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Abstract: Building energy simulation models have been used to assist the design and/or optimization
of buildings energy performance. The results from building energy simulation models can be more
reliable when measured energy use data, indoor environmental condition data, system operation
status, and coincident weather data are used to validate the simulation results. In this paper, given
the wide-spread use of home automation devices in residential buildings, we studied how well a
residential building energy simulation model can be tuned using measured interval data from a
smart thermostat and smart meter. The analysis is based on a multi-stage approach that can help
improve the reliability of the use of building energy simulation models that reflect both the indoor
air temperature and whole-building energy use. Results from changing the input parameters in the
building simulation show that the comparison of the simulated and measured indoor temperatures
fall in a range below a NMBE of 1.5% and a CV-RMSE of 2.2%, while the simulated whole-building
energy use matches the measured energy use below a NMBE of −2.7% and a CV-RMSE of 10.9%.
We found that the most significant parameters for the indoor air temperature and whole-building
energy use were the effective U-value for the slab-on-grade floor and the heating and cooling system
operation status, respectively.

Keywords: building energy simulation model; model tuning; smart thermostat data; smart meter data;
smart greenhouse buildings

1. Introduction

Building energy simulation models have been developed to design and optimize the
performance of new buildings and to help analyze the performance of existing buildings.
Such models can be better calibrated using measured energy use data, indoor environmental
condition data, and system operation status obtained from an existing building, along with
coincident weather data [1,2]. In this paper, we present an improved tuning process to
better match both the simulated energy use and indoor air temperatures with measured
data from a smart utility meter and a smart thermostat. The new approach that helps the
simulation model calibration improves the accuracy of the simulation results by better
reflecting the inside conditions of buildings and the HVAC system operation status.

The use of calibrated simulation has been widely used to provide reliable saving
estimations from various energy-efficient retrofit measures for buildings [3–5]. Various
approaches for the calibration process have been developed to enhance the reliability
of simulation results [2–6]. Coakley et al. [2] provided an extensive review of existing
calibration processes, which include manual and automated approaches. They also reported
that the manual approaches were very dependent on the simulation modeler’s pragmatic
intervention, and that the manual approaches required a labor-intensive, iterative process.
They reported that the manual approaches included characterization techniques (e.g., expert
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knowledge, intrusive testing, short-term energy monitoring, etc.), advanced graphical
and statistical methods, model simplification techniques, and procedural extensions (e.g.,
evidence-based and sensitivity analysis). Automated approaches were also reported by [2]
that relied on mathematical/statistical driven processes with multiple iterations. The
automated approaches listed in their paper included optimization techniques (e.g., Bayesian
calibration and objective/penalty function) and alternative modeling techniques (e.g.,
artificial neural networks and systems identification). Among the techniques reviewed
in [2], Manke et al.’s paper provided an early systematic approach to reduce the difference
between the measured and simulated results [7]. In the study, the Root Mean Squared Error
(RMSE) was used to find the best parameter values for the calibrated simulation.

In addition, uncertainty analysis methods for use with building energy simulation
have been previously studied because they are crucial to help correct simulation results and
enhance the confidence of the simulation results [8,9]. Tian et al. [8] reviewed the uncertainty
analysis methods using forward (e.g., Monte Carlo method) and backward (e.g., Bayesian
inverse computation) approaches. They showed that the use of an uncertainty analysis
in the estimation of building energy use has increased because the underlying statistical
approaches have become more mature. However, most existing calibration methods can
still cause inaccurate simulation results, which in some cases can result in a false calibration.
Therefore, research toward enhancing the predictive accuracy of calibrated simulations has
become a top priority in terms of empirical validation and testing, uncertainty analysis,
input calibration, and real-world case studies [9].

Several papers have reported the use of indoor environmental data to improve the cali-
bration process [10–17]. Table 1 summarizes the previously-published calibrated simulation
papers that reported on the use of the indoor environmental data.

