; 2.2; 3.3; 4.4; 5.5
Speed Limit Sp_lim nominal 1. 40–60; 2.80; 3.100–120

Road Congestion congested nominal 1. Yes; 0. No
Weather Weather nominal 1. Sunny; 2. Rain; 3. Cloud

Light Light nominal 1. Light; 2.Dark
Time Variables

Peak Hour Peak_hrs nominal 1. Yes; 2. No
Weekend Weekend nominal 1. Yes; 2. No

Time of Day Time_day nominal 1. 6:00–12:00; 2. 12:00:−18:00; 3. 18:00–24:00
Driver Inputs

Education Level Edu_lev nominal 1. Less than graduate 2. graduate
3. Post-graduate and above

Age Age nominal 1. less than 23; 2. 23–45; 3. More than 45
Gender Gender categorical 1. Male 2. Female

Driving Miles Dri_ miles continues Driving Miles (miles)
Driving Experience Dri_years continuous Driving license (years)

3.2. Data Preprocessing
3.2.1. Near-Crash Extraction

As near-crashes are not found among police-reported data nor included in archival
databases, the naturalistic driving study (NDS) became a popular method for studying
them [31]. In [32], researchers considered braking events as near-crash events. A near-crash
was considered once the acceleration reached certain values (lateral: −1 m/s2, longitudinal:
−1.5 m/s2) [33]. Our study defined a near-crash by exploring three significant driving
variables, including deceleration, braking pressure, and time headway, as in [4,34]. In
naturalistic driving experiments, a near-crash can be detected by achieving at least one of
the following three thresholds of driving variables: an acceleration under −0.4 m/s2, a
time headway below 0.6 s, or a braking pressure above 10 mph. In addition, the collected
near-crashes were validated by checking the recorded videos on the related timestamps to



Sustainability 2022, 14, 6032 6 of 21

find whether a near-crash occurred or not. Finally, several near-crash-related variables can
be appended to the variables in Section 3.1. Table 2 illustrates these variables in detail.

Table 2. Variables related to near-crash events.

Factor Symbol Type Details

Near-Crash Type NC_type nominal

1. Subject-Vehicle (Head) vs. Object-Vehicle (Head)
2. Subject-Vehicle (Head) vs. Object-Vehicle (Tail)
3. Subject-Vehicle (Head) vs. Object-Vehicle (Side)
4. Subject-Vehicle (Side) vs. Object-Vehicle (Side)
5. Subject-Vehicle (Side) vs. Object-Vehicle (Tail)

6. Conflict with Pedestrian 7. Parts of Road 8. Others

Near-Crash Reason NC_reason nominal

1. Head-vehicle abruptly halted 2. Traffic Signals
3. Traffic Jam 4. Road Repairs 5. Road changes

6. Pedestrians 7. Subject-Vehicle turned-off
8. Object-Vehicle turned-off 9. Others

3.2.2. Near-Crash Categorization

Various statistical and data analysis approaches have been adopted for traffic safety to
understand the daily driving behavior and patterns. Among these methods, cluster analysis
has been adopted to group driving data into several categories [35,36]. K-means, hierarchical
clustering, and DBSCAN are prevalent methods applied in traffic safety analysis.

Hierarchical clustering (HC) is commonly used for similar grouping objects into
multiple-level hierarchical clusters. For implementing hierarchical clustering, two methods
can be adopted: the agglomerative method and the divisive method. N-1 levels (clusters)
are built as a result of the HC model [37].

In our study, hierarchical clustering was applied to categorize near-crashes into clus-
ters by considering related driving risk variables (acceleration, time headway, and braking
pressure), which resulted in a hierarchical clustering dendrogram. With the agglomera-
tive method, the process began with zero clusters, and each near-crash event was then
considered a core cluster. Subsequently, two highly similar clusters were combined as a
new cluster, and the algorithm terminated once all near-crashes formed a single cluster. A
distance measure was used to determine the correlation between events via calculating
the similarity between near-crashes and visually represented by points in the clustering
dendrogram. The Euclidean distance [37] is the most prevalent method used in hierarchical
clustering. The distance of two near-crashes was calculated using Equation (1).

distEuclidean(x, y)=
√

∑p
i=1(xi − yi)

2 (1)

where x and y are near-crashes, and p is the total of near-crashes.
The hierarchical clustering generated several categories presenting the risk levels of

near-crash events.

3.2.3. Feature Selection

The dimensionality reduction of input variables through the feature selection method
before applying classification models is vital. In other words, removing redundant dimen-
sions decreases training time significantly without affecting the models’ performance.

