Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Risk Assessment
2.3.1. Risk Scenarios
2.3.2. The Probability Index (IP)
2.3.3. The Severity Index (IS)
3. Results
3.1. Risk Characterization
3.1.1. Macuchi
3.1.2. Tenguel–Ponce Enriquez
3.1.3. Puyango
4. Discussion
4.1. Potential Impacts of MEL on Human Health
4.2. Mining—Environmental Regulation
4.3. Management and Public Policy: Suggested Actions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corzo, A.; Gamboa, N. Environmental Impact of Mining Liabilities in Water Resources of Parac Micro-Watershed, San Mateo Huanchor District, Peru. Environ. Dev. Sustain. 2018, 20, 939–961. [Google Scholar] [CrossRef]
- Guzmán-Martínez, F.; Arranz-González, J.C.; Fidel-Smoll, L.; Collahuazo, L.; Calderón, E.; Otero, O.; Arceo y Cabrilla, F. Pasivos Ambientales Mineros: Manual Para El Inventario de Minas Abandonadas o Paralizadas; ASGMI: Madrid, Spain, 2020. [Google Scholar]
- González-Valoys, A.C.; Esbrí, J.M.; Campos, J.A.; Arrocha, J.; García-Noguero, E.M.; Monteza-Destro, T.; Martínez, E.; Jiménez-Ballesta, R.; Gutiérrez, E.; Vargas-Lombardo, M.; et al. Ecological and Health Risk Assessments of an Abandoned Gold Mine (Remance, Panama): Complex Scenarios Need a Combination of Indices. Int. J. Environ. Res. Public Health 2021, 18, 9369. [Google Scholar] [CrossRef] [PubMed]
- Cruzado-Tafur, E.; Torró, L.; Bierla, K.; Szpunar, J.; Tauler, E. Heavy Metal Contents in Soils and Native Flora Inventory at Mining Environmental Liabilities in the Peruvian Andes. J. S. Am. Earth Sci. 2021, 106, 103107. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; González-Mille, D.J.; García-Arreola, M.E.; Cruz-Santiago, O.; Rivero-Pérez, N.E.; Pérez-Vázquez, F.; Ilizaliturri-Hernández, C.A. Integrated Probabilistic Risk Assessment in Sites Contaminated with Arsenic and Lead by Long-Term Mining Liabilities in San Luis Potosi, Mexico. Ecotoxicol. Environ. Saf. 2020, 197, 110568. [Google Scholar] [CrossRef]
- Lam, E.J.; Gálvez, M.E.; Cánovas, M.; Montofré, I.L.; Rivero, D.; Faz, A. Evaluation of Metal Mobility from Copper Mine Tailings in Northern Chile. Environ. Sci. Pollut. Res. 2016, 23, 11901–11915. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M.; Fantke, P. Ecological and Human Health Risks Associated with Abandoned Gold Mine Tailings Contaminated Soil. PLoS ONE 2017, 12, e0172517. [Google Scholar] [CrossRef] [Green Version]
- Bempah, C.K.; Ewusi, A. Heavy Metals Contamination and Human Health Risk Assessment around Obuasi Gold Mine in Ghana. Environ. Monit. Assess. 2016, 188, 261. [Google Scholar] [CrossRef]
- Rapant, S.; Dietzová, Z.; Cicmanová, S. Environmental and Health Risk Assessment in Abandoned Mining Area, Zlata Idka, Slovakia. Environ. Geol. 2006, 51, 387–397. [Google Scholar] [CrossRef]
- Min, H.-G.; Kim, M.-S.; Kim, J.-G. Effect of Soil Characteristics on Arsenic Accumulation in Phytolith of Gramineae (Phragmites Japonica) and Fern (Thelypteris Palustris) Near the Gilgok Gold Mine. Sustainability 2021, 13, 3421. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Rosa, J.; Sánchez, A.M.; González-Castanedo, Y.; González, I.; Romero, A.; Galán, E. Datos Químicos y Mineralógicos Preliminares de las Partículas Atmosféricas Sedimentables en la Cuenca Minera de Riotinto (Huelva). Macla: Revista de la Sociedad Española de Mineralogía. 2010, pp. 79–80. Available online: http://hdl.handle.net/10272/7846 (accessed on 10 April 2022).
