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Abstract: Protected cultivation in modern agriculture relies extensively on plastic-originated mulch
films, nets, packaging, piping, silage, and various applications. Polyolefins synthesized from petro-
chemical routes are vastly consumed in plasticulture, wherein PP and PE are the dominant commodity
plastics. Imposing substantial impacts on our geosphere and humankind, plastics in soil threaten
food security, health, and the environment. Mismanaged plastics are not biodegradable under natural
conditions and generate problematic emerging pollutants such as nano-micro plastics. Post-consumed
petrochemical plastics from agriculture face many challenges in recycling and reusing due to soil
contamination in fulfilling the zero waste hierarchy. Hence, biodegradable polymers from renewable
sources for agricultural applications are pragmatic as mitigation. Starch is one of the most abundant
biodegradable biopolymers from renewable sources; it also contains tunable thermoplastic prop-
erties suitable for diverse applications in agriculture. Functional performances of starch such as
physicomechanical, barrier, and surface chemistry may be altered for extended agricultural appli-
cations. Furthermore, starch can be a multidimensional additive for plasticulture that can function
as a filler, a metaphase component in blends/composites, a plasticizer, an efficient carrier for active
delivery of biocides, etc. A substantial fraction of food and agricultural wastes and surpluses of
starch sources are underutilized, without harnessing useful resources for agriscience. Hence, this
review proposes reliable solutions from starch toward timely implementation of sustainable practices,
circular economy, waste remediation, and green chemistry for plasticulture in agriscience

Keywords: biodegradable polymers; starch; mulch films; composites

1. Introduction

Rapid industrialization, expansions in the global economy, and exponential popula-
tion growth have caused extreme consumption of plastics and plastic-related products in
our everyday life. Low cost, lightweight, ease of processing, and durability have led to
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widespread use of fossil-based petrochemical plastics in every sector, including food and
agriculture [1]. Plasticulture in agriscience use 12.5 million tons of plastic products [2].

Polyolefins are widely consumed commodity plastics comprised of various subcat-
egories such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), poly-
carbonate (PC), polystyrene (PS), and others. PE and PP are predominant in agricultural
activities and are named “plasticulture,” mainly existing in mulch, low tunnels, greenhouse
covers, solarization film, fumigation film, and packaging [3]. Plasticulture has spread across
the world within a short period [4–6] as the demand continues to rise. Therefore, the use
of plastic films has drastically increased every year, with global market demand valued
at 3.9 million MT annually, for which Asia contributes (~70%) and Europe (16%) [7,8].
The most significant global greenhouse cluster spread across the Far East (China, Japan,
and Korea) and is responsible for 8% of the global share, while 15% is produced in the
Mediterranean area. Plastic film usage for agricultural applications in the Middle East and
Africa has been increasing by 15–20% per year. With a 30% progressive annual growth rate,
China is the largest consumer of plastic films and has reported consuming one million MT
volume of plastics per year in agriculture, mainly for mulching 18,000,000 ha, low tunnels
920,000 ha, and greenhouses 1,300,000 ha. Plastic materials are a pivotal necessity in mod-
ern agriculture and play an important role [9,10]. Applications of plastics in agriculture are
mainly related to crop production and micro-irrigation, forestry, livestock production, and
aquaculture and fishery, as given in Figure 1.
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Synthetic polymers from petrochemical routes and other sources of natural gas led
to the depletion of non-renewable resources of fossil fuels that are finite in quantity and
require millions of years to generate. Fossil fuel-based synthetic polymers exhibit low sus-
ceptibility to degradation under natural conditions and are considered non-biodegradable.
A large fraction of agricultural plastics is mismanaged in landfills and accumulates on the
Earth’s surface, creating large dump yards. These plastic wastes take billions of years to
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degrade naturally. Plastic degradation is a gradual process that involves the breaking of
molecular bonds containing hydrogen, carbon, and a few other elements such as nitrogen
and chlorine. Therefore, the rapid accumulation of plastics on the Earth’s surface may
lead to massive environmental issues. End products of plastic degradation have extended
retention in our geosphere. Furthermore, they tend to spread across the oceans, caus-
ing irreversible disastrous impacts on our ecosystems. Using plastics in high volumes
such as polystyrene, polyethylene, and polypropylene poses substantial environmental
challenges in safe recycling, reusing, and disposal. Incineration of onsite landfills has be-
come common in agricultural solid waste management, associated with potential adverse
exposure to heat and volatile toxic emissions such as ammonia, sulfur dioxide, organic
corrosives, dioxins, etc. Ash generated from the combustion of agricultural plastic wastes
may change the composition and pH of the soil, creating unfavorable conditions for cultiva-
tion. Strategies that have been introduced to manage polymeric wastes in modern contexts
face challenges in execution due to toxic emissions from incineration, expensive separation
processes for the recycling process, and presumable contaminations. Such drawbacks
would reduce the process sustainability in reusing, recycling, incineration, and the energy
recovery system [11].

Starch is a promising polysaccharide from abundantly available renewable sources
and can be formulated either as a replacement raw material for fossil fuel-based plastics
or as an additive in agriculture. Unique environmental safety measures of starch can
be described in terms of absorbency, biodegradability, biocompatibility, and non-toxicity.
Thereby, applications of starch are not limited to agriculture but are also significant in the
food and biomedical industries [12–15]. Moreover, they are widespread in food, textile,
chemical, pharmaceutical, and paper manufacturing. There is growing demand for starch
in other industrial applications in packaging additives, adhesives, non-food fillers, and
textile stiffening agents [16].

Starches can be extracted from edible plant sources such as potato (Solanum tuberosum),
cassava (Manihot esculenta), corn (Zea mays), rice (Oryza sativa), wheat (Triticum aestivum),
barley (Hordeum vulgare), etc. Starch is a staple food in some parts of the world, playing a
vital role as an efficient source of carbohydrates and hunger management. Starch extraction
from food sources can be problematic as it may reduce starch availability and aggregate
hunger issues. Therefore, engineering starches from other non-edible sources for industrial
purposes is a commercially viable replacement for bioplastics. Wild species of socoyam
(Caladium bicolor), sweet yam (Dioscorea villlosa), false yam (Icacina trichantha), and oyster
mushroom (Pleurotus ostreatus) are well known non-edible sources to extract starches [17].
Starch is a semicrystalline homopolymer organized as a high degree of supramolecular
granules up to 20–40% crystallinity [6,18]. There are two major constituents in starch,
amylose and amylopectin. Amylose has a liner polysaccharide structure and contributes
up to 15–35% of the granules content in most plants. Some amylose molecules, partic-
ularly those of large molecular weights, may be constructed with ten or more branches.
Amylopectin has the alpha-glucose units in its polymeric structure that are interlinked
linearly with α (1→4) glycosidic and α (1→6) (5%) bonds, repeating at intervals of 24 to
30 glucose subunits, as explained in Figures 2 and 3. The main crystalline domains of
starch granules are formed by amylopectin. Branched entities of amylopectin and amylose
construct amorphous regions [7,19]. Structural co-crystallinity may occur due to amylose
crystallization into a single helical structure [20]. Comparative abundance and variations
in crystallinity, amylopectin ratio, moisture content, molecular mass, degree of branching,
and polymeric chain length are dominant native characteristics of starch sources [18,21].
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Crystallinity is an inherent property of linearly organized structural domains of the
starch polymeric matrix. The degree of crystallinity is a specific and unique property and
plays a significant role in governing physio-mechanical, chemical, structural, degradation,
processing, and storage properties of starch. The crystallinity of starch/composites has two
descriptions [22–25]: (1) residual crystallinity is the inherent crystallinity that can be altered
due to incomplete melting in starch processing; (2) processing-induced crystallinity occurs
as a result of thermal processing with the presence of amylose and crystallinity extenders
in formulations. In the gelatinization process, the crystalline structure of starch granules is
altered and distorted. Furthermore, this process involves swelling in starch granules and
melting of native crystalline domains followed by molecular solubilization [25–29].

The environmental properties of starch biopolymers can be described in terms of their
physical properties, thermal properties, biodegradation, and environmental impact. Starch
undergoes multiple physicochemical reactions during processing and its lifespan, such as
water diffusion, granule expansion, gelatinization, decomposition, melting, and crystalliza-
tion. The hydrophilicity and brittleness of starch films cause limitations as a replacement
for plasticulture. Chemical modifications, surface functionalization, blends, and composites
with other synthetic and biopolymers may turn starch into a viable alternative for petro-
chemical plastics. Starch and starch-based composites are a feasible techno-commercial
strategy for agricultural films and other packaging materials due to their favorable low-cost
factors, natural abundance, and inherent capacity to degrade readily in natural and aquatic
environments [30,31]. This review discusses the current status of synthetic/biodegradable
plastics in food and agroeconomic systems. Further, we aim to highlight the recent progress
and challenges in utilizing starch and starch-based composites/blends of biodegradable
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polymers for agricultural applications. Table 1 contains information on various starch
sources and differences in amylose, amylopectin, and crystallinity.