As naturalistic experiments can collect various variables, there is a need to explore the
relationships between key factors and the outcome variable(s). More specifically, it becomes
a challenge to optimally identify and use only variables that are relevant to the outcome
to provide us with useful information. Many methods have been utilized to address this
issue; however, this problem can be more complicated when the factors and the outcome
have a non-linear correlation. Therefore, we adopted adaptive lasso regression to perform
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variable selection when analyzing non-linear relationships [38]. Assume we have the given
n independent observations (Xi, yi), i = 1, 2, . . . , n, which are generated as follows:

yi= g
(

XT
i w
)
+ εi, i = 1, 2, . . . , n (2)

where εi is a Gaussian random variable, εi~n∈ (0, σ2), function g: R→ R denotes a non-
linear mapping function, which is not known a priori, and Xi ∈ Rp are feature vectors.

The main idea in the lasso method is to reduce the features in vectors by compassing
a coefficient to zero and then setting a regression coefficient to zero, which lets us select
optimal features. The model selection of the lasso method is essentially a process of seeking
sparse model expressions, and this process can be completed by optimizing a function of
“loss” and “penalty”. Lasso parameter estimation can be defined as Equation (3) [39]:

∧
β (lasso)= arg min2

β
||y−

m

∑
j=1

xjβ j||2 + λ
m

∑
j=1
|β j| (3)

where λ is a non-negative regular parameter, which controls the complexity of the model.
The larger the value of λ, the greater the penalty for the linear model with more features.
Finally, a model with fewer features is λ ∑m

j=1
∣∣β j
∣∣ obtained, which is the penalty term.

The λ parameters can be determined using a cross-validation method, and the smallest
error of λ is obtained. Finally, according to the obtained values, the model is refit with all
of the data.

3.2.4. Normalization

With various values of continuous variables, these variables are normalized to be
between 0 and 1. This ensures that all factors can be treated equally during the training
process for the classification models. To normalize the variables, the following equation
is used:

xnorm =
x− xmean

xmin max
(4)

where x, xmin, xmax, and xnorm are the original, minimum, maximum, and normalized values
from the dataset (training dataset), respectively.

3.3. Classification Models

This study applies two statistical models, three machine learning models, and two
deep learning models for classification problems. These models have supervised learning
methods that consider modeling the near-crashes’ risk levels Y (generated by hierarchical
clustering method) and the input vector X as a classification problem. A support vector
machine, a multi-layer perceptron, and a random forest were selected as machine learning
models to implement the classification models. For deep learning, we chose an LSTM
model and a gated recursive unit model. An ordinal probit model and a multinominal logit
model were selected as statistical models.

3.3.1. Support Vector Machine (SVM)

The SVM method can map the input vector X into a high-dimensional variable space.
The SVM designs an optimal separating hyper-plane in the dimensional space to separate
the points that represent the vector X into groups while enlarging the margin among the
linear decision boundaries. Therefore, SVM can be used to address classification problems.
In an SVM model, the inputs are represented as vectors Xi∈Rn, for i = 1, 2, . . . , n, which
denote a set of near-crash-related variables, and the output is defined as yi∈Rn, which
represents the risk levels of the near-crashes. In addition, the hyper-plane for outputs could
be drawn as a set of points X following Equation (5).

W × X − b = 0 (5)
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where × represents the product process, W is a normal vector, and b is related to the
predefined hyper-plane. In the SVM model, given a training set of instance-label pairs (Xi,
yi), by using the model, it needs to address the optimization problem [40] as follows:

min
w,b,ξ

1
2

wTw + C
N

∑
i=1

ξi (6)

subject to
yi

(
wT ϕ(xi) + b

)
≥ 1− ξi, ξi ≥ 0 (7)

where ξ are the parameters used to measure the misclassification errors, and C is a penalty
parameter for errors as an additional capacity control by the classifier.

3.3.2. Random Forest (RF)

A random forest is a popular machine learning method for addressing classification,
prediction, and other issues. The RF method generates many classifications and aggregates
their results [41]. For solving a classification problem, the RF builds a multitude of decision
trees at the training phase and outputs the level (class), which is the group of the levels
(classes). Each node is split through the best in an RF among a subset of predictors
randomly chosen at that specific node. Two hyper-parameters must be set in the RF model:
the number of trees to grow and the number of variables randomly sampled as candidates
at each split; by determining these parameters, RF can enhance the classification results [41].

