An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Input Data
2.2. Methods
2.2.1. The Delft3D Model
2.2.2. The HABITAT Model
2.2.3. Statistical Methods for Reproducibility
2.2.4. Scenarios of Weir Operation
3. Results and Discussion
3.1. Model Calibration and Verification
3.1.1. The Delft3D-FLOW Model
3.1.2. The Delft3D-WAQ Model
3.1.3. The HABITAT Model
3.2. Changes in the Composite Suitability Index and Weighted Usable Area
3.2.1. Squalidus chankaensis tsuchigae
3.2.2. Cyprinus carpio
3.2.3. Micropterus salmoides
3.2.4. Degree of Tolerance for Environmental Changes (Adaptability)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bovee, K.D. A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology; Western Energy and Land Use Team, Office of Biological Services, Fish and Wildlife Service, US Department of the Interior: Washingtown, DC, USA, 1982.
- Huang, W.; Mynnet, A. Effects of changes in Lugu Lake water quality on Schizothorax yunnansis ecological habitat based on HABITAT model. In Proceedings of the International Conferences Security Technology, Disaster Recovery and Business Continuity, Jeju Island, Korea, 13–15 December 2010; pp. 259–268. [Google Scholar]
- Ministry of Environment, National Institute of Environment Research (MOE/NIER). Stream/River Ecosystem Survey and Health Assessment (I–XI) (2008–2018); Ministry of Environment/National Institute of Environmental Research: Incheon, Korea, 2018.
- Ministry of Environment (MOE). The Basic Plan for National Water Environment Management; Ministry of Environment: Sejong, Korea, 2016.
- Kang, H.; Jeon, D.J.; Kim, S.; Jung, K. Estimation of fish assessment index based on ensemble artificial neural network for aquatic ecosystem in South Korea. Ecol. Indic. 2022, 136, 108708. [Google Scholar] [CrossRef]
- Staehr, P.A.; Staehr, S.U.; Tonetta, D.; Høgslund, S.; Nielsen, M.M. Contribution of boulder reef habitats to oxygen dynamics of a shallow estuary. Sci. Total Environ. 2022, 805, 150261. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Choi, S.S. Integrated hydraulic modelling, water quality modelling and habitat assessment for sustainable water management: A case study of the Anyang-Cheon stream, Korea. Sustainability 2021, 13, 4330. [Google Scholar] [CrossRef]
- Ishaq, A.; Dahiru, S.; Danazumi, A.I. Effect of physicochemical and biological parameters for model simulation on the quality of water reservoir (tributaries) along Nuhu Bamalli Polytechnic Zaria. J. Inventive Eng. Technol. 2021, 1, 54–63. [Google Scholar]
- Hintz, C.L.; Booth, M.T.; Newcomer-Johnson, T.A.; Fritz, K.M.; Buffam, I. Urban buried streams: Abrupt transitions in habitat and biodiversity. Sci. Total Environ. 2022, 819, 153050. [Google Scholar] [CrossRef]
- Macura, V.; Stefunkova, Z.; Majorosova, M.; Halaj, P.; Skrinar, A. Influence of discharge on fish habitat suitability curves in mountain watercourses in IFIM methodology. J. Hydrol. Hydromech. 2018, 66, 12. [Google Scholar] [CrossRef] [Green Version]
- Valentin, S.; Lauters, F.; Sabaton, C.; Breil, P.; Souchon, Y. Modelling temporal variations of physical habitat for brown trout (Salmo trutta) in hydropeaking conditions. Regul. Rivers Res. Manag. 1996, 12, 317–330. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Mathur, D.; Bason, W.H.; Purdy, E.J., Jr.; Silver, C.A. A critique of the in stream flow incremental methodology. Can. J. Fish. Aquat. Sci. 1985, 42, 825–831. [Google Scholar] [CrossRef]
- Hedden-Nicely, D.R. The Contemporary Methodology for Quantifying Reserved Instream Flow Water Rights to Support Aquatic Habitat. Environ. Law 2020, 50, 257–286. [Google Scholar]
- Lee, J.H.; Jeong, S.M.; Lee, M.H.; Lee, Y.S. Estimation of instream flow for fish habitat using instream flow incremental methodology (IFIM) for major tributaries in Han river basin. KSCE J. Civ. Environ. Eng. Res. 2006, 26, 153–160. [Google Scholar]
- Armour, C.L.; Taylor, J.G. Evaluation of the instream flow incremental methodology by US Fish and Wildlife Service field users. Fisheries 1991, 16, 36–43. [Google Scholar] [CrossRef]