- Appleton, J.D.; Williams, T.M.; Orbea, H.; Carrasco, M. Fluvial Contamination Associated with Artisanal Gold Mining in the Ponce Enríquez, Portovelo-Zaruma and Nambija Areas, Ecuador. Water Air Soil Pollut. 2001, 131, 19–39. [Google Scholar] [CrossRef]
- Betancourt, Ó.; Barriga, R.; Guimarães, J.R.D.; Cueva, E.; Betancourt, S. Impacts on Environmental Health of Small-Scale Gold Mining in Ecuador. In Ecohealth Research in Practice; Springer: New York, NY, USA, 2012; pp. 119–130. [Google Scholar]
- Tarras-Wahlberg, N.H.; Flachier, A.; Lane, S.N.; Sangfors, O. Environmental Impacts and Metal Exposure of Aquatic Ecosystems in Rivers Contaminated by Small Scale Gold Mining: The Puyango River Basin, Southern Ecuador. Sci. Total Environ. 2001, 278, 239–261. [Google Scholar] [CrossRef]
- Carling, G.T.; Diaz, X.; Ponce, M.; Perez, L.; Nasimba, L.; Pazmino, E.; Rudd, A.; Merugu, S.; Fernandez, D.P.; Gale, B.K.; et al. Particulate and Dissolved Trace Element Concentrations in Three Southern Ecuador Rivers Impacted by Artisanal Gold Mining. Water Air Soil Pollut. 2013, 224, 1415. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Cuenca-Cumbicus, J.; D’Orio, G.; Flores-Toala, J.; Segovia-Cáceres, S.; Bonilla-Bonilla, A.; Straface, S. Gold Mining in the Amazon Region of Ecuador: History and a Review of Its Socio-Environmental Impacts. Land 2022, 11, 221. [Google Scholar] [CrossRef]
- Oblasser, A. Estudio Sobre Lineamientos, Incentivos y Regulación Para El Manejo de Los Pasivos Ambientales Mineros (PAM), Incluyendo Cierre de Faenas Mineras: Bolivia (Estado Plurinacional), Chile, Colombia y El Perú; Naciones Unidas: Santiago, Chile, 2016. [Google Scholar]
- Dong, L.; Deng, S.; Wang, F. Some Developments and New Insights for Environmental Sustainability and Disaster Control of Tailings Dam. J. Clean. Prod. 2020, 269, 122270. [Google Scholar] [CrossRef]
- Do Carmo, F.F.; Kamino, L.H.Y.; Junior, R.T.; de Campos, I.C.; do Carmo, F.F.; Silvino, G.; de Castro, K.J.d.S.X.; Mauro, M.L.; Rodrigues, N.U.A.; de Miranda, M.P.S.; et al. Fundão Tailings Dam Failures: The Environment Tragedy of the Largest Technological Disaster of Brazilian Mining in Global Context. Perspect. Ecol. Conserv. 2017, 15, 145–151. [Google Scholar] [CrossRef]
- Garcia, L.C.; Ribeiro, D.B.; Oliveira Roque, F.; Ochoa-Quintero, J.M.; Laurance, W.F. Brazil’s Worst Mining Disaster: Corporations Must Be Compelled to Pay the Actual Environmental Costs. Ecol. Appl. 2017, 27, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Paniagua-López, M.; Vela-Cano, M.; Correa-Galeote, D.; Martín-Peinado, F.; Garzón, F.J.M.; Pozo, C.; González-López, J.; Aragón, M.S. Soil Remediation Approach and Bacterial Community Structure in a Long-Term Contaminated Soil by a Mining Spill (Aznalcóllar, Spain). Sci. Total Environ. 2021, 777, 145128. [Google Scholar] [CrossRef]