3.3.3. Multi-Layer Perception (MLP)

The multi-layer perceptron is a type of artificial neural network (ANN). The MLP
algorithm was selected to enhance the classification prediction performance. Artificial
neural networks are considered efficient and applicable for predicting the correlation
between the dependent and independent parameters. As in ANNs, MLPs’ prediction
performance is highly affected by their inner structure, which contains an input layer,
hidden layers, and an output layer. Each layer includes a group of neurons. Neurons
are connected to others, transmit data from the last neuron, and multiply it by a specific
weight based on the information strength in determining the output [42]. To train an MLP
network, a forward and backward propagation method is repeatedly adopted to update all
network weights. The outputs of an MLP model rely on connection weights, bias value,
and activation function. The outputs can be calculated as follows:

yi = f (
m

∑
j=0

wijXi + b) (8)

where f is an activation function, w denotes a weight value, X is an input vector, b and
denotes the bias value.

3.3.4. Ordinal Probit Model (OP)

The ordinal probit model has been widely utilized for ordinal response data. If Y is a
near-crash risk level, then a latent variable Y* is obtained, as in Equation (9) [2,43]:

Y* = Xi · βi + εi (9)

where Y* is a linear-based function that deals with discrete outcome, Xi is a vector of input
variables, b is a vector of regression coefficients, and εi is an error that follows a logistic
distribution with a mean of zero and a variance of π2/3.

The risk level index will be transformed into a number set (1, 2,..., n) to be the outputs
of the OP model, and the values of β and Y* can be calculated by the maximum likelihood
estimation method [44].
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3.3.5. Multinominal Logit Model (MNL)

The idea of a multinominal model is similar to an ordinal probit model. The main
difference is that a multinominal model ignores the ordinal nature of outcomes. In other
words, an MNL model can be used to deal with nominal outcomes [45]. The MNL model is
presented as Equation (12):

Pi =
eβiXi

∑N
i eβiXi

, i = 1, 2, . . . , N (10)

where Pi is the probability of a near-crash, which is labeled with the risk level (output) i, βi
is a vector of the calculative coefficient for the output risk level i, and Xi is an input vector.
βi coefficients can be calculated by the maximum likelihood approach.

3.3.6. Long-Short-Term Memory (LSTM)

In recent advances in deep learning methods, recurrent neural networks (RNNs)
became one of the most successful approaches to applied classification problems [46].
LSTM neural networks are developed by adding a long-term memory function, which
enhanced the RNNs’ ability to enhance the performance of classification and prediction. In
a simple LSTM network, each feature vector X is mapped to a corresponding output vector
y. Figure 3 depicts the structure of a simple LSTM unit.
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An LSTM unit is composed of three layers, namely, an input layer, output layer, and
memory block layer. The memory block layer contains three types of gates, including the
input gate, the output gate ot, and the forget gate ft. The calculation process in these layers
during training are performed as follows [47]:

ft = σ(W f [ht−1, {X}t] + b f )

it = σ(Wi[ht−1, {X}t] + bi)

ot = σ(Wo[ht−1, {X}t] + bo)

σ(x) = 1
1+exp(−x)

(11)

where t represents a random time step. σ(.) is a sigmoid function, Wi, Wf, and Wc denote
the weight of the input gate, the forget gate, and the output gate, respectively, In addition,
the memory cell vectors ct and the candidate value c̃t are calculated as follows:
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c̃ = tan h(Wc[ht−1, {X}t] + bc)

ct = ft × ct−1 + it × c̃t

ht = ot × tan h(ct)

tan h(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

(12)

During the training process of the LSTM model, the softmax function is utilized as the
loss function, and the Adam optimizer method is adopted in the training process [47].

3.3.7. Gated Recursive Unit (GRU)

To reduce the training time of the LSTM model, the GRU model is developed. GRU is
an RNN framework with a gate mechanism inspired by LSTM and a simpler structure [48].
The GRU architecture is shown in Figure 4.
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A GRU cell contains update gate zt and reset gate rt. The reset gate (rt) utilizes the
sigmoid function to properly reset the previous information and multiplies the value by
the past hidden layer. The update gate (zt) is a combination of the forget and input gates as
in the LSTM model. The update gate determines the rate of the update of the current and
previous information. In the update gate, the result of the output as sigmoid determines
the amount of information at the current node and the value subtracted from 1 (1 − zt) is
multiplied by the information of the hidden layer at the most recent time. Each update
gate is similar to the input and forget gates of the LSTM. The output value can be obtained
by multiplying the hidden layer’s value at the previous unit and the information at the
present unit by weight with the following equations [49]:

zt = σ(WzXt + Uzht−1)

rt = σ(WrXr + Urhr−1)

Ht = tan h(WHXt + UHr(rtht−1))

ht = (1− zt)ht−1 + ztHt

(13)

where Xt is the input vector at time t, and Wz, Uz, Wr, Ur, WH, UH are the weight matrices
for the nodes in GRU. Other information are similar to the information in LSTM.
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4. Models Comparison and Results

To validate the performance of the utilized models, the classification models needed
to be evaluated. In this section, first, we describe the experimental settings and the hyper-
parameters of the classification models, followed by a description of the evaluation metrics.
Finally, the obtained results are provided in detail.