Table 1. Amylose, amylopectin, and crystallinity of starch from various sources.

Starch Source Amylose (%) Amylopectin (%) Crystallinity (%) References

Roots and tubers

Potato 17–24 76–83 23–53 [32–37]
Cassava 16–22 81–83 31–59 [32,34,36–39]

Sweet potato 18 81 [34]
Yam 15–22 78–91 [37,38]

Cereals and pulses

Corn 17–28 72–83 43–48 [32,34–37,40]
Rice 15–35 65–85 38 [32,34–37,41]

Wheat 20–25 75–80 36–39 [32,34–37,41]
Smooth pea 33–50 50–67 30 [34,42]

Wrinkled pea 61–88 12–39 17 [34]
Barely 27.5 72.5 37–44 [34,43]
Lentil 29–45 71–54 32 [34]

Sorghum 25 75 22–28 [36,44,45]

2. The State of Plastics Uses in Agriculture
2.1. Plastic Films in Agricultural Applications

In early 1950, the use of low-density polyethylene (LDPE) to replace vegetable paper
mulching in agriculture was initiated and later gained significant popularity. Plastic
films have revolutionized modern agricultural developments to convert barren lands to
fertile lands (such as deserts). Hence, plastics carry paramount importance in all aspects
of agricultural and horticultural processes [9,46–48]. A wide range of plastics is used
in agriculture that has been defined based on requirements of cultivation, agronomic
practices, regional climate demands, and geographical conditions. The estimated total
amount of plastic films used in agricultural practices was nearly 6.96 million MT in the
year 2017 worldwide [49]. Plastic films are used for crop cultivation, mulching, and
constructing greenhouse tunnels (Figure 1). Accounting for more than 90% of usage, plastic
films designated for cultivation are considered the largest group of plastics in agriculture.
However, only specific plastic categories are used for some sectors in agriculture for
irrigation, silage, nets, etc. The most populated plastic films for cultivations are made of
polyethylene (PE) in agriculture [50].

2.1.1. Greenhouse Cover

Plastic films are extensively used as greenhouse covers to facilitate protected cultiva-
tion. A greenhouse can be defined as a technique for providing regulated environmental
conditions for plant growth and crop production, built with structural stability and fa-
vorable materials [48]. In greenhouse covers, more than 80% of the world spread market
utilizes simple monolayer to complex three-layer films as per the technological requirement
and can be constructed from various polymers, namely LDPE, ethylene-vinyl acetate (EVA),
and ethylene-butyl acrylate (EBA) copolymers. Some contexts refer to using other polymers
such as plasticized polyvinyl chloride (PVC) in Japan and linear low-density polyethylene
(LLDPE) in some parts of the world. Plastics used in greenhouse covers have been evolving
since the 1950s. In modern-day agriculture, the lifetime of greenhouse plastic films varies
between 6 and 45 months, and performance attributes may depend on the photo stabilizers
used, the geographic location, pesticides used, etc. [51].
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Characteristics related to film sizes are described in terms of the type and structural
dimensions that would govern the durability of the films. Thereby, widths range from
6 to 14 m, and thickness gauges from 100 to 200 µm are proposed. Plastic films used for
greenhouse covers often have an 80 to 220 mm thickness gauge and are up to 20 m wide [51].
Various film fabrications and production methods are used to embody the desired thermal,
physicomechanical, and optical performances to cater to specific agroeconomic prefer-
ences for plant growth. The following examples can be given [52,53]: (a) For mono and
multi-layer films, either extrusion or co-extrusion can be used to obtain films up to five
layers. (b) The use of ad hoc formulations produces functionalized films. (c) Cover films
function as anti-drip, anti-dust, anti-fog, etc., to support the crop growth. (d) Cover films
would regulate UV radiation, either reflecting UV radiation or being partially transpar-
ent. (e) Colored films induce photomorphogenesis as plants or by selective reflectance of
IR in solar radiation (cooling effect). (f) Functionalized films designed for specific agro-
nomical performance support farming; UV-B induced secondary plant metabolites [54].
Further explanation can be found in Figure 4. Many greenhouse covers can lead to waste-
disposal problems. Traditional petroleum-derived plastics, especially polyethylene, are
not readily biodegradable. They are resistant to microbial degradation, and accumulate
in the environment.
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2.1.2. Mulch

Mulching designed from various materials would provide soil coverage to prevent the
hindrance caused by the growth of weed species and regulate soil temperature. Mulching
also in traditional agricultural practices and biodegradable materials from natural sources
was used before using plastic films. The following materials were used in conventional
agriculture: straw, hay, dried leaves, tree bark, cardboard, gravel, several natural kinds of
fibers (from coconut husks and hemp), and non-biohazardous organic wastes. Plastic mulch
films have drawn wide attention due to their functionalities, versatility, and agroeconomic
significance. Key functionalities of the mulch films can be highlighted as maintaining soil
wetness, regulating the solar radiation, limiting the growth of weed species, and preventing
soil erosion from surface runoffs. Plastic films are convenient for agricultural use as they
are easy to lay on the soil and may require special machines, and thereby can cover tens of
hectares within a short timeframe. Plastic films can be supplied according to the customers’
preference (several lines of holes with different sizes). Farmers have been using almost
exclusively black films, which can block solar radiation [55]. Photo-selective films and
colored films (white, green, or yellow) have been introduced as a recent trend in mulching
for specific agricultural practices (Figure 5).
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courtesy of Priyantha Kumara).

2.1.3. Low Tunnels

A low tunnel can be described as a temporary structure typically 60 cm to 90 cm
high above the ground used to cover the width of a growing bed. The films that apply
for low tunneling are in thickness gauge between 20 and 150 micron, and are usually
thinner than high tunnels and films. Low tunnels have a considerably shorter lifespan
(6–8 months) in agriculture. Plastic films designed for low tunneling have high clarity,
transparency, and thermal insulating properties. The most frequently used polymers are
ethylene-vinyl acetate (EVA) or copolymers of ethylene-butyl acrylate (EBA). The extent of
the low tunneling market shows high stability over the last decade with an annual growth
rate of 15%, except in China. In the other parts of the world, the market volume of small
tunnels is estimated to be 170,000 tons of plastic per year [51] (Figure 6).
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2.1.4. Silage

Silage is a type of fodder fed to cattle, sheep, and other such ruminants, made from
green foliage crops. Storing silage in wrapped bales and later preserving it by fermentation
is a widely popular technique across the globe [56]. There are two types of bale-wrapping
technique systems in practice, individual and in-line. Each bale is wrapped into a com-
pletely sealed, stand-alone unit or silo in the individual system. Concerning the in-line
system, bales are positioned in end-to-end alignment; then large-round bale circumferential
surfaces are wrapped using polyethylene films. Silage grass piles together with pulp from
sugar beets are used to also store and ferment the product after harvest. Covered silage
piles help temporarily store sugar beets and provide protection against rain. Hence, plastic
silages are consumed in significant volumes across northern Europe towards the south. In the
southern Europe region, plastic films are often used in agriculture for making greenhouses,
tunnels, and irrigation pipes. However, data on plastic film consumption, usage, and surfaces
of silage coverage in the world are a research gap that needs to be fulfilled [50] (Figure 7a).
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2.1.5. Nets

According to Castellano et al. (2008), plastic nets are described as interconnected
threads through weaving or knitting. These nets are geometric structures with regular pores
and facilitate the passing through of fluids. Plastic nets in agriculture are comprehended for
numerous agricultural applications. These applications protect orchards and ornamentals
from hail, wind, snow, or intense rainfall. Furthermore, plastic nets are used for greenhouses
as shading material, and nets are used to provide shading in mushroom beds, ginseng,
cattle, etc. [57]. Nets moderately modify as the microenvironment around a crop changes.
Nets in agriculture are used to provide protection against insects and birds for harvesting
and post-harvest practices. Among the many polymers in use for manufacturing nets,
HDPE has been extensively used for agricultural nets, along with polypropylene (PP)
nets widely used to produce non-woven layers. In general, two main net categories are
manufactured: (1) nets for agricultural use; (2) nets for nonagricultural purposes. The
nonagricultural purposes are shadings for car parking, permeable coverings, fences, textiles,
and anti-insect nets (Figure 7b).