- Glotov, V.E.; Chlachula, J.; Glotova, L.P.; Little, E. Causes and Environmental Impact of the Gold-Tailings Dam Failure at Karamken, the Russian Far East. Eng. Geol. 2018, 245, 236–247. [Google Scholar] [CrossRef]
- Cuentas Alvarado, M.; Velasquez Viza, O.; Arizaca Avalos, A.; Huisa Mamani, F. Evaluación de Riesgos de Pasivos Ambientales Mineros En La Comunidad de Condoraque—Puno. Rev. Medio Ambient. Y Min. 2019, 4, 43–57. [Google Scholar]
- Peña-Carpio, E.; Menéndez-Aguado, J.M. Environmental Study of Gold Mining Tailings in the Ponce Enriquez Mining Area (Ecuador). DYNA 2016, 83, 237–245. [Google Scholar] [CrossRef]
- Arranz-González, J.C.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Vadillo-Fernández, L. Assessment of the Pollution Potential of a Special Case of Abandoned Sulfide Tailings Impoundment in Riotinto Mining District (SW Spain). Environ. Sci. Pollut. Res. 2021, 28, 14054–14067. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Martínez, F.; Arranz-González, J.C.; García-Martínez, M.J.; Ortega, M.F.; Rodríguez-Gómez, V.; Jiménez-Oyola, S. Comparative Assessment of Leaching Tests According to Lixiviation and Geochemical Behavior of Potentially Toxic Elements from Abandoned Mining Wastes. Mine Water Environ. 2021, 41, 265–279. [Google Scholar] [CrossRef]
- Neira, J.J.C.; Quito Quilla, S.J. Evaluación de Riesgo Ambiental Generado Por Pasivo Ambiental Minero En La Calidad de Agua Superficial. Natura@Economía 2020, 5, 1–14. [Google Scholar] [CrossRef]
- USEPA. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Risk Assessments; USEPA: Wahington, DC, USA, 1998. [Google Scholar]
- Alberruche del Campo, M.E.; Arranz-González, J.C.; Rodríguez-Pacheco, R.; Vadillo-Fernández, L.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J. Manual Para La Evaluación de Riesgos de Instalaciones de Residuos de Industrias Extractivas Cerradas o Abandonadas, 1st ed.; Ministerio de Agricultura, Alimentación y Medio Ambiente España, Instituto Geológico y Minero de España: Madrid, Spain, 2014; ISBN 9788478409341. [Google Scholar]
- MAE-PRAS. Programa de Reparación Ambiental y Social—Plan de Reparación Integral de la Cuenca del Río Puyango; MAE-PRAS: Quito, Ecuador, 2015; Available online: http://pras.ambiente.gob.ec/documents/228536/737569/LIBRO_PRI_PUYANGO.pdf/94bcfdb4-bf26-4d3a-afa3-d5e87cf7398b (accessed on 15 February 2022).