4.1. Experimental Settings

The experiment was prepared and conducted as follows. Firstly, the near-crash dataset
was divided into two parts, training (80%) and testing (20%). Secondly, the proposed
models were trained based on the training dataset. At the end, the trained model was
evaluated using the testing data.

We considered the impact of the hyper-parameters on the models’ performance;
therefore, after manually training the adopted models, we found that the selected hyper-
parameters resulted in improved classification. Table 3 shows the values of the
hyper-parameters.

Table 3. Hyper-parameters for classification models.

SVM RF MLP LSTM GRU

Penalty = 0.25

Max depth = 20,
Estimators = 30

lass_weight:
‘balanced’,

decision:entropy

hidden_layers = 4,
epochs = 50, batch_size = 256

learning rate 0.0012,
LSTM Unit Number = 16,

hidden_layers:50,
units:100, epochs: 100,

batch_size: 512

Hidden layer = 20,
learning rate = 0.001,

epochs 100,
batch_size: 512

The classification models were implemented on a DELL PC, with a hardware environ-
ment of two GPUs and an NVIDIA GeForce RTX 2070 with a 32 GB memory and equipped
with a 500 GB SSD drive, and were executed by codes written in R and Python. Machine
and deep learning methods were implemented using the coding libraries of the scikit-learn
and TensorFlow framework.

4.2. Evaluation Metrics

The performance of classifiers was examined by calculating the accuracy, recall, precision,
F-measure, and their averages using the following equations [48]:

Accuracyk =
TPk+TNk

TPk+TNk+FPk+FNk

Accuracyaverage = ∑K
k=1 Accuracyk

K

(14)

Recallk =
TPk

TPk+FNk

Recallaverage = ∑K
k=1 Recallk

K

(15)

Precisionk =
TPk

TPk+FP k

Precisionaverage = ∑K
k=1 Precisionk

K

(16)

F−Measurek = 2 Precisionk×Recallk
Precisionk+Recallk

F−Measureavergae = ∑K
k=1 F−Measurek

K

(17)

where for near-crash risk level k (according to the results of the hierarchical clustering
in Section 3.2.2), TPs (true positives) are the near-crashes classified correctly, FPs (false
positives) are the near-crashes classified incorrectly, FNs (false negatives) are the near-
crashes classified incorrectly, TNs (true negatives) are the near-crashes classified correctly,
and K is the total number of near-crashes levels.
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4.3. Results
4.3.1. Clustering Results

Before conducting hierarchical clustering analysis, the optimal number for clusters
should be determined. To do this, we used the elbow method [50]. The elbow method is the
most popular method for determining the optimal number of clusters. In the elbow method,
variation updates rapidly for a small number of clusters and slows down, producing an
elbow shape. The elbow point represents the number of clusters we used for the clustering
algorithm. The results of the elbow method are shown in Figure 5.
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Figure 5. The elbow method results for an optimal number of clusters.

The method fits numbers for a range of cluster values between 2 and 11. Figure 5
shows that the elbow point is achieved with 5 clusters, and the method can inform us of
the time duration needed to produce models for clusters’ numbers using a green line.

We used the testing dataset to provide accurate clustering results to choose the ap-
propriate linkage methods for hierarchical clustering. We found that Ward’s linkage
method [51] was suitable for identifying the near-crash levels based on the driving risk
variables. The clustering results are shown in the hierarchical clustering dendrogram
in Figure 6.

In Figure 6, near-crashes are categorized using driving parameters into five categories
(risk levels): minimal, slight, moderate, serious, and severe. These categories are repre-
sented by 1, 2, 3, 4, and 5, respectively. Minimal and slight clusters have a lower risk
proportion, by 31.5%. The moderate cluster has the highest rate of crash events at 52.8%,
whereas serious and severe clusters are considered high-risk clusters at 12.9% and 2.8%,
respectively. The severe cluster has a small number of near-crashes (46 events), which
was expected.
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To understand the distribution of the near-crash clusters (risk levels), Table 4 summa-
rizes the proportions of the five risk levels.

Table 4. Comparison of Hierarchical Clustering Results.