2.2. Piping, Irrigation and Drainage, and Packaging

The other plastics used in agriculture include piping, irrigation, drainage, and pack-
aging practices [58]. However, plastic use for piping in agriculture is considered beyond
plastic films and is linked with agro-irrigation/industry piping systems that consume
relatively less than plastic films. In contrast, plastic piping systems have extended service
life compared to films in agriculture, and extended insights about piping in agriculture are
still a research gap.
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3. Biodegradable Polymers and Research Gaps
3.1. Classification of Biodegradable Polymers, Polysaccharides, and Starches

Biodegradable materials comprise partially or entirely materials synthesized, extracted,
or derived from biomass such as plants, animals, microorganisms, biogenic residues, and
wastes [35]. Biodegradable polymers can be segmented into two major groups based on
their chemical and structural origin, biobased and synthetic (manufactured). Biobased
biodegradable polymers can be derived from biobased sources, such as plants, animals,
microorganisms, biogenic sources, etc. Biodegradable-synthetic polymers are synthesized
from chemical routes and have advantages over natural polymers for their versatility,
consistency, performance, and scalability in processing. Hence, synthetic polymers deliver
a diverse range of mechanical properties, and degradation rates can be altered according
to need with excellent biocompatibility and biodegradation [58]. The classification of
biodegradable polymers is illustrated in Figure 8.
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Cellulose and starch have been widely studied for their unique properties and per-
formances in replacing highly consumed petrochemical polymers at a comparatively
low cost [60,61]. Polysaccharides are the dominant group of biobased biopolymers and
biomacromolecules. Starch and derivatives with different functional groups, chitosan,
chitin, and cyclodextrin, have gained special attention due to their promising physio-
chemical properties, biodegradability, nontoxicity in nature, minimal efforts needed for
extraction, abundancy, and the tendency for surface modification [62,63].

As per the classification in Figure 8, starch is the prominent natural polymer in the
polysaccharide. Other than conventional starches from single-origin sources, nano-scale
starch has captured vast attention in recent research due to its high surface-to-volume
ratio, dense structure, biocompatibility, biodegradability, and high bonding strength [64].
Starch has been widely used in the plastic industry as a filler to produce eco-friendly
and cost-effective plastic materials, blends, and composites. In the last ten years, starch
has been used in plasticized form, thermoplastic starch (TPS), as the main component in
polymer blends. Various plasticizers are used to prepare thermoplastic starch, such as
glycerol, formamide, and urea [65]. Deriving starch-based sweeteners has been a well-
known application concerning native and modified starches, namely glucose, fructose,
and polyols such as sorbitol, mannitol, and maltitol. There are other food-related syrups,



Sustainability 2022, 14, 6085 10 of 33

such as maltodextrins and oligosaccharides, that can be produced from starch. Derivative
starches have been used as the thickening and gelling agents for several applications; such
properties of native starches fail to meet process or product requirements [64].

Waxy starches are another subclass of starch that may not be directly relevant to
agricultural applications, but used as a thickener and process aid for the food industry [66].
Due to the absence of amylose, waxy starches form weak viscoelastic gels containing high
viscosity profiles, leading to suppressed retrogradation [67,68]. However, debranching
waxy-starch chemistry has been given much importance in synthesizing nanoparticles and
resistant starch [69–71]. Amylopectin starches have recently been discussed as a subse-
quent development of native starch processing. Amylopectin starch has a comparatively
high amylopectin content as a result of leaching out amylose during processing [72,73].
Thereby, physicomechanical and structure properties of amylopectin starches may dif-
fer [74,75]. Kuzu and genetically modified potato species have been mentioned as sources
of amylopectin starch [75–77].

3.2. Limitations, Research Gaps in Starch, and Surface Modifications

The main limitations of biodegradable polymers in agricultural applications include
overall production cost, brittleness [78], and challenges in processing [79]. Thereby, blends
of starch are a timely solution. Hydrophilic chemistry of starch makes incompatible, phase-
separated, immiscible, and poorly dispersed blends and composites. To expand the scope
of starch for agricultural applications, its inherent chemistry, such as hydrophobicity, paste
clarity, thermal stability, retrogradation resistances, and physicomechanical process, must
be altered [80]. Starch needs to be converted to make it viable for industrial applications
as native starch has chemical and structural limitations. Addressing the poor mechanical,
brittleness, and water insolubility of starch carries a vital commercial commodity product
development that would expand starch applications for blends and plasticization [60].
Vacant hydroxyl chemistry in starch hetero-polymeric structure gives perfect reaction
sites for surface modifications, physical, chemical, and enzymatic processing [81–84]. Fur-
thermore, starch can be processed into hydrogels through mechanical, thermal, radical
polymerization, complex crosslinking, etc. [85–88]. Surface modifications to starch would
alter surface wettability or impart hydrophobicity or embody different functionalization.
Due to process simplicity, associated low costs, scalability, and the absence of chemicals,
physical methods have gained much acceptance in starch modifications. Such methods
can be highlighted as osmotic pressure treatment, superheating of starch, instantaneous
controlled pressure, iterated syneresis, Corona electrical discharges, thermally inhibited
treatment (dry heating), pulsed electric fields treatment, micronization in vacuum ball mill,
and mechanical activation—with stirring ball mill, drop (DIC) process [89–91].

On the other end, chemical modifications would advance the chemistry, the structure
property, and the functionalization of starch. Chemical surface modifications such as ox-
idation, esterification, and etherification are successful approaches to hydrophobization
of starch for active drug delivery and achieving homogeneous blends/composites [92,93].
Suspension co-polymerization, grafting onto, grafting from, and other polymer grafting
methods are experimented with to embody different functionalizations concerning the
starch matrix [94–97]. It is essential to execute modifications of starch by introducing
hydroxyl, xanthate, carboxylate, acrylate, and amine phosphate groups [98]. Modern re-
search has studied various modifications such as using plasticizers, crosslink formation,
blending with other polymers, grafting, etherification, esterification, and dual modifica-
tions [98]. Crosslink formation and chemical substitutions are two common approaches
applied for starch modification. Crosslink formation in the starch matrix improves stability
concerning acid, heat, and shear, while introducing bulky substituents onto the starch
matrix may reduce retrogradation. There are many non-food applications of starch in the
paper, pharmaceutical (e.g., tablet formulations, encapsulating agents), cosmetics, chemical
(e.g., adhesives, starch-based plastics), and textile industries. In order to meet requirements
in non-food applications of starch, property alterations may be imparted from oxidation,
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cationization, copolymerization, hydrolysis, and substitution [99]. Cassava and potato
tubers are considered comparatively favorable sources for isolating starch due to their
tissue structure and low protein and fat content [100].

The botanical origin of the starch defines production processes, scalability, and asso-
ciated costs. Remediations for improving properties may alter environmental safety and
biodegradation of starch. This research describes the recent progress of starch blends in
agriscience, different surface modifications, and degradation of starch blends/composites.

3.3. Starch Blending

Blends and composites are a strategy for cost reduction and property enhancements
in biodegradable polymers. Blending two miscible phases in starch–polymer blends carries
vital importance for dispersive and distributive mixing. Unfavorable surface chemistry
of starch, such as surface wettability and hydrophilicity, may cause phase separation
and poor distribution and also may lead to weak interfacial interactions in composites.
This results in worsening the intended performance. Apart from the aforementioned
surface modifications, developing efficient blending methods is crucial. Melt blending
is a typical process in making starch-based composites, followed by injection molding,
extrusion, blown film extrusion, laminations, etc. [101–103]. Solvent blending delivers a
high degree of miscibility, filler distribution, and microencapsulation efficiency in starch
films, which is ideal for blending hydrophobized starch [104–106]. In situ polymerization
and grafting methods are mediated in advance blending [107,108]. Reaction extrusion
has been described as promoting a higher degree of compatibility [109,110]. Further
improvements and formulation efficiency of starch blends/composites can be achieved
using compatibilizers, process aids, and plasticizers [56,111,112].

Starch is often blended with polymers and other matrices to improve the integrity in
mechanical properties, thermal stability, and moisture absorption of starch [60,113,114].
Starch blending is defined as of paramount importance in reducing the production cost,
improving barrier characteristics and dimensional stability, decreasing the hydrophilicity
of starch, and increasing its biodegradability [60,113]. Starches are blended with low
molecular weight plasticizers relevant to applications such as glucose, sorbitol glycerol,
urea, and ethylene glycol [60,114,115]. The plasticizers are added to make starches softer
and more flexible, decrease viscosity, increase their plasticity, or decrease friction. In
thermoplastic starch (TPS) [113–116], between the plasticizer and the TPS matrix, the
formation of hydrogen bonds occurs [117,118]. Depending on the type of plasticizer
blended with starch, the final properties of TPS may vary. Plasticizers can enhance flexibility,
extensibility, and fluidity by reducing strong intermolecular chain interactions. Moreover,
TPS is a very hydrophilic material (Schwach and Avérous, 2004). Recent research highlights
that starch blending TPS with biodegradable polymers plays a vital role in food packaging
for various products [119].