- Rivera-Parra, J.L.; Beate, B.; Diaz, X.; Ochoa, M.B. Artisanal and Small Gold Mining and Petroleum Production as Potential Sources of Heavy Metal Contamination in Ecuador: A Call to Action. Int. J. Environ. Res. Public Health 2021, 18, 2794. [Google Scholar] [CrossRef] [PubMed]
- Betancourt, O.; Narváez, A.; Roulet, M. Small-Scale Gold Mining in the Puyango River Basin, Southern Ecuador: A Study of Environmental Impacts AndHuman Exposures. Ecohealth 2005, 2, 323–332. [Google Scholar] [CrossRef]
- Vilela-Pincay, W.; Espinosa-Encarnación, M.; Bravo-González, A. La Contaminación Ambiental Ocasionada Por La Minería En La Provincia de El Oro. Estud. Gestión. Rev. Int. Adm. 2020, 8, 215–233. [Google Scholar] [CrossRef]
- Tarras-Wahlberg, N.H.; Flachier, A.; Fredriksson, G.; Lane, S.; Lundberg, B.; Sangfors, O. Environmental Impact of Small-Scale and Artisanal Gold Mining in Southern Ecuador. Ambio 2000, 29, 484–491. [Google Scholar] [CrossRef]
- Escobar-Segovia, K.; Jiménez-Oyola, S.; Garcés-León, D.; Paz-Barzola, D.; Navarrete, E.C.; Romero-Crespo, P.; Salgado, B. Heavy Metals in Rivers Affected by Mining Activities in Ecuador: Pollution and Human Health Implications. WIT Trans. Ecol. Environ. 2021, 250, 61–72. [Google Scholar] [CrossRef]
- MAE-PRAS. Programa de Reparación Ambiental y Social—Plan de Reparación Integral de Macuchi; MAE-PRAS: Quito, Ecuador, 2015; Volume 1, Available online: http://pras.ambiente.gob.ec/documents/228536/737569/PRI+Macuchi.pdf/ac1ccb5b-0f80-4114-81e5-8e004a434274 (accessed on 15 February 2022).
- Sierra, C.; Ruíz-Barzola, O.; Menéndez, M.; Demey, J.R.; Vicente-Villardón, J.L. Geochemical Interactions Study in Surface River Sediments at an Artisanal Mining Area by Means of Canonical (MANOVA)-Biplot. J. Geochem. Explor. 2017, 175, 72–81. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; Escobar Segovia, K.; García-Martínez, M.-J.; Ortega, M.; Bolonio, D.; García-Garizabal, I.; Salgado, B. Human Health Risk Assessment for Exposure to Potentially Toxic Elements in Polluted Rivers in the Ecuadorian Amazon. Water 2021, 13, 613. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, Q.; Xu, X.; Feng, X.; Liang, L.; Liu, L.; Li, C.; Chen, Z.; Qiu, G. Multi-Pathway Mercury Health Risk Assessment, Categorization and Prioritization in an Abandoned Mercury Mining Area: A Pilot Study for Implementation of the Minamata Convention. Chemosphere 2020, 260, 127582. [Google Scholar] [CrossRef]
- Castilhos, Z.; Rodrigues-Filho, S.; Cesar, R.; Rodrigues, A.P.; Villas-Bôas, R.; de Jesus, I.; Lima, M.; Faial, K.; Miranda, A.; Brabo, E.; et al. Human Exposure and Risk Assessment Associated with Mercury Contamination in Artisanal Gold Mining Areas in the Brazilian Amazon. Environ. Sci. Pollut. Res. 2015, 22, 11255–11264. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.P.; Chen, J.S.; Chien, Y.C.; Chen, C.F. Spatial Analysis of the Risk to Human Health from Exposure to Arsenic Contaminated Groundwater: A Kriging Approach. Sci. Total Environ. 2018, 627, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- MAE-PRAS. Programa de Reparación Ambiental y Social—Plan de Reparación Integral de la Zona de Estudio Tenguel—Camilo Ponce Enríquez; MAE-PRAS: Quito, Ecuador, 2015; Volume 1, Available online: http://pras.ambiente.gob.ec/documents/228536/737569/PRI_Tenguel.pdf/58596e7c-d3aa-4380-b0c8-dfe9fde6ff2b (accessed on 15 February 2022).
- MINAM. Guía de Evaluación de Riesgos Ambientales; MINAM: Magdalena del Mar, Peru, 2010. [Google Scholar]
- TULSMA, Ministerio de Ambiente. Texto Unificado de Legislación Secundaria de Medio Ambiente: Norma de Calidad Ambiental del Recurso Suelo y Criterios de Remediación para Suelos Contaminados. 2015. Available online: https://www.gob.ec/sites/default/files/regulations/2018-09/Documento_Registro-Oficial-No-387-04-noviembre-2015_0.pdf (accessed on 20 February 2022).