Number Level Near-Crash Events Percentage (%)

1 Minimal 86 5%
2 Slight 411 26.5%
3 Moderate 882 52.8%
4 Serious 215 12.9
5 Severe 46 2.8%

4.3.2. Feature Selection Results

In this study, lasso regression was developed and implemented using R statistical
Software along with glmnet and caret packages. Table 5 shows that lasso regression fits the
most significantly important variables with only non-zero values and ignores the variables
by setting the coefficients exactly to zero. Using these significant variables as input vector
X and the five near-crash events as labels Y, the dataset is ready for the training and testing
procedure by the classification models introduced in Section 3.3.
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Table 5. Estimation results for the lasso model.

Factor Coefficients Factor Coefficients

Driving Behavior Features Time Features
Beginning Speed - Time of Day

Average of Deceleration −0.0018 1. 60:00–12:00 -
Average of Speed 0.0124 2. 12:00–18:00 −0.0561

Time Headway Average - 3. 18:00–24:00 0.0171
Braking Pressure Average - Weekend

Min Deceleration - 0. No 0.0165
Min Time Headway - 1. Yes 0.0354

Max Braking Pressure 0.0298 Peak Hour
Vehicle Kinetic Energy −0.0103 1. Yes -

Road Features 2. No -
Road Type Near-Crash Features

1. Expressway a - Near-Crash Reason
2. Freeway 0.0408 1.Head-vehicle abruptly halted −0.0192

3. Urban Expressway - 2. Traffic Signals -
4. Urban Road −0.0092 3. Traffic Jam a −0.0358

Road Congestion 4. Road Repairs 0.0154
0. Yes −0.0158 5. Road changes -
1. No - 6. Pedestrians -
Wet 7. Subject-Vehicle turned-off −0.0483

1. Wet - 8. Object-Vehicle turned-off -
2. Dry - Near-crash Type

Light Subject-Vehicle(Head) vs.
Object-Vehicle (Head) a -

1. Light - Subject-Vehicle (Head) vs.
Object-Vehicle (Tail) −0.0141

2. Dark 0.0174 Subject-Vehicle (Head) vs.
Object-Vehicle (Side) -

Weather Subject-Vehicle (Side) vs.
Object-Vehicle (Side) -

1. Sunny - Subject-Vehicle (Side) vs.
Object-Vehicle (Tail) −0.0045

2. Rain 0.0244 6. Conflict with Pedestrian -
3. Cloud - 7. Parts of Road -

Driver Features
Age Education level

1. Less than 23 −0.0218 1. Less than graduate -
2. 23–45 a - 2. Graduate a -

3. More than 45 −0.0373 3. Post-graduate and above -
Gender Driving Mileage −0.0293
1. Male - Driving Experience (years) −0.0164

2. Female 0.0172
a Base reference of a categorical variable; - non-significant variable

Table 5 shows the covariates selected and their estimated coefficients, using all 1670
observations in the learning process. Covariates whose coefficients are large in terms of
their absolute value have a great influence on the diagnosis of risk levels in near-crashes.

4.3.3. Model Comparison

(1) Classification Performance
We used the five risk levels of near-crashes obtained by hierarchical clustering as

output labels to evaluate classification performance and the significant variables selected
by lasso regression as the input vector. In other words, we aimed to train classification
models that learn to map the collected variables of a near-crash to its risk level and then
compared the performance measures for models built on the dataset with different levels
of driving risk.
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Firstly, the dataset was split into training data (80%) and testing data (20%). Secondly,
the adopted classification models were trained by training data, and the classification
performance was evaluated over the testing data. Finally, we used a confusion matrix
to calculate the evaluation metrics, as shown in Equations (14)–(17). In what follows,
the results of evaluation metrics, namely, accuracy, recall, precision, and F1-measure,
are described. The accuracy performance results of each classification model are shown
in Table 6.

Table 6. Accuracy performance in classification models.

Model
Risk Levels of Near-Crashes

Minimal Slight Moderate Serious Severe Average

Support Vector Machine (SVM) 0.89 0.93 0.89 0.65 0.76 0.83
Random Forest (RF) 0.85 0.82 0.84 0.81 0.77 0.82

Multi-Layer Perception (MLP) 0.84 0.89 0.76 0.95 0.97 0.88
Ordinal Probit Model (OP) 0.80 0.72 0.90 0.82 0.80 0.81

Mutlinominal Logit Model (MNL) 0.71 0.77 0.76 0.84 0.80 0.78
Long-Short-Term Memory (LSTM) 0.93 0.94 0.85 0.93 0.96 0.96

Gated Recursive Unit (GRU) 0.96 0.87 0.75 0.94 0.98 0.91

In Table 6, numbers in bold denote the maximum value of a column, whereas the
underlined numbers represent the minimum value.