3.3.1. Starch/PVA

Polyvinyl alcohol (PVA) is considered a biodegradable polymer from synthetic routes.
PVA delivers excellent film-forming properties, a higher degree of conglutination, thermal
stability, and gas barrier properties [115,120]. PVA blends may increase mechanical strength,
water resistance, and weather resistance [121]. Gelatinization is a commonly used method
for making starch and PVA blends, as the other techniques sound unfavorable due to the
differences in thermo-degradation and the melting temperatures [121]. Loading more starch
in PVA blends would reduce critical properties as a result of vigorous phase separation
in blend preparation as the compatibility between PVA and starch enables it to form and
exist as a continuous phase [119]. Many studies have been conducted using plasticizers,
agents for crosslinks, fillers, and compatibilizers to improve the compatibility between PVA
and starch phases [115]. Glycerol and water are some of the plasticizers used in promising
blends [113]. In an aqueous glycerol medium, PVA and starch can be plasticized to form
thermoplastic material [122]. Starch and PVA are proven biodegradable matrices under
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different biodegradation routes and environments. However, the degree of hydrolysis and
molecular weight govern the biodegradability of PVA [119,123].

3.3.2. Starch/PLA

Polylactic acid (PLA) has been recognized as one of the most promising biodegradable
polymers in recent research for biomedical, industrial, and packaging applications for its
desirable biodegradable and hydrophobic properties. Commercial-grade PLAs are the
copolymers of poly (L-lactic acid) and poly (D, L-lactic acid) [116,124,125]. Even though
PLA has numerous advantageous properties, as mentioned previously, brittleness, ductil-
ity at service temperature, and low impact resistance limit PLA applications. Therefore,
numerous plasticizers have been blended with PLA, such as poly(ethylene glycol), glu-
cose monoesters, glycerol, citrate esters, and oligomers, to enhance the aforementioned
properties. However, the starch/PLA blend offers superior qualities such as cost, proper-
ties, and biodegradability, which are the main objectives in industrial and process-related
applications [116,124,125]. Starch is hydrophilic, while PLA is hydrophobic. Therefore,
the blending of these two compounds may cause low miscibility. Compatibilizers such as
amphiphilic chemicals or efficient coupling agents are added to achieve a higher degree of
interfacial interactions and enhance miscibility between starch and PLA in melt blending
and other processing techniques [114,126]. The compatibilizers in PLA blends are poly (hy-
droxy ester ether), PLA-graft-(maleic anhydride), PLA-graft-(acrylic acid), PLA-graft-starch
poly (vinyl alcohol), and methylene diphenyl diisocyanate (MDI) [127].

3.3.3. Starch/PCL

Poly-ε-caprolactone (PCL) is a biodegradable linear synthetic polyester. This semi-
crystalline polymer is well known as an aliphatic polyester synthesized by ring-opening
polymerization of ε-caprolactone. Even though PCL is hydrophobic with a low melting
point (at around 60–65 ◦C), radiation cross-linking treatment or blending it with other poly-
mer melting points can cause improvement [128–130]. As the molecular weight and degree
of crystallinity control the degradation rate of PCL homopolymers, the biodegradability
of PCL can be extended from composites and blends of other aliphatic polyesters [128].
Moreover, in starch/PCL blends, with the presence of starch, the biodegradation of PCL is
increased as starch intensifies hydrolysis reactions [131]. Blends of starch and PCL have
been reported for undesirable phase separation because of incompatible hydrophilicity
of starch and hydrophobicity of PCL [128]. Using interfacial coupling agents or compat-
ibilizers is necessary to enhance the compatibility and miscibility of these two matrices.
Recent studies have thoroughly assessed the interfacial chemistry of two interfacial agents,
PCL-g-diethyl maleate (PCL-g-DEM) and PCL-g-glycidyl methacrylate (PCL-g-GMA), in
a PCL–starch blend [132]; moreover, poly(ethylene glycol) (PEG) have been proven to
improve PCL interfacial properties [128]. It has been a practice to incorporate PCL into
starch to eliminate the weaknesses of pure thermoplastic starch. Starch lowers the degree of
crystallinity; therefore, the enzymatic degradation is elevated by the crystallinity reduction
of PCL [133,134]. Based on the studies that have been conducted on PCL–starch blends,
PCL–starch blends may result in high production costs and inconsistent properties, which
may limit applications [128].

3.3.4. Starch/PHB-HV

Among the many starch/PHB-HV studies, differential blend behaviors of polyhydrox-
ybutyrate-hydroxyvalerate with corn starch at different concentrations have been evalu-
ated [135]. Some blends show poor interfacial adhesion between starch and poly(hydroxybutyrate-
co-hydroxyvalerate) (PHB-HV) also in heterogeneous starch granule dispersion over the
PHB-HV matrix [135]. With adequate formulation and processing techniques, the aggrega-
tion between starch and PHB-HV can be reduced [136].
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3.3.5. Starch/PBS and Starch/PBSA

Polybutylene succinate (PBS) is a commercially available thermoplastic polyester
known for its low degree of crystallinity, which may lead to a low degradation rate. PBS
has properties of great importance, such as excellent impact resistance, high thermal
stability, and good chemical resistance [137]. The addition of starch to PBS as a filler
improves the flexibility and accelerates the biodegradation time while expanding its appli-
cations in packaging and flushable hygiene products [136,138]. Co-polyester poly(butylene
succinate-co-butylene adipate) (PBSA) has good mechanical properties, biodegradability,
melt processability, and thermal and chemical resistance [139,140]. Aliphatic thermoplastic
copolymers can be synthesized from polycondensation of 1,4-butanediol with succinic
and aliphatic acids. The morphology and performances of melt-processed butyl-etherified
starch and PBSA blends have revealed highly branched amylopectin embodied in starch
to provide better chemical and interfacial interactions with the PBSA matrix compared to
linear amylose structures [140].

3.3.6. Ternary Blends

Several studies have delivered solutions using ternary blends of PCL PLA and starch
using acrylic acid grafted PLA70PCL30 as a compatibilizer in metaphase systems. The
literature confirms that the addition of PCL to TPS/PLA blends may increase the duc-
tility [141]. Substantial improvements in mechanical properties, impact resistance, and
elongation at break in TPS/PLA blends could have been achieved by adding PCL [142].
Moreover, methylene diphenyl diisocyanate (MDI) is an efficient compatibilizer in ternary
blends of TPS/PCL/PLA, enhancing tensile strength and elongation at break [143]. Other
researchers have used poly(butylene adipate –co-terephthalate) (PBAT) to replace PCL, as
PBAT is a co-polyester with higher chain flexibility and degradability [143]. Furthermore,
some groups have evaluated the properties and performances of the ternary blends of
TPS with the synthetic polymers PLA and PBAT. In those PBS blends, they maintained
TBS 50% by weight. The remaining fraction was PLA and PBAT, which were added in
various ratios using the compatibilizer anhydride functionalized polymer to integrate
metaphases [144]. These compatibilized blends showed enhanced tensile strength, elonga-
tion at break, flexural strength, and flexural modulus compared to the non-compatibilized
blends. As another study describes, PBAT has been used to elevate toughness in TPS/PLA
blends [145]. Similarly, parallel research has assessed the loading effect of PLA and the
respective functional properties of TPS/PBAT in blown films [146]. Incorporating PLA into
the TPS/PBAT blends substantially impacted the opacity, viscoelasticity, and mechanical
barrier characteristics of those blown films. Even though the films with PLA showed
good water vapor barrier properties, due to their undesirable mechanical properties and
thicknesses, they were considered unsuitable for flexible packaging. Furthermore, use
of a suitable plasticizer to improve the processability of the aforementioned films has
been suggested [146]. In recent years, many findings related to ternary blends of PHB,
EVA, and starch have concluded that vinyl acetate content enhances the compatibility and
homogeneity between PHB and EVA. Therefore, EVA can be considered one of the most
critical modifiers for PHB/starch blends [147].