- Garcia, M.E.; Betancourt, O.; Cueva, E.; Guimaraes, J.R.D. Mining and Seasonal Variation of the Metals Concentration in the Puyango River Basin—Ecuador. J. Environ. Prot. 2012, 3, 1542–1550. [Google Scholar] [CrossRef] [Green Version]
- Quishpe, Á. Remoción de Arsénico de Efluentes Líquidos de Plantas de Beneficio de Oro y Cuerpos Hídricos, de La Zona Minéra de Ponce Enríquez, Por Rizofiltración Con Pasto Azul (Dactylis Glomerata); Escuela Politécnica Nacional: Quito, Ecuador, 2020. [Google Scholar]
- Guzmán-Martínez, F.; Arranz-González, J.C.; Ortega, M.F.; García-Martínez, M.J.; Rodríguez-Gómez, V. A New Ranking Scale for Assessing Leaching Potential Pollution from Abandoned Mining Wastes Based on the Mexican Official Leaching Test. J. Environ. Manag. 2020, 273, 111139. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, F. Small-Scale Mining in Ecuador. Min. Miner. Sustain. Dev. 2001, 75, 28. [Google Scholar]
- PRODEMINCA. Monitoreo Ambiental de Las Áreas Mineras En El Sur de Ecuador 1996–1998; R-Ec-E-9.46/3.1-9810-069; 1st ed.; UCP Prodeminca: Quito, Ecuador, 1998; ISBN 9978-40-872-x. [Google Scholar]
- GAD. Cantonal Camilo Ponce Enríquez Plan de Desarrollo y Ordenamiento Territorial Del Cantón Camilo Ponce Enríquez—Administración 2014–2019; GAD: Azuay, Ecuador, 2013; Volume 53. [Google Scholar]
- Jiménez-Oyola, S.; García-Martínez, M.-J.; Ortega, M.F.; Chavez, E.; Romero, P.; García-Garizabal, I.; Bolonio, D. Ecological and Probabilistic Human Health Risk Assessment of Heavy Metal(Loid)s in River Sediments Affected by Mining Activities in Ecuador. Environ. Geochem. Health 2021, 43, 4459–4474. [Google Scholar] [CrossRef]
- Razo, I.; Carrizales, L.; Castro, J.; Díaz-Barriga, F.; Monroy, M. Arsenic and Heavy Metal Pollution of Soil, Water and Sediments in a Semi-Arid Climate Mining Area in Mexico. Water Air Soil Pollut. 2004, 152, 129–152. [Google Scholar] [CrossRef]
- Martínez-Toledo, Á.; Montes-Rocha, A.; González-Mille, D.J.; Espinosa-Reyes, G.; Torres-Dosal, A.; Mejia-Saavedra, J.J.; Ilizaliturri-Hernández, C.A. Evaluation of Enzyme Activities in Long-Term Polluted Soils with Mine Tailing Deposits of San Luis Potosí, México. J. Soils Sediments 2017, 17, 364–375. [Google Scholar] [CrossRef]
- Loredo, J.; Soto, J.; Álvarez, R.; Ordóñez, A. Atmospheric Monitoring at Abandoned Mercury Mine Sites in Asturias (NW Spain). Environ. Monit. Assess. 2007, 130, 201–214. [Google Scholar] [CrossRef]
- GAD. Parroquial Rural El Tingo Plan de Desarrollo y Ordemaminto Territorial de La Parroquia El Tingo; GAD: Azuay, Ecuador, 2019; Volume 53, pp. 1689–1699. [Google Scholar]
- GAD. Municipal de Puyango Plan de Desarrollo y Ordenamiento Territorial Del Cantón Puyango; GAD: Azuay, Ecuador, 2013. [Google Scholar]
- RAIS Toxicity Profiles. Risk Assessment Information System. Available online: https://rais.ornl.gov/tools/tox_profiles.html (accessed on 4 March 2022).