Table 5 shows that MLP, LSTM, and GRU achieved the highest accuracy, and LSTM
attained the highest average accuracy for minimal, slightly serious, and severe risk levels.
The lowest accuracy was performed by the SVM at serious and severe risk levels, whereas
the MNL had the lowest values in the minimal level and in average accuracy. For the predic-
tion results of the moderate level, the OP model shows a high accuracy, and GRU achieved
the lowest accuracy; this result might mean that the models that are relatively affected lost
the capability of recognizing the moderate level, as it had the highest proportion.

The average accuracy ranged from 0.78 to 0.96. OP and MN achieved the worse
accuracy. Among these models, the MNL had the smallest value for the testing dataset.
The machine learning methods, i.e., the SVM, RF, and MLP, performed better than the
statistical methods. For instance, the multilayer perception (MLP) obtained 0.88. Deep
learning methods LSTM (0.96) and GRU (0.91) provided the most accurate performance.

By comparing the average accuracy of LSTM and GRU with previous studies, we found
that the classification accuracy of our study achieved higher results than the prediction
accuracy of similar studies, as shown in Table 7.

Table 7. Accuracy performance comparison with previous studies.

Reference Method Accuracy

Wang et al. [3] Classification Regression Tree (CART) 66.1%
Alkheder et al. [52] K-means clustering based NN 74.6%

Assi et al. [51]
Fuzzy c-means clustering based SVM 74%
Fuzzy c-means clustering based NN 71%

Mokhtarimousavi et al. [9] Cuckoo Search based SVM 89.4%
Osman et al. [26] AdaBoost 95%

Our Study Long-Short-Term Memory (LSTM) 96%
Gated Recursive Unit (GRU) 91%

The LSTM model in our study outperformed all state-of-the-art models. The LSTM
achieved an average accuracy of 96%, which is followed by a 95% accuracy in Osman’s
study [51] using AdaBoost. The GRU model also obtained high accuracy, at 91%. These
findings indicate that deep learning and machine learning methods can effectively perform
crash-related classification and prediction.
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The above accuracy results may provide evidence that accuracy alone is not enough
to evaluate classifier performance, so there is a need to study the results of other model
metrics as well.

The performance of recall, precision, and F1-measure of the seven classifiers were
calculated and are shown in Tables 8–10.

Table 8. Recall performance of classification models.

Model
Risk Levels of Near-Crashes

Minimal Slight Moderate Serious Severe

Support Vector Machine (SVM) 0.76 0.82 0.75 0.82 0.85
Random Forest (RF) 0.84 0.87 0.78 0.82 0.87

Multi-Layer Perception (MLP) 0.92 0.85 0.76 0.92 0.89
Ordinal Probit Model (OP) 0.76 0.7 0.73 0.87 0.74

Mutlinominal Logit Model (MNL) 0.71 0.72 0.72 0.76 0.76
Long-Short-Term Memory (LSTM) 0.95 0.95 0.88 0.92 0.91

Gated Recursive Unit (GRU) 0.94 0.92 0.91 0.95 0.91

Table 9. Precision performance of classification models.

Model
Risk Levels of Near-Crashes

Minimal Slight Moderate Serious Severe

Support Vector Machine (SVM) 0.78 0.87 0.84 0.73 0.66
Random Forest (RF) 0.81 0.90 0.85 0.75 0.66

Multi-Layer Perception (MLP) 0.91 0.90 0.85 0.80 0.75
Ordinal Probit Model (OP) 0.68 0.84 0.81 0.81 0.68

Mutlinominal Logit Model (MNL) 0.64 0.81 0.80 0.78 0.62
Long-Short-Term Memory (LSTM) 0.93 0.92 0.91 0.86 0.79

Gated Recursive Unit (GRU) 0.92 0.82 0.82 0.81 0.78

Table 10. F1-measure performance of classification models.

Model
Risk Levels of Near-Crashes

Minimal Slight Moderate Serious Severe

Support Vector Machine (SVM) 0.77 0.85 0.82 0.78 0.74
Random Forest (RF) 0.82 0.88 0.83 0.78 0.75

Multi-Layer Perception (MLP) 0.91 0.87 0.83 0.85 0.81
Ordinal Probit Model (OP) 0.72 0.75 0.73 0.84 0.73

Mutlinominal Logit Model (MNL) 0.67 0.75 0.76 0.77 0.65
Long-Short-Term Memory (LSTM) 0.94 0.94 0.92 0.89 0.85

Gated Recursive Unit (GRU) 0.93 0.87 0.86 0.88 0.84

It is clear that the LSTM model, among the seven models compared, has the highest
recall, precision, and F1-measure for each risk level. In contrast, the MNL usually achieved
the lowest values.