3.3.7. Nanocomposites: Fillers in the Starch Matrix

It has become one of the standard practices to make nanocomposites to reinforce starch.
Nanofillers are extensively added to starch-based materials to enhance thermomechanical
stability and biodegradability, and reduce hydrophilicity [148,149]. These nanocomposites
can be prepared in combinations of inorganic or natural materials that inherit a charge of
between 2% and 8% of nanoscale inclusions [150]. Nanofillers are of different types based
on their shape, including spherical or polyhedral, single or multilayered, and nanosheets.
These nanofillers provide a large superficial area while improving adhesion and matrix
filler interactions between the polymeric matrix and fillers. The following research has
reviewed various nanoscale fillers in polymeric matrices that have been plasticized using
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starch [151,152]: (a) phyllosilicates such as montmorillonite, hectorite, sepiolite; (b) polysac-
charides such as cellulose, starch, chitin, and chitosan; (c) nanowhiskers/nanoparticles;
(d) carbonaceous nanofillers, mainly carbon nanotubes, graphite oxide, carbon black, etc.
Phyllosilicates are the most used nanofillers in starch blends and composites for enhancing
properties due to unique filler characteristics such as natural abundance, low price, and
high aspect ratio. Nano-fillers have excellent polymer interfacial interactions and would
significantly improve mechanical and thermal properties resulting from large specific
surface area and high surface energy [153]. Nanofillers such as chitin [154], and cellu-
lose [155,156], nanocrystals such as chitin [154], nano-clay [157,158], nano-TiO2, [153], and
nano-CaCO3 [148] have been used as efficient fillers for starch-based thermoplastics.

When considering the environmental friendliness, modified or synthesized-polysaccharide
nanofillers may not sound ecologically competent as they undergo several pre- and post-
chemical treatments in preparations such as acid hydrolysis [148].

3.3.8. Starch-Based Nanocrystals

Nanocrystals from starch-based sources are of great importance in their comparatively
low production cost, renewability, and environmental friendliness. Nanocrystals from
starch sources are engineered from chemical, physical, and mechanical processing, in which
hydrolysis treatments are applied to the amorphous regions to release crystalline lamellae
from native starch granules [159]. A positive reinforcing effect was obtained with the
use of starch-based nanocrystals in reinforcing elastomer-based matrices while increasing
both stresses at the break and relaxed storage modulus [160]. Incorporating starch-based
nanocrystals in biocomposites delivers many advantages and enhancements, such as
strength at break and glass transition temperature. However, additives have disadvantages,
such as increasing water absorption and decomposition temperature [152]. Tang and Alavi
have demonstrated that embodying starch nanocrystals in PVA nanocomposites and blends
would enhance physical properties for industrial applications [113].

3.3.9. Essential Oils Impregnated Starch Blends

In order to improve mechanical, barrier, and antimicrobial characteristics, various
essential oils were impregnated with starch composites/blends [161,162]. Essential oils are
capable of improving the microstructure, morphology, and thermal processing of starch
blends. Starch blends that have infused essential oils would facilitate active drug delivery
for plant biocontrol and act as a biocide in organic horticulture [163,164]. Rosemary [165],
oregano [166], cinnamon [165], and lavandin [167] are notable essential oils that have
been successfully researched in metaphase starch blends. Infusion of essential oils may
cause challenges; therefore, control processes such as microencapsulation and supercritical
impregnation are in use [167,168]. The use of essential oils is most often combined with
chitosan and titanium dioxide for achieving desired antifungal and antimicrobial properties
in starch blends/composites [169–171].

3.4. Biodegradable Starch Polymers for Agriculture
3.4.1. Mulching

An innovative solution to the disposal of commercial plastic wastes could be the use
of biodegradable plastic materials for agriculture. Biodegradation, or the breakdown of
chemical structures throughout the action by microorganisms, is the critical process in trans-
forming organic chemicals in the environment. Biodegradable films have been developed
for agricultural purposes in the last decade, particularly mulching applications [172–177].
The plastic films based on natural renewable sources do not generate waste to dispose of,
representing a sustainable ecological alternative for delivering environmentally friendly
solutions. Thereby, biodegradable films make minimal impacts in our geosphere and
can be integrated effectively into the soil as thermal, physical, and biosystems such as
bacteria and enzymes convert them into respective degradation products, carbon dioxide
or methane, biomass, and water [178]. In an alternative approach, biodegradable films can
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be blended with other organic components to formulate carbon-rich composts [178–182].
Many manufacturing methods are being used to make biodegradable films, such as ex-
trusion (flat and blown film), injection molding, laminations, coating, etc. The literature
highlights using thermo-plasticizing, spraying, and casting methods to form biodegradable
films from biopolymers and polysaccharides such as starch for agricultural and packag-
ing applications [183–187]. Furthermore, research has been conducted on cellulose [172],
chitosan [188,189], alginate [176,190], and glucomannan [191] concerning employing new
eco-friendly, sustainable materials for agricultural purposes.

Starch/chitosan-based biodegradable mulching for short-cycle crops, mainly for veg-
etables and flower crops, has been analyzed as a potential replacement aiming at fertilizer-
free and microbial culture-based plant growth [192]. These starch/chitosan blends showed
a two-fold decline in film solubility in comparison with the 100% starch films. Furthermore,
these films exhibited a decrease in properties in the infrared spectrum and micrographs
when in contact with the soil. However, there were no visible cracks in chitosan-starch
films for 45 days, indicating the stability of the films and effective usefulness as biodegrad-
able mulch [192]. There were indications that films that incorporated starch blends con-
tain renewable content embodied for agricultural mulch [193]. These films are blends of
starch/PVA/glycerol cross-linked films that were coated with a thin layer of PVC or any
other plastic that showed good functional properties for agricultural mulch [193]. In a
similar study, PLA and modified starch were blended with natural fibers to make fibrous
composite films for mulch applications [194]. Biobased polyolefins continue to be the
predominant category in mulching for agriculture as the market expands. Mulching makes
a positive environmental impact by minimizing the requirement of pesticides, herbicides,
water, and energy in agriculture. Most mulching films endure for a single growing season
or multiple years, subjected to the crops and the agricultural practices employed [194].

3.4.2. Silage

Plastic films that are utilized to cover silage face many challenges in recycling due to ex-
treme contamination by soil, sand, and other organic residues [195]. In comparison to other
agricultural films, silage cover has a relatively short usage time (12 months). Moreover,
these covers and bales have a high probability of improper disposal. Frequently, silage films
ended up in landfills or burned in fields [195–197]. Biodegradable plastic film for silage
covers can be derived from various routes from renewable biological sources or petroleum
or a wide range of alternative petroleum-based sorts; among these, starch (potatoes and
maize) and oleaginous plants (sunflower and rapeseed) are mainly discussed [198]. In
the early 2000s, the biodegradable plastics derived from petro-chem sources were used to
produce stretch films to wrap bales [199]. Eco-flex co-polyester introduced by BASF was the
first prototype film that offered critical properties required to stretch films in silage bales,
good mechanical properties, and sufficiently low oxygen permeability. In similar references,
films stabilized by carbon black also fulfilled all these criteria. The aforementioned film
types are often used to wrap silage bales to store bales beneath a roof or outside in a field.
Silage bales are exposed and subjected to environmental attacks inside the bales and from
contact surfaces between the soil and the film. Concerning co-polyester films that are used
for silage bales, degradation should be substantially slower. Thereby, some research refers
to improvements in extending degradation time by adding an adhesive layer limiting degra-
dation or chemically modifying the film material to slow down the degradation rate [199].
In 2008, biodegradable new silage cover plastic films were developed from compostable
resins based on renewable sources through research collaboration between the University
of Turin (Italy) and Novamont SpA (Novara, Italy) [197]. These films were synthesized
(early sample, model, or release of a product built to test a concept or process) using a
starch-based polymer stand as Mater-Bi® (MB; Novamont SpA), which is established as the
first completely biodegradable and compostable biopolymer invented [183].
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3.4.3. Packaging and Containers

Packaging can be described as an element used to hold, protect, handle, deliver, and
present goods involving raw materials to finished products, from producers to consumers.
There are many ways packaging can be categorized, generally distinguished according to
the primary raw material in packaging, and thereby it can be divided into metal, glass,
polymer, paper, cardboard, wood, textile, monolayered, multilayered, ceramic, etc. [200].
Packaging functions as preservation, protection, merchandise, and a marketing and brand-
ing tool, and facilitates the distribution of goods. It plays a significant role in ensuring
product safety (in handling, storage, transportation) and product quality, which are es-
sential to consumers [201]. Food packaging defines an integral part of the preparation,
production, preservation, storage, and distribution [200]. Required characteristics of food
packaging are defined by the type of food products and shelf life. Green plants from various
sources, such as potatoes, corn, wheat, and rice, are used for modern-day starch-based raw
materials for biopolymers [200]. Thermoplastic starch, or TPS, represents the most widely
used bioplastic category due to its pliable and moldable thermoplastic polymer characteris-
tics at elevated temperatures, reshaping retention with solidification upon cooling. TPS has
limited applications due to its relatively low water vapor and low mechanical properties.
However, TPS achieves equilibrium properties after a few weeks [202]. Incorporating
starch into aliphatic polyesters may enhance the performances required for packaging,
mainly mechanical properties and biodegradation. A combination of starch with polyvinyl
chloride (PVC) is used to produce completely biodegradable starch-based plastic films [203].
These starch films can be applied to diverse applications for bags, sacks, rigid packaging,
hot-formed trays, and containers, and to fill gaps in packages. This category of material is
a successful replacement for polystyrene and polyethylene in packaging because of their
better strength [204]. Table 2 demonstrates critical packaging applications and other uses
of starch-based biopolymers.