- Zhou, Y.; Niu, L.; Liu, K.; Yin, S.; Liu, W. Arsenic in Agricultural Soils across China: Distribution Pattern, Accumulation Trend, Influencing Factors, and Risk Assessment. Sci. Total Environ. 2018, 616–617, 156–163. [Google Scholar] [CrossRef]
- IARC. Evaluation of Carcinogenic Risk for Humans; IARC: Lyon, France, 1987; Volume 1–42. [Google Scholar]
- USEPA. Exposure Factors Handbook: 2011 Edition; USEPA: Washington, DA, USA, 2011. [Google Scholar]
- Adrien Rimélé, M.; Dimitrakopoulos, R.; Gamache, M. A Stochastic Optimization Method with In-Pit Waste and Tailings Disposal for Open Pit Life-of-Mine Production Planning. Resour. Policy 2018, 57, 112–121. [Google Scholar] [CrossRef]
- Monteiro, N.B.R.; Bezerra, A.K.L.; Moita Neto, J.M.; da Silva, E.A. Mining Law: In Search of Sustainable Mining. Sustainability 2021, 13, 867. [Google Scholar] [CrossRef]
- Adler Miserendino, R.; Bergquist, B.A.; Adler, S.E.; Guimarães, J.R.D.; Lees, P.S.J.; Niquen, W.; Velasquez-López, P.C.; Veiga, M.M. Challenges to Measuring, Monitoring, and Addressing the Cumulative Impacts of Artisanal and Small-Scale Gold Mining in Ecuador. Resour. Policy 2013, 38, 713–722. [Google Scholar] [CrossRef]
- Marais, L. Resources Policy and Mine Closure in South Africa: The Case of the Free State Goldfields. Resour. Policy 2013, 38, 363–372. [Google Scholar] [CrossRef]
- Zvarivadza, T.; Nhleko, A.S. Resolving Artisanal and Small-Scale Mining Challenges: Moving from Conflict to Cooperation for Sustainability in Mine Planning. Resour. Policy 2018, 56, 78–86. [Google Scholar] [CrossRef]
- SENAGUA. Informe Técnico Muestreo y Análisis de La Calidad Del Agua En La Cuenca Del Río Puyango; SENAGUA: Quito, Ecuador, 2011. [Google Scholar]
- Gonçalves, A.O.; Marshall, B.G.; Kaplan, R.J.; Moreno-Chavez, J.; Veiga, M.M. Evidence of Reduced Mercury Loss and Increased Use of Cyanidation at Gold Processing Centers in Southern Ecuador. J. Clean. Prod. 2017, 165, 836–845. [Google Scholar] [CrossRef]
- Asamblea Nacional Constituyente del Ecuador. Mining Law of Ecuador; Asamblea Nacional Constituyente del Ecuador: Quito, Ecuador, 2009; p. 65. [Google Scholar]
- Ministerio de Ambiente. Reglamento Ambiental de Actividades Mineras. 2014, p. 54. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2019/01/REGLAMENTO-AMBIENTAL-DE-ACTIVIDADES-MINERAS-MINISTERTIO-AMBIENTE.pdf (accessed on 10 March 2022).