In particular, as Table 8 shows, LSTM attained the highest recall value for all risk levels,
ranging from 0.91 to 0.95, and MNL’s values were the worst, ranging from 0.62 to 0.81.
In addition, it is clear in Table 7 that the severe level had the highest values, whereas the
moderate risk level had the lowest ones. Thus, the LSTM model performed well for multi-
class classification problems. Table 11 provides a summary of findings of the classification
models, in regard to the average values of accuracy, recall, precision, and F1-measure. It is
noted that larger values of the metrics indicate a better performance.
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Table 11. Overview of the classification comparison measures.

Model Average
Accuracy

Average
Recall

Average
Precision

Average
F1-Measure

Support Vector Machine (SVM) 83% 0.81 0.78 0.79
Random Forest (RF) 82% 0.84 0.79 0.81

Multi-layered Perception (MLP) 88% 0.88 0.84 0.86
Ordinal Probit Model (OP) 81% 0.77 0.76 0.77

Mutlinominal Logit Model (MNL) 78% 0.72 0.73 0.72
Long-Short-Term Memory (LSTM) 96% 0.93 0.88 0.91

Gated Recursive Unit (GRU) 91% 0.93 0.83 0.88

(2) Comparison of Running Time
We estimated the running time by the six models (i.e., SVM, RF, MLP, OP, MNL, LSTM,

and GRU) in terms of the training loss, validation loss, and running time.
Table 12 shows that all of the benchmarked models achieved better results; thus, these

models can be used for the evaluation of real-time data from vehicles.

Table 12. Comparison of time efficiency.

Model Training
Loss

Validation
Loss

Training
Time (s)

Testing
Time (s)

Support Vector Machine (SVM) 0.010 0.010 7.31 2.07
Random Forest (RF) 0.000 0.000 8.40 2.59

Multi-layered Perception (MLP) 0.007 0.006 10.27 3.21
Ordinal Probit Model (OP) 0.004 0.002 3.22 2.52

Mutlinominal Logit Model (MNL) 0.011 0.09 4.51 3.31
Long-Short-Term Memory (LSTM) 0.005 0.006 11.76 3.44

Gated Recursive Unit (GRU) 0.004 0.003 11.68 3.22

As shown in Table 12, the training time ranged between 3.22 and 11.76 s, whereas
the testing time was between 2.07 and 3.44. Unlike the findings in the metrics of accuracy
performance, the ML models, SVC, and RF required higher computational costs compared
to statistical models. The DL models, such as the LSTM, provided the highest running time
compared to the ML models. This can be interpreted as the structure of the neural network,
which in turn increases the consumption time for the training and testing process. However,
the running time results are acceptable and can be useful for real-time classification.

Regarding the relationship between the validation loss and training loss, there are
slightly different results among the classification models. For instance, SVM, MNL, and
MLP have higher loss values in the training and validation loss, whereas the RF model
shows the best results. LSTM and GRU recorded better results as the network dropout has
been modified to be 0.5 and 0.4, respectively.

In general, the results indicated that there is no overfitting or underfitting during the
training and testing process.

5. Discussion

In this section, we discuss and compare this study to similar studies to show similarities
and differences.

For the sake of grouping near-crashes into several high-risk groups, studies [3,4] have
adopted k-means clustering analysis, which resulted in three driving risk levels, namely,
low, medium, and high. In this study, near-crashes are grouped into five risk levels based on
their driving behavior variables: minimal, slight, moderate, serious, and severe. Clustering
results show that five levels better describes driving risk than three levels. This result
conforms with [34].

Variable selection methods are used to consider significant variables for classification
modeling and ignore unrelated variables. To do this, adaptive lasso regression was applied
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to the near-crash data. In [3], the authors adopted the classification and regression tree
model and found several contributing factors, including a triggering variable, the object
vehicle type, velocity of braking, and the crash type. In contrast, our study resulted in more
contributing variables, such as average deceleration, average speed, kinetic energy, road
type, the time of day, whether it was the weekend, the near-crash reason, the near-crash
type, the driver’s age, the driving mileage, and driving experience. These variables can
surely support classification modeling and provide more details for driving risk analysis of
near-crashes. The findings of adaptive lasso regression are consistent with the results in [4].