Table 2. Applications of starch-based polymer blends.

Blend Properties Applications References

Starch/PVA

• Good film-forming
• Strong conglutination
• High thermal stability
• Gas barrier properties

• Replacement of LDPE films in
applications where barrier
properties are not critical.

• Water-soluble laundry bags
• Biomedical and clinical field.
• Replacement of polystyrene foams

as loose-fill packaging material.
• Packaging applications.
• Starch forms are used for

food packaging.

[113,205–207]

Starch/PLA

• Biodegradable and hydrophobic
properties

• With 30 wt% of modified
Starch/PLA blends demonstrated
higher tensile strength and ductility
than PLA blends with
unmodified starch

• Food packaging, electronic devices,
membrane material (chemical and
automotive industries), textile
industry (as PLA fibers), and
medical applications.

• Packaging material.
Biodegradable polymer.

• Biodegradable composite.

[124,138,208–214]

Starch/nanocellulose/PLA/PBS
• Excellent impact strength, high

thermal stability, and good
chemical resistance

• Food packaging [215,216]

Starch/PVA/Nanocellulose

• High mechanical performance.
PVA/starch blends with the addition
of 5% (v/v) of nanocellulose
exhibited best combination
of properties

• Food packaging [217]
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Table 2. Cont.

Blend Properties Applications References

Starch/PBSA

• Good mechanical properties,
biodegradability, melted
processability, and both thermal and
chemical resistance

• Antimicrobial packaging materials [211]

Starch/PHB
• The tensile strength was optimum

for the PHB/starch blends ratio of
0.7:0.3 (wt%/wt%)

• Biomaterial in medical applications [218]

Starch/nanofibre
• Renewability, biodegradability, high

mechanical strength, as well as low
density and high economic value.

• Transparent materials
• Stretchable photonic devices.
• Conductive materials.
• Wound diagnosis/biosensor.
• Scaffolds.

[219–222]

Starch/natural rubber

• Improves the water-resistance
• Improves the flexibility of

the product
• Increases the density of the foam

• Starch forms used for packaging [223]

Starch-based foam
processes/fiber/fillers/resins

• Biodegradable
• Improves the functional properties

• Starch forms for food containers
• Loose-fill packaging material

[224–226]

Starch-based controlled-release
devices • Biodegradable • Controlling parasitic mites in

honeybee colonies
[227]

Chitosan-starch beads
• Could be a viable alternative

method to obtain
controlled-release fertilizers

• Controlled release of fertilizers [228]

Starch/Charcoal/Urea
• Could be a viable alternative

method to obtain
controlled-release fertilizers

• Controlled release of N fertilizers [229–231]

4. Biodegradability of Starch and Starch Blends

Fossil-derived plastics take more than 100 years to break down in the environment [232].
Even though various plastic waste-management systems have been proposed for mitigation,
execution is somewhat challenging in plastic recycling, incineration, and disposal into
landfills at the end of their service life. Mismanaged plastics create adverse impacts on
the environment due to the generation of pollutant gases and toxic substances such as
dioxins, furans [233], and endocrine disruptors [234], along with the production of leachate
consisting of heavy metals that pollute water and soil. As a result, there is an alarming
necessity for biodegradable plastics and expanding investigations on understanding the
biodegradation pathways of biopolymers [235,236]. Petrochemical plastic production is
over 400 million tons as of 2020 [237], and global bioplastic production is expected to exceed
7.5 tons in 2026 [238].

It is crucial to evaluate the biodegradability of agricultural polymers before using them
in various processes and industrial applications. The American Society for Testing and
Materials (ASTM), the European Committee for Standardization (EN), and the International
Standards Organization (ISO) have established standardized tests to assess biodegradability
and the degree of biodegradability of polymers [239,240]. Aerobic and anaerobic digestions
are the main methods to define biodegradation assays and microbial activity that impact
the decomposition rates into environmentally friendly components such as carbon dioxide,
methane, water, biomass, and inorganic elements (sodium, potassium, phosphorous, and
calcium) [241]. Another biodegradation assay evaluates ecotoxicity in various plants and
animal species such as cress and earthworms [240]. Moreover, other standard methods
evaluate biodegradability by using material exposure to specific microorganisms [242].
Such methods may be subjected to at least one or a few of the following evaluation methods
of samples after the assay [240]: (a) molecular weight, (b) molecular weight distribution,
(c) carbon dioxide and/or methane, (d) weight loss of the material, and (e) the visual obser-
vations of changes. In addition to the aforementioned items, different analytical techniques
can be used to assess biodegradability, such as Fourier transform infrared spectroscopy,
differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (NMR),



Sustainability 2022, 14, 6085 18 of 33

X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), atomic force mi-
croscopy (AFM), and X-ray diffraction. After the biodegradation, the tensile properties of
polymers (tensile strain, tensile strength, elongation, and tensile modulus) are evaluated
before and after comparison [242].

The degradation of starch and starch blends under natural conditions is a complex
process that may be facilitated by water adsorption, hydrolysis, and polymer biodegra-
dation [243,244]. There are three stages involved in biodegradation: biodeterioration,
biofragmentation, and assimilation [245]. In soil and natural conditions, biodegradation is
promoted by microorganisms and enzymes. Complete justification must be given to blends,
composites, and surface-modified biodegradable materials due to the tendency to behave
differently in biodegradation (Figure 9).
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4.1. Biodegradation of Starch/PVA

Starch/PVA blends are of great importance in packaging and agricultural applications
due to their high compatibility and excellent film properties [241]. Several studies have
been conducted to investigate the biodegradability of starch/PVA blends while preparing
various wheat starch/PVA/glycerol blends following the solution cast technique in comply-
ing with ISO 14855; they studied composting under degradation for 45 days. After allowing
the blends to compost for 45 days, it was observed that starch and glycerol were degraded,
leaving the PVA fraction intact. Moreover, the blend characteristics were enhanced without
interfering with the biodegradation of starch from surface modification with chitosan [242].
Another study evaluated the biodegradation of PVA/starch blends using a 180-day assay
and explained the biodegradation in terms of the changes in molecular weights. These
blends had various amounts of cross-linked starch (CLS) compared to PVA blends with
acid-modified starches (AMSs).

In similar research, the biodegradation of PVA/AMS blends improved with the in-
crease in AMS percentage. PVA/AMS samples demonstrated a higher degree of biodegra-
dation than PVA/CLS blends [243]. Degradation properties of blow molded PVA/starch
films in aqueous anaerobic digestion were studied using sludge from municipal wastewater
treatment. This study highlighted that the degradation of PVA blended with native or
plasticized starch was significantly increased in terms of degradation rate and elevation,
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even at a low starch level of 5 wt% [244]. Furthermore, the study reported a higher de-
gree of biodegradation, up to 60%, with loading starch from 21% to 42%, and mechanical
properties of starch-modified PVA were declined. Other studies further assessed the anaer-
obic degradation of glycerol-plasticized and biopolymer such as starch, gellan gum, and
xanthan [245].

Parallel research has further evaluated the biodegradability of some starch/PVA-
blended films in soil environments using a 6-month soil burial test in which the weight loss
over time was measured [246]. The results showed a better degradation of the citric acid-
added films than those with glycerol added, and 80% of the total film degradation occurred
with an increasing degradation rate while the rate of degradation was slow [246]. This
research revealed that the biodegradability of starch/PVA-blended films that incorporated
glacial acetic acid (crosslinking agent) in moist soils might take up to 30 days. Research
explains that the biodegradation rates of PVA-blended films were governed by moist vs.
dry soil and the molecular weight (31 × 103 to 205 × 103 g/mole). It has been reported that
degradation was initiated within 3 days in the moist soil, while in dry soils the initiation
time of biodegradation increased from 10 to 14 days [247]. The effect of starch content on
biodegradability starch/PVA films prepared using melt processing was further discussed
in recent research [248]. In this study, the evaluation was carried out by determining the
weight loss of specimens buried in soil for 30 days. With increasing starch fraction, the
weight loss increased under the same burial test conditions as the highest value of weight
loss of the films was obtained at the highest loading of starch in blends. Other researchers
affirm the same trend that loading starch in PVA-blended films favors the biodegradation
rate; up to 28% to 38% increase in biodegradation rate was achieved at 0–30 wt% loading of
starch in PVA blends tested from soil burial method for 45 days [249].