- Souchon, Y.; Capra, H. Aquatic habitat modelling: Biological validations of IFIM/Phabsim methodology and new perspectives. Hydroecol. Appl. 2004, 14, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, B.; Choi, S.U. Physical habitat simulations of the Dal River in Korea using the GEP Model. Ecol. Eng. 2015, 83, 456–465. [Google Scholar] [CrossRef]
- Nikghalb, S.; Shokoohi, A.; Singh, V.P.; Yu, R. Ecological regime versus minimum environmental flow: Comparison of results for a river in a semi Mediterranean region. Water Resour. Manag. 2016, 30, 4969–4984. [Google Scholar] [CrossRef]
- Im, D.; Choi, S.U.; Choi, B. Physical habitat simulation for a fish community using the ANFIS method. Ecol. Inform. 2018, 43, 73–83. [Google Scholar] [CrossRef]
- Choi, S.U.; Kim, S.K.; Choi, B.; Kim, Y. Impact of hydropeaking on downstream fish habitat at the Goesan Dam in Korea. Ecohydrology 2017, 10, e1861. [Google Scholar] [CrossRef]
- Zhang, W.; Di, Z.; Yao, W.W.; Li, L. Optimizing the operation of a hydraulic dam for ecological flow requirements of the You-shui River due to a hydropower station construction. Lake Reserv. Manag. 2016, 32, 1–12. [Google Scholar] [CrossRef]
- Kang, H.; Choi, B. Dominant fish and macroinvertebrate response to flow changes of the Geum River in Korea. Water 2018, 10, 942. [Google Scholar] [CrossRef] [Green Version]
- Gillenwater, D.; Granata, T.; Zika, U. GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecol. Eng. 2006, 28, 311–323. [Google Scholar] [CrossRef]
- Tomsic, C.A.; Granata, T.C.; Murphy, R.P.; Livchak, C.J. Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal. Ecol. Eng. 2007, 30, 215–230. [Google Scholar] [CrossRef]
- Downs, P.W.; Kondolf, G.M. Post-project appraisals in adaptive management of river channel restoration. Environ. Manag. 2002, 29, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Im, D.; Kang, H.; Kim, K.H.; Choi, S.U. Changes of river morphology and physical fish habitat following weir removal. Ecol. Eng. 2011, 37, 883–892. [Google Scholar] [CrossRef]
- Gard, M. Modeling changes in salmon spawning and rearing habitat associated with river channel restoration. Int. J. River Basin Manag. 2006, 4, 201–211. [Google Scholar] [CrossRef]
- Schwartz, J.S.; Herricks, E.E. Evaluation of pool -riffle naturalization structures on habitat complexity and the fish community in an urban Illinois stream. River Res. Appl. 2007, 23, 451–466. [Google Scholar] [CrossRef]
- Zou, J.; Wang, S.; Liu, C.; Han, Z.; Zhu, B.; Jiang, Z. Evaluation of Water Quality and Habitat Quality in the Beiyunhe River Watershed. IOP Conf. Ser. Earth Environ. Sci. 2021, 638, 012091. [Google Scholar] [CrossRef]
- Sedighkia, M.; Abdoli, A. Balancing environmental impacts and economic benefits of agriculture under the climate change through an integrated optimization system. Int. J. Energy Environ. Eng. 2022, 1–14. [Google Scholar] [CrossRef]
- Muhammetoglu, A.; Kocer, M.A.T.; Durmaz, S. Evaluation of different management scenarios for trout farm effluents using dynamic water quality modeling. Environ. Monit. Assess. 2022, 194, 1–19. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Wang, X.; Liu, Q.; Yi, Y.; Zhang, X. A Developed Method of Water Pollution Control Based on Environmental Capacity and Environmental Flow in Luanhe River Basin. Water 2022, 14, 730. [Google Scholar] [CrossRef]
- Lim, H.; Na, E.H.; Jeon, H.C.; Song, H.; Yoo, H.; Hwang, S.H.; Ryu, H.S. Application of Integrated Modelling Framework Consisted of Delft3D and HABITAT for Habitat Suitability Assessment. J. Korean Soc. Water Environ. 2021, 37, 217–228. [Google Scholar]
- Korea Institute of Civil Engineering and Building Technology (KICT). Monitoring and Evaluation of River Change (River Channel Changes); Han River Flood Control Office: Seoul, Korea, 2015. [Google Scholar]
- Korea Meteorological Administration (KMA). Available online: https://data.kma.go.kr/ (accessed on 15 November 2021).
- Water Environment Information System (WEIS). Available online: http://weis.nier.go.kr (accessed on 16 November 2021).
- Water resources Management Information System (WAMIS). Available online: http://www.wamis.go.kr (accessed on 22 November 2021).