- Doley, D.; Audet, P. Identifying Natural and Novel Ecosystem Goals for Rehabilitation of Postmining Landscapes. In Responsible Mining: Case Studies in Managing Social and Environmental Risks in the Developed World; Society for Mining, Metallurgy and Exploration (SME): Englewood, CO, USA, 2013; pp. 609–638. [Google Scholar]
- Lechner, A.M.; Kassulke, O.; Unger, C. Spatial Assessment of Open Cut Coal Mining Progressive Rehabilitation to Support the Monitoring of Rehabilitation Liabilities. Resour. Policy 2016, 50, 234–243. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Analysis of Formalization Approaches in the Artisanal and Small-Scale Gold Mining Sector Based on Experiences in Ecuador, Mongolia, Peru, Tanzania and Uganda; United Nations Environment Programme: Nairobi, Kenya, 2012. [Google Scholar]
- Asamblea Nacional Constituyente del Ecuador. Código Orgánico Integral Penal. 2014, pp. 1–268. Available online: https://www.defensa.gob.ec/wp-content/uploads/downloads/2021/03/COIP_act_feb-2021.pdf (accessed on 10 March 2022).
- Lam, E.J.; Cánovas, M.; Gálvez, M.E.; Montofré, Í.L.; Keith, B.F.; Faz, Á. Evaluation of the Phytoremediation Potential of Native Plants Growing on a Copper Mine Tailing in Northern Chile. J. Geochem. Explor. 2017, 182, 210–217. [Google Scholar] [CrossRef]
- Vela-García, N.; Guamán-Burneo, M.C.; González-Romero, N.P. Efficient Bioremediation from Metallurgical Effluents through the Use of Microalgae Isolated from the Amazonic and Highlands of Ecuador. Rev. Int. Contam. Ambient. 2019, 35, 917–929. [Google Scholar] [CrossRef]
- Yildirim, D.; Sasmaz, A. Phytoremediation of As, Ag, and Pb in Contaminated Soils Using Terrestrial Plants Grown on Gumuskoy Mining Area (Kutahya Turkey). J. Geochem. Explor. 2017, 182, 228–234. [Google Scholar] [CrossRef]
- Franco, G.H.; Mero, P.C.; Carballo, F.M.; Narváez, G.H.; Bitar, J.B.; Torrens, R.B. Strategies for the Development of the Value of the Mining-Industrial Heritage of the Zaruma-Portovelo, Ecuador, in the Context of a Geopark Project. Int. J. Energy Prod. Manag. 2020, 5, 48–59. [Google Scholar] [CrossRef]
- Popović, V.; Miljković, J.; Subić, J.; Jean-Vasile, A.; Adrian, N.; Nicolăescu, E. Sustainable Land Management in Mining Areas in Serbia and Romania. Sustainability 2015, 7, 11857–11877. [Google Scholar] [CrossRef] [Green Version]
- Di Maria, A.; Van Acker, K. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization. Engineering 2018, 4, 421–429. [Google Scholar] [CrossRef]
- Capasso, I.; Lirer, S.; Flora, A.; Ferone, C.; Cioffi, R.; Caputo, D.; Liguori, B. Reuse of Mining Waste as Aggregates in Fly Ash-Based Geopolymers. J. Clean. Prod. 2019, 220, 65–73. [Google Scholar] [CrossRef]
- Gomes-Pimentel, M.; Rubens Cardoso da Silva, M.; de Cássia, S.; Viveiros, D.; Picanço, M.S. Manganese Mining Waste as a Novel Supplementary Material in Portland Cement. Mater. Lett. 2022, 309, 131459. [Google Scholar] [CrossRef]
- Veiga Simão, F.; Chambart, H.; Vandemeulebroeke, L.; Cappuyns, V. Incorporation of Sulphidic Mining Waste Material in Ceramic Roof Tiles and Blocks. J. Geochem. Explor. 2021, 225, 106741. [Google Scholar] [CrossRef]
- Da Silva, M.R.C.; Malacarne, C.S.; Longhi, M.A.; Kirchheim, A.P. Valorization of Kaolin Mining Waste from the Amazon Region (Brazil) for the Low-Carbon Cement Production. Case Stud. Constr. Mater. 2021, 15, e00756. [Google Scholar] [CrossRef]
MEL | Macuchi (n = 14) | Tenguel–Ponce Enriquez (n = 111) | Puyango (n = 42) |
---|---|---|---|
Landfills | 4 | 34 | - |
Mining galleries (Mines) | - | - | 14 |
Mine entrances | 5 | 64 | - |
Tailings deposits | 5 | - | 12 |