Blends of starch/PVA films from solvent casting resulted in higher susceptibility
towards enzymatic degradation in both soil and compost with increasing corn starch
loading, which led to achieving up to 85% increase in biodegradation when the burial
time is extended in both soil and compost for 8 weeks [123]. The same research further
justified that the strength of the blends decreased as the percentage of corn starch was
increased. It has been reported that microorganisms from different sources can degrade
starch/PVA blends at various degradation rates. Bacteria and fungi species isolated from
municipal sewage sludge successfully digested starch components, the amorphous regions
of PVA, plasticizer in starch/PVA blends, and glycerol [242]. In similar contexts, two fungi
species Penicillium and Apergillus flavus, isolated from aerobic compost, were able to digest
PVA/starch films, resulting in nearly 71% weight loss after 300 days [250]. The same study
describes that when two of these fungi activated separately, a higher degradation rate was
observed, up to 60% in the actual compost over the same period. Parallel investigations have
been executed to assess the biodegradability of PVA/starch blends that have undergone
modifications. Fibrous composites of PVA and natural lignocellulosic fibers from orange
wastes incorporated with and without cornstarch biodegraded within 30 days in the soil in
80% mineralization [251]. It has been reported that PVA degradation was enhanced with
the addition of fibers while both starch and lignocellulosic fiber degraded faster than PVA.

In contrast, nanoparticles may have a lower impact on the biodegradation of com-
posites. A study concludes that in nano-SiO2-reinforced starch/PVA nanocomposite films,
the nanoparticles have no significant effect on the biodegradability of the films as the
reference films prepared (without nanoparticles) resulted in a total weight loss of up to 60%.
Biodegradation of metaphase films prepared from clay/starch/PVA has been reported to
depend on the characteristics of nanoparticles in a composite, such as the type, content,
and composition [113]. Some studies represent that the starch/PVA blends are not readily
biodegradable and subjected to exposed environmental conditions. This fact can be sup-
ported by the following comparative research, which indicated the achievement of a certain
degree of biodegradation in solvent-casted starch/PVA films exposed to manure soil. This
study further confirmed the similar trend observed in other studies, obtaining a signifi-
cant increment in biodegradation rate with the increase of the starch content. Moreover,
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the ultimate weight loss obtained from starch/PVA films did not exceed 40% over three
months, confirming that starch/PVA blend films are not easily biodegradable in natural
conditions [252]. In contrast, it was also reported that the rate of degradation increased
with the addition of starch in a study that followed China National Standards (CN:14432).
This study analyzed the biodegradability of starch/PVA blends using bio-reactivity kinetic
models. According to first-order kinetics, the microorganism’s growth rate increased with
the loading of more quantity of starch in blended film preparation. Thereby, the decompo-
sition rate of the the starch/PVA blend reached only around 36.66% after 180 days. It is
conclusive that starch/PVA blends may not undergo complete biodegradation within a
short period under natural environments [243].

4.2. Biodegradation of Starch/PLA

Following ISO methods, the biodegradability of co-extruded starch/PLA blends in
different environments such as liquid, inert solid, and composting media were studied. In
the given ISO method, the minimum required mineralization percentage for a compound
to be classified as a biodegradable compound is 60%. Concerning starch/PLA blends, it
was reported that the percentage of mineralization was higher than 60% and found that
starch/PLA blends can be considered biodegradable. Furthermore, this research high-
lighted that the rate of biodegradation is enhanced with the addition of starch in the liquid
medium [253]. In contrast, another study used the standard procedures described under
ASTM D 5209–92, 5338–92, ISO/CEN 14852, and 14855 to measure the biodegradability of
the starch/PLA films which were exposed to ultraviolet light at 315 nm prior [190]. This
study reported that the numerical values of the results are independent of the procedures
applied in stage two as the results showed the biodegradation rate was higher when in
the liquid medium, 92.4–93.4%, compared to the inert medium, 80–83%. These results
make strong inferences with the two-step biodegradation study of agricultural co-extruded
starch/PLA mulch films [254].

Biodegradation of PLA blends with starch and wood floor was studied following the
ISO 14855 standard for compost. Biodegradation rates of this study were increased by about
80% by increasing the starch loading up to 40% and were discovered to be relatively lower
than those of pure PLA compared to starch/PLA and PLA/wood flour blends [255]. The
compostability of pure PLA was further researched using starch/PLA blends at different
loadings of starch. Based on the visual inspections, it was observed that all the test
samples were completely biodegraded without leaving any residue after 30 days [256].
The same study justified the environmental impact and safe use in the ecosystem by
ecotoxicity test of pure PLA and starch/PLA blends. Another group of researchers studied
the biodegradation and degradation rates of the PLA–starch blends using cellulose as the
control material in a controlled environment. PLA blends that incorporated chemically
modified TPS (CMPS) were extruded, and within 42 days the biodegradability of the
blends increased with increasing CMPS content in the blends, and neat CMPS was fully
degraded [257]. The degradation of PLA and TPS blends in simulated soils was further
investigated using stimulants such as tert-butyl hydroperoxide, myoglobin, and peroxide-
activated myoglobin, in which TPS enhanced the degradation of degradation blends in all
systems [258]. Several studies have been conducted using PLA together with starch and
different compatibilizers or other substances to evaluate soil biodegradation kinetics and
rate. Injection-molded tensile specimens prepared using various combinations of native
cornstarch, PLA, and polyhydroxyester-ether (PHEE) were buried in soil for one year to
assess the effects of starch and PHEE loading on biodegradation rate [205]. It was reported
that the weight loss elevated with increasing starch and poly (hydroxyester-ether) (PHEE)
loading in blends [205]. In a comparison study of PLA/starch blends vs. PLA/acrylic
acid (AA) grafted starch composite (PLA-g-AA/starch), within 3 months, the starch in the
composite was able to entirely degrade in the soil environment [259]. Loading more starch
onto composites, the tensile strength at the breakpoint decreased and PLA-g-AA was not
degradable as there was not a significant weight observed within 7–12 weeks [259]. Maleic
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anhydride (MA) has been used as an efficient compatibilizer for PLA/starch blends. The
results demonstrated that MA compatibilized blends show better biodegradability than the
reference starch/PLA blends in which biodegradability was indicated to be increased with
the loading of more starch [260]. A similar study justifies the biodegradability of neat PLA
and corn starch/PLA composites with/without lysine di-isocyanate that was examined
following enzymatic degradation using Proteinase K and burial tests. According to the
results, the degradation rate increased by incorporating more corn starch, and all the corn
starch/PLA composites were gradually degraded over the given time period, except pure
PLA [261]. In contrast, based on a five-month soil burial experiment designed to interpret
the effects of adding PEG to PLA/TPS blends on biodegradation, the mixing of PEG gave
an elevated degradation rate, a considerable change in weight loss, and improvement
in mechanical properties. It is worth noting, further, that the degradation of blends was
increased by incorporating more TPS. It was observed that blends with PEG showed more
significant weight loss and enhanced biodegradation of TPS/PLA blends [136].

4.3. Biodegradation of Starch/PCL Blends

Modern research has conducted numerous experiments to evaluate and examine
biodegradation and properties of starch/PCL blends. Biodegradation of starch/PCL blends
was evaluated from weight loss and the amount of adipic acid immersed from PCL in
two types of starch/PCL blends which are distinguished from the starch sources dried
granulated sago starch and undried thermoplastic sago starch (TPSS). The biodegradation
rate was enhanced by loading more sago starch, indicating a positive trend in mechanical
and biodegradation properties in dried granulated sago starch added to PCL blends. Adipic
acid liberation is a direct indication of PCL degradation. Granulated sago starch blends
liberated more adipic acid as PCL and TPSS decreased biodegradability [262]. Different
aerobic environments such as activated sludge and compost, in the presence of Pseudomonas
putida, the biodegradation of three different types of films formulated from 100% PCL, a
blend of 50% modified starch with 50% PCL, and a blend of 50% unmodified starch with 50%
PCL blends were studied. Based on the results, there is no significant impact on degradation
by P. putida. At the same time, considerable deformation in every film was observed within
the first 7 days—in both activated sludge and compost the environment may accelerate
biodegradation—and after 15 days, all the films had completely degraded [263].

Another study investigated the biodegradability of PCL blends with various starches
in anaerobic aqueous environments specific to mesophilic sludge from municipal wastew-
ater treatment [264]. In this study, native corn starch, genetically modified corn starch,
gelatinized corn starch, and amaranth starch were used to prepare PCL blends. Then
properties of these films were compared with a series of starch/PCL blends that incorpo-
rated glycerol. The results demonstrated that the blends that contained glycerol showed
better mechanical properties and a higher degree of biodegradation. The biodegradabil-
ity of the starches may range between 70% (maize starch) and 81% (amaranth starch),
while the biodegradation of PCL was reported to be very low, only up to 2% [264]. Other
studies assessed the biodegradation of metaphase PCL/starch blends included in various
components under compost and soil burial tests.