- Stevens, A.W.; Lacy, J.R. The influence of wave energy and sediment transport on seagrass distribution. Estuaries Coasts 2012, 35, 92–108. [Google Scholar] [CrossRef]
- Symonds, A.M.; Vijverberg, T.; Post, S.; Van Der Spek, B.J.; Henrotte, J.; Sokolewicz, M. Comparison between Mike 21 FM, Delft3D and Delft3D FM flow models of western port bay. Australia Coast. Eng. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Des, M.; Martinez, B.; DeCastro, M.; Viejo, R.M.; Sousa, M.C.; Gomez-Gesteira, M. The impact of climate change on the geographical distribution of habitat-forming macroalgae in the Rias Baixas. Mar. Environ. Res. 2020, 161, 105074. [Google Scholar] [CrossRef]
- Deltares Systems. D-Flow & D-Water Quality; Delrates: Delft, The Netherlands, 2014. [Google Scholar]
- Haasnoot, M.; Van de Woolfshaar, K.E. Combing a conceptual framework and a spatial analysis tool, HABITAT, to support the implementation of river basin mangement plans. Int. J. River Basin Manag. 2009, 7, 295–311. [Google Scholar] [CrossRef]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the Han River Basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Jamalabadi, H.; Alizadeh, S.; Schonauer, M.; Leibold, C.; Gais, S. Classification based hypothesis testing in neuroscience: Below chance level classification rates and overlooked statistical properties of linear parametric classifiers. Hum. Brain Mapp. 2016, 37, 1842–1855. [Google Scholar] [CrossRef]
- Byeon, H.-K.; Yoon, M.-H. Ecological Characteristics of Squalidus chankaensis tsuchigae (Cyprinidae) in Geum River, Korea. Korean J. Environ. Ecol. 2016, 30, 888–895. [Google Scholar] [CrossRef]
- Kruger, J.D.W.; Smit, G.L.; Van Vuren, J.H.J.; Ferreira, J.T. Some chemical and physical characteristics of the semen of Cyprinus carpio L. and Oreochromis mossambicus (Peters). J. Fish Biol. 1984, 24, 263–272. [Google Scholar] [CrossRef]
- Lee, E.H.; Kim, M.; Kim, H.M.; Son, M.; Chang, K.H.; Nam, G.S. Ecological characteristics and distribution of fish in the downstream region of Gyeongan stream. Korean J. Environ. Biol. 2013, 31, 478–485. [Google Scholar] [CrossRef]
- Koo, K.S.; Kwon, S.; Do, M.S.; Kim, S. Distribution characteristics of exotic turtles in Korean wild-based on Gangwon-do and Gyeongsangnam-do. Korean J. Ecol. Environ. 2017, 50, 286–294. [Google Scholar] [CrossRef]
- Son, M.; Byun, J. An experimental study on the habitat characteristics of largemouth bass. J. Korea Water Resour. Assoc. 2019, 52, 845–853. [Google Scholar]
- Bovee, K.D. Development and Evaluation of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology; FWS/OBS-86/7; Instream Flow and Aquatic Systems Group (IFASG), USDI Fish and Wildlife Service: Washington, DC, USA, 1986.
- Ministry of Land, Infrastructure and Transport (MOLIT). Integrated River Restoration Manual, Ecoriver21 Report; Korea Institute of Civil Engineering and Building Technology (KICT): Seoul, Korea, 2011. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Haemel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Parameter | Value | Unit | |
---|---|---|---|
Squalidus chankaensis tsuchigae | |||
physical variables | water depth | [0, 0]; [0.35, 1]; [0.45, 1]; [1.0, 0.1]; [10, 0] | m |
velocity | [0, 1]; [0.3, 1]; [1.0, 0.4]; [2.0, 0.1]; [100, 0] | m/s | |
substrate | [6 (Granules and Pebbles), 1] | - | |
chemical variables | DO 1 | [0, 0]; [1, 0.1]; [2, 0.3]; [3, 0.4]; [4, 0.45]; [5, 1]; [6, 1]; [7, 0.9] | mg/L |
BOD 2 | [0, 1]; [1, 1]; [2, 1]; [3, 1]; [4, 1]; [5, 0.8]; [6, 0.4]; [7, 0.0] | mg/L | |