Abandoned infrastructure | - | 13 | - |
Mineral processing plants | - | - | 11 |
Alluvial terrace | - | - | 3 |
Quarries | - | - | 2 |
Landfills | 4 | 34 | - |
Mining galleries (Mines) | - | - | 14 |
Criteria | IP Value |
---|---|
Occurrence of the scenario continuously or daily | 5 |
Scenario can happen within a week to a month | 4 |
Scenario can happen within a month to a year | 3 |
Scenario can happen within one to five years | 2 |
Scenario can happen within a period greater than five years | 1 |
Criteria | IS Value |
---|---|
Uses with very high associated severity: marginal villages, children’s parks | 5 |
Uses with high associated severity: intensive recreational use (sports activities), isolated single-family homes | 4 |
Uses with moderate associated severity: urbanized residential areas, nonintensive recreational use (trails, viewpoints) | 3 |
Uses with low associated severity: agricultural and forestry activities | 2 |
Uses with very low associated severity: other uses (commercial, industrial) with very low exposure | 1 |
MEL | Intervention Level | |||
---|---|---|---|---|
High | Medium | Low | Proposed Actions | |
Landfills | + | × | Covering, sealing, and revegetation of deposits Chemical and physical stability control and monitoring plan Water, soil, sediment, biotic component and stability control, and monitoring plan | |
Mining galleries | + | Chemical and physical stability control and monitoring plan Implementation of geotourism (museums and geoparks) in rehabilitated areas with low impact Plugging of higher risk mine entrances or galleries | ||
Mine entrances | + | × | ||
Tailings Deposits | × * | Reuse/reuse/valorization of mining tailings Covering, sealing, and revegetation of tailings deposits Restoration plan and revegetation near the riverbanks Water, soil, sediment, biotic component and stability control, and monitoring plan | ||
Abandoned infrastructure | + | Construction of a community meeting place Water, soil, sediment, biotic component and stability control, and monitoring plan | ||
Mineral processing plants | * | Dismantling infrastructures Chemical stabilization of soils Control and monitoring of chemical stability of soils | ||
Alluvial terrace | * | Treatment of the waters of affected rivers. Restitution of flora and fauna Physical and chemical stabilization of riverbanks | ||
Quarries | * | Physical and chemical stabilization of soils Revegetation of the areas Restitution of fauna Water, soil, sediment, biotic component and stability control, and monitoring plan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Almeida, B.; Falquez-Torres, D.A.; Romero-Crespo, P.L.; Valverde-Armas, P.E.; Guzmán-Martínez, F.; Jiménez-Oyola, S. Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. Sustainability 2022, 14, 6089. https://doi.org/10.3390/su14106089
Salgado-Almeida B, Falquez-Torres DA, Romero-Crespo PL, Valverde-Armas PE, Guzmán-Martínez F, Jiménez-Oyola S. Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. Sustainability. 2022; 14(10):6089. https://doi.org/10.3390/su14106089
Chicago/Turabian StyleSalgado-Almeida, Bryan, Daniel A. Falquez-Torres, Paola L. Romero-Crespo, Priscila E. Valverde-Armas, Fredy Guzmán-Martínez, and Samantha Jiménez-Oyola. 2022. "Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador" Sustainability 14, no. 10: 6089. https://doi.org/10.3390/su14106089
APA StyleSalgado-Almeida, B., Falquez-Torres, D. A., Romero-Crespo, P. L., Valverde-Armas, P. E., Guzmán-Martínez, F., & Jiménez-Oyola, S. (2022). Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. Sustainability, 14(10), 6089. https://doi.org/10.3390/su14106089