As the results in Section 4.3 show, the machine and deep learning models achieved
a better classification performance for near-crash risk than the statistical models. The
statistical models that achieved weaker classification performance confirm the results
in [40,51]. The low performance of the statistical models may be due to the linear nature
of the adopted utility functions, and the distribution assumption of the error terms may
not be necessary for near-crash data. The MNL could not consider the ordered nature of
near-crash risk levels, while the OP model could determine the order of risk levels. The
results show that the classification accuracy of the OP model was lower than that of the
MNL model. Although the MNL model cannot consider the order of risk, the MNL model
has an advantage over the OP model; the variables related to each driving risk level can be
different, and each level can increase or decrease accordingly.

In the machine and deep learning models, the distribution features of the dataset
and the correlation among the inputs and outputs variables did not need to be known in
advance. The ML and DL models can learn the driving patterns from the training data,
consider the order of near-crash risk levels, and enhance prediction accuracy.

In particular, the LSTM and GRU were the best models with the highest overall
accuracy, at 96% and 91%, respectively.

The LSTM model would be the best option for classifying near-crashes from a prac-
titioners’ perspective. It achieved the best overall performance in all five risk levels. The
findings of the LSTM performance are consistent with the results in [46].

SVM and MLP were the next best performances, after the deep learning methods
(LSTM and GRU). Tables 8–11 show that the SVM model performs the best in predicting
near-crash risk levels, followed by the MLP. The ML models have better classification
accuracy for a small proportion of data compared to the OP and MNL models. This finding
confirms the results of the crash risk severity of the studies [15,51].

To the best of our knowledge, despite the considerable research efforts on driver
behavior analysis using ML algorithms, there are no similar comparative studies of both
ML and DL algorithms in predicting and classifying the driving risk levels of near-crashes.

There are several limitations in this study. Firstly, while the dataset size in this
study (n = 1690 near-crash events) is acceptable and near to the magnitude of data in
several similar studies [27,34], it is smaller in magnitude than the study reported in [26,29].
Secondly, there is a need to append related datasets (such as real crash datasets) to provide
more comprehensive results. Thus, classification models could potentially achieve higher
accuracy and better results. Thirdly, there is a need to add significant kinematic variables
such as YAO and longitude acceleration, which could provide a deeper understanding of
driving behavior in relation to near-crashes.

6. Conclusions

Recently, crash risk analysis has attracted considerable attention from researchers,
governments, and decision-makers aiming to enhance safety and reduce fatalities, injury,
and damage. However, crash risk classification and prediction is not a trivial issue and
requires higher quality and larger datasets to efficiently train models that can reliably
predict crashes and related events.

Due to the small size of the crash dataset, many researchers have considered using
near-crash events as surrogate measures for real crashes. In this study, a near-crash dataset
was collected by conducting a naturalistic driving experiment with related data sources
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such as driver input, temporal data, and geometry data. The near-crash events were
extracted by exploring driving behavior variables. To facilitate the classification procedure,
five risk levels were obtained by applying hierarchical clustering on near-crashes. Adaptive
lasso regression was utilized to select significant variables indicating the performance of
classification models of near-crashes. To develop the classification models, 80% of the
data was used for the training phase, 20% for the testing phase. The study compared the
classification performance for near-crash risk levels among various statistical, machine,
and deep learning models. Performance metrics included accuracy, precision, recall, and
F1-measure.

The results showed that machine and deep learning models (MLP, LSTM, and GRU)
achieved considerably better classification accuracy performance in predicting near-crashes
risk levels.

Overall, the only model that obtained a reliable performance at predicting near-
crashes and normal driving was the LSTM. The LSTM model achieved a remarkably high
prediction accuracy of 96% at all risk levels. Moreover, high values were achieved by the
LSTM (recall = 0.93, precision = 0.88, and F1-measure = 0.91).

In addition, the results showed that the LSTM model is a promising tool for classifying
the risk levels of near-crashes. This could be used in real-time driving to identify and
determine the risk level of near-crashes and thus enhance overall safety. The findings of
this study can provide insights supporting crash avoidance systems and developing more
targeted programs for driver training. In addition, driver monitoring systems may help to
reduce the secondary task involvement, leading to a decrease in the incidence of critical
events, as well as forward collision.

In future studies, we intend to obtain lateral acceleration, longitudinal acceleration,
and YAO rates. We recommend incorporating more characteristics in the violation data
for the identification of the groups at a higher risk of future violations and future crashes.
Future studies could also match more violation types as crash types to identify the groups
at a higher risk of each of the crash types. In addition, there is a plan to consider other
significant variables that can contribute to crash risk, i.e., distractions such as mobile
phones, driver fatigue, and unhealthy lifestyles.
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