COD 3 | [0, 0.8]; [1, 1]; [2, 1]; [3, 1]; [4, 0.7]; [5, 0.6]; [6, 0.2]; [7, 0.0] | mg/L | |
Cyprinus carpio | |||
physical variables | water depth | [0, 0.5]; [0.5, 1]; [0.7, 1]; [1.0, 0.7]; [1.2, 0.2]; [10, 0] | m |
velocity | [0, 1]; [0.3, 1]; [1.0, 0.7]; [1.5, 0.4]; [100, 0] | m/s | |
substrate | [4–5 (Silt and Clay, Fine Sand), 1] | - | |
chemical variables | DO | [0, 0]; [1, 0]; [2, 0.6]; [3, 0.7]; [4, 0.8]; [5, 1]; [6, 1]; [7, 0.7] | mg/L |
BOD | [0, 0.5]; [1, 0.8]; [2, 1]; [3, 1]; [4, 1]; [5, 1]; [6, 0.7]; [7, 0.5]; [8, 0.2]; [9, 0.1]; [10, 0] | mg/L | |
COD | [0, 0.6]; [1, 1]; [2, 1]; [3, 1]; [4, 1]; [5, 0.8]; [6, 0.6]; [7, 0.5]; [8, 0.4]; [9, 0.3]; [10, 0.1]; [11, 0] | mg/L | |
Micropterus salmoides | |||
physical variables | water depth | [0, 0.7]; [0.2, 1]; [0.4, 1]; [1.0, 0.7]; [1.5, 0.6]; [10, 0] | m |
velocity | [0, 1]; [0.3, 1]; [0.7, 0.7]; [1.0, 0.8]; [2.0, 0.5]; [100, 0] | m/s | |
substrate | [5 (Medium Sand and Pebbles), 1] | - | |
chemical variables | DO | [0, 0]; [1, 0.1]; [2, 0.7]; [3, 0.85]; [4, 1]; [5, 1]; [6, 1]; [7, 0.4] | mg/L |
BOD | [0, 0.7]; [1, 0.9]; [2, 1]; [3, 1]; [4, 1]; [5, 1]; [6, 0.8]; [7, 0.6]; [8, 0.4]; [9, 0.2]; [10, 0] | mg/L | |
COD | [0, 0.5]; [1, 0.7]; [2, 1]; [3, 1]; [4, 1]; [5, 0.7]; [6, 0.5]; [7, 0.4]; [8, 0.3]; [9, 0.2]; [10, 0.1]; [11, 0] | mg/L |
Parameter | Description | Unit | Range | Setting Factor |
---|---|---|---|---|
SWSatOxy | Switch saturation DO calculation | - | ≤4 | 2.000 |
ThrAlgNH4 | threshold concentration uptake ammonium | gN/m3 | 0–1 | 0.041 |
ThrAlgNO3 | threshold concentration uptake nitrate | gN/m3 | 0–0.1 | 0.020 |
ThrAlgPO4 | threshold concentration uptake phosphate | gP/m3 | 0–0.1 | 0.015 |
RcDen20 | MM-denitrification reaction rate at 20 °C | gN/m3/d | 0–0.1 | 0.100 |
TcDenWat | temperature coefficient for denitrification | - | 0.5–1.5 | 1.070 |
KsNiDen | half saturation constant for nitrate cons. | gN/m3 | 0–0.1 | 0.500 |
KsOxDen | half saturation constant for oxygen inhib. | g/m3 | 0–5 | 1.000 |
KsAmNit | half saturation constant for ammonium cons. | gN/m3 | 0–3 | 0.500 |
KsOxNit | half saturation constant for DO cons. | g/m3 | default | 1.000 |
RcNit | first-order nitrification rate | 1/d | 0–2 | 0.140 |
OOXNIT | optimum oxygen concentration for nitrification | gO2/m3 | default | 5.000 |
CFLNIT | oxygen function level for oxygen below COXNIT | - | 0–1.5 | 0.025 |
SWRear | switch for oxygen reaeration formulation | - | default | 1.000 |
TCRear | temperature coefficient for reaeration | - | 0.5–1.8 | 1.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, B.; Kim, B.; Park, J.; Kang, T.-W.; Shin, D.-S.; Na, E.H.; Choi, J. An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River. Sustainability 2022, 14, 6090. https://doi.org/10.3390/su14106090
Choi B, Kim B, Park J, Kang T-W, Shin D-S, Na EH, Choi J. An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River. Sustainability. 2022; 14(10):6090. https://doi.org/10.3390/su14106090
Chicago/Turabian StyleChoi, Byungwoong, Byungik Kim, Jonghwan Park, Tae-Woo Kang, Dong-Seok Shin, Eun Hye Na, and Jiyeon Choi. 2022. "An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River" Sustainability 14, no. 10: 6090. https://doi.org/10.3390/su14106090
APA StyleChoi, B., Kim, B., Park, J., Kang, T. -W., Shin, D. -S., Na, E. H., & Choi, J. (2022). An Integrated Modelling Study on the Effects of Weir Operation Scenarios on Aquatic Habitat Changes in the Yeongsan River. Sustainability, 14(10), 6090. https://doi.org/10.3390/su14106090