Another study investigated the biodegradability of PCL blends with various starches
in anaerobic aqueous environments specific to mesophilic sludge from municipal wastew-
ater treatment [264]. In this study, native corn starch, genetically modified corn starch,
gelatinized corn starch, and amaranth starch were used in the preparation of PCL blends.
Then, properties of these films were compared with a series of starch/PCL blends that
incorporated glycerol. The results demonstrated that the blends containing glycerol showed
better mechanical properties and a higher degree of biodegradation. The biodegradability
of the starches may range from 70% (maize starch) to 81% (amaranth starch), while the
biodegradation of PCL was reported to be very low, only up to 2% [264]. Other studies as-
sessed the biodegradation of metaphase PCL/starch blends, including various components
under compost and soil burial tests.
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Biodegradability-modified PCL following the reaction melt processing using glycidyl
methacrylate (GMA) and benzoyl peroxide were studied using the compost method [265].
Two types of blends were not significantly degraded after 8 weeks, while higher degra-
dation was achieved in the blends with lower GMA content. The application of azodicar-
bonomide (ADC) has been studied in simulated soil to accelerate the biodegradability of
PCL/corn starch blends. Various proportions of ADC were incorporated into pure PCL
and PCL/cornstarch (50/50) blends [204]. The study reported minimal or no significant
weight loss and measurable degradation reported only after 100 days [266]. Compared to
pure PCL, the highest biodegradation was recorded in the 50:50 PCL/cornstarch blend.
ADC showed no impact on the biodegradation of the blends, which might have inhibited
the biodegradation of pure PCL [267]. Another study [268] used three types of PCL blends,
high amylose starch [269], and CAB, to evaluate the biodegradation rates. Inside a mature
compost made from autoclaved municipal solid wastes, these three blends were buried in a
compost seed mixture of compost made from garden waste, which showed the degradation
decreased with the decreasing of starch content [268]. The biodegradability of melt-blended
PCL/corn starch nanocomposites that had introduced fatty hydroxamic acid to modify
sodium montmorillonite (Na-MMT) was studied under the ASTM D5338-92 standard,
which reported a higher degree of weight loss after 60 days in PCL nanocomposites than
PCL/CS blends [269].

Another team studied various blends of TPS/PCL and PCL modified with an added
MA compatibilizer in a soil environment after 21 days and reported that pure TPS was fully
degradable. The rate of degradation was elevated with increasing TPS loading in the blend.
The lowest biodegradation rate was demonstrated in the blend, which contained 5 wt.%
of PCL-MA, and it was further concluded that the rate of biodegradation is independent
of the TPS quantity [270]. Sisal fiber-reinforced PCL/starch blends were evaluated over
9 months using the soil burial test to evaluate biodegradation. Results indicate that the
biodegradation was increased by adding fibers into starch/PCL blends [271]. Moreover, the
researchers also investigated the biodegradation of twin-screw extruded TPS/PCL blends
with 5% and 10% of sisal fiber loading and reported that the degradation declined with the
incorporation of fibers in blends. At the same time, higher proportions of TPS could enhance
the biodegradation of PCL. Furthermore, degradation kinetics of co-extruded TPS and
TPS/PCL blends with introduced sisal whisker loadings of 5 and 10 wt.% has been studied.
As per the findings, the addition of the whiskers improved the biodegradation of the TPS
and the TPS/PCL matrices; also, PCL in TPS/PCL blends accelerates the biodegradation
of TPS [272]. Sisal fibers may retard the biodegradation, and the fibers slowed down the
biodegradation. Hence, incorporating fibers should be done under many considerations
such as application, matrix, and loading level.

4.4. Biodegradation of Starch/PHB-V

Limited studies have investigated degradation kinetics and biodegradation of starch/PHB-V
blends using a soil compost test that varied the temperature between 100 ◦C and 140 ◦C.
These blends were tested for 192, 425, and 600 h to induce thermal aging of extrusion-
blended corn starch with poly(3-hydroxybutyrate)-co-poly(3-hydroxyvalerate) (PHB-V) or
PCL. Biodegradation of starch/PHB-V at 25% starch loading of the starch impacted thermal
aging while demonstrating a higher biodegradation rate within ten months compared to
PCL blends. Moreover, the biodegradability of the starch PHB-V blends was increased by
loading 50% of the starch into PHB-V, making its degradation time half of that of the PHB-V
blend without starch [133]. Three types of TPS blends with potato starch, corn starch, and
water-soluble potato starch were used in a similar study with two degrees of gelatinization
of PHB under the soil burial test. The results indicate that weight loss decreased as PHB
loading increased. In addition, weight loss increased as time and the glycerol content
increased [273]. The biodegradability of melt-blended 1:1 PHB-V, and glycerol-TPS with
m-MMT were investigated following the soil burial method [274]. The results justified an
enhancement of mechanical properties in the blends in comparison to pure TPS and a faster
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degradation rate than pure PHB/V. Furthermore, biodegradation was accelerated up to
90% with increasing m-MMT loading in blends [274].

4.5. Biodegradation of Starch/PBS and Starch/PBSA

Aerobic and anaerobic biodegradation of cornflour/PBSA and plasticized blends
indicated that the biodegradability of blends decreases with incorporating PBSA [139]. In
contrast, PBS/starch, PBS, and PLA biodegradation rates were further examined using
powdered bioplastics from the soil burial method. According to the observations, the
physicochemical structures of PBS and PBS/starch were comparatively more favorable
for biodegradation than PLA under the same given test conditions. PBS/starch blends
demonstrated the highest degradability and degradation rates, faster in PBS and PBS-starch
than neat PLA [275].

4.6. Biodegradation of Ternary Blends

Limited research has been published on the biodegradation of ternary blends. The
biodegradability and kinetics of TPS blends of PLA, PCL, and starch were explored. These
blends were melt-blended and formulated by introducing acrylic acid grafted by melt
blending. As per the results, these blends were rapidly degraded within the first 8 weeks
under given soil burial test conditions [141]. Biodegradation of binary and ternary blends
of PLA, TPS, and glycidyl methacrylate grafted poly (consider ethylene octane) was as-
sessed following compost testing in complying with ISO 14855. The results indicate that
the samples with 40% starch loading underwent more than 80% biodegradation within
10 weeks, compared to blends with 10–20% starch loading, which can only degrade up to
40% under given test conditions. Furthermore, higher biodegradation rates were observed
in the blends with GPOE compared to those without GPOE [276].

5. Conclusions

Exponential population growth, geopolitical shifts, scarcities, and supply-chain crises
have increased agricultural demand for plastics and cost per hectare. Hence, plastics are
extensively used for diverse applications in modern agriculture in every stage of crop pro-
duction, post-harvesting, greenhouse covers, soil mulching, silage covers, and packaging.
In the past two decades, there has been growing environmental awareness provoked by
excessive post-consumer wastes and mismanaged plastics and their incorrect disposal.
Thereby, sustainable green solutions for agriculture and hunger management are the main
challenges in modern agronomics. Starch is one of the most abundant polysaccharides
from renewable sources, and the utilization of starch for agricultural applications is con-
tingent. However, the extreme brittleness and hydrophilicity of starch must alter for
extended applications in agriculture through chemical, physical, and enzymatic processing.
Blends, composites, surface modifications, and nanomaterials deliver favorable chemistries
for property enhancements of starch (physicomechanical and barrier performances) and
cost reduction in biodegradable polymers. Biodegradable starch blends/composites are
a sustainable, eco-friendly alternative for extensively consumed commodity polyolefins
(polyethylene, polypropylene) in agriculture. Mechanical properties of biodegradable
starch blends declined in many blends as the biodegradation rate in the soil increased at
higher starch loading, indicating that starch accelerates the biodegradation of blends with
minimum impact on mechanical properties. Hence, starch blends of biodegradable plastics
must be encouraged concerning their positive environmental and cost-saving benefits for
sustainable and commercially viable modern agricultural solutions.

This review discussed the extent of applicability and property enhancements of starch-
based solutions for agriculture. However, the techno-commercial viabilities of given
solutions must be validated by their efficiency in manufacturing, scalability, production,
appropriateness for application, biodegradation, ecological impact, and post-consumer
waste management. The futuristic demands for biodegradable polymers in agriculture and
their contribution to global sustainability have inspired many studies and developments.
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Starch-based plasticulture would contribute promising value propositions for a circular
economy toward sustainable green plasticulture in agriscience.
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