Table 1. Summary of the papers using measured environmental data for the calibration process.

Ref. Method(s) Program Interval Measured Data for
Model Inputs

Measured Data for Model
Output Calibration

[10]

- Manual iterative
calibration

- Graphical and
statistical methods

- Evidence-based
calibration

DOE-2 Hourly
- Thermostat

setpoints

- Whole-building
electricity use

- Indoor air temperature

[11]

- Manual iterative
calibration

- Graphical and
statistical methods

- Evidence-based
calibration

DOE-2 Hourly NA

- Whole-building
electricity use

- Indoor air temperature

[12]

- Semi-automated
methods

- Evidence-based
calibration

Energy
Plus Hourly NA

- Whole-building
electricity use

- Indoor air temperature

[13]

- Semi-automated
methods

- Inverse and forward
calibration

- Evidence-based
calibration

Energy
Plus

Hourly and
Monthly

- Lighting electricity
use

- Equipment
electricity use

- HVAC setpoints
- Indoor air

temperature

- Whole-building
electricity use

- Lighting electricity use
- Equipment electricity

use
- HVAC setpoints
- Indoor air temperature
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Table 1. Cont.

Ref. Method(s) Program Interval Measured Data for
Model Inputs

Measured Data for Model
Output Calibration

[14]

- Manual iterative
calibration

- Graphical and
statistical methods

- Evidence-based
calibration

Energy
Plus Hourly

- Equipment
electricity use

- Whole-building
electricity use

- Heating energy use
- Indoor air temperature

[15]

- Manual iterative
calibration

- Graphical and
statistical methods

- Evidence-based
calibration

NA Daily NA

- Heating electricity use
- Ventilation electricity

use
- Lighting electricity use
- Operative temperature
- Relative humidity
- CO2

[16]

- Both manual
iterative and
automated
calibration

- Graphical and
statistical methods

- Evidence-based
calibration

Energy
Plus 15-min

- Lighting electricity
use

- Equipment
electricity use

- Whole-building
electricity use

- End-use HVAC units
- Lighting electricity use
- Equipment electricity

use
- Supply and return air

temperatures at HVAC
- Indoor air temperature

[17]

- Manual iterative
calibration

- Graphical and
statistical methods

- Evidence-based
calibration

Energy
Plus Hourly

- Occupancy
schedule

- Thermostat
schedule

- Lighting schedule
- Plug load schedule
- Indoor air

temperature

- Whole-building
electricity use

- VRF indoor and outdoor
units

- DOAS
- Lighting electricity use
- Equipment electricity

use

Hsieh [10,18] used hourly measured indoor air temperatures to compare with sim-
ulated indoor air temperatures (i.e., measured data for the model output calibration) in
order to identify why the measured and simulated whole-building energy use were dif-
ferent. The study found that the simulated temperatures showed frequent oscillations
compared to the measured temperatures that did not oscillate. It was also found that using
measured thermostat setpoints (i.e., measured data for model inputs) instead of average
thermostat setpoints for the simulation input file improved the accuracy of the simulated
whole-building energy use. Bou-Saada [11] also used measured indoor air temperature
data for the calibration process. In the study, he used the measured indoor air temperature
data to check if the HVAC systems were turned on or off. The indoor air temperature
data was also used to tune the simulation model (i.e., measured data for the model output
calibration). Both the studies used measured indoor air temperature data in addition to the
whole-building energy use data that was typically used to compare with the output from
the simulation. However, the studies did not provide an explanation of how each parameter
affected the calibration process, which could be used to help identify malfunctions of the
building HVAC system.

Coakley et al. [12] conducted an evidence-based calibration using random sampling
and ranking solutions to identify the important parameters using hourly measured indoor
air temperatures and whole-building electricity use (i.e., measured data for the model
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output calibration) for an improved goodness-of-fit. They used 100 random simulation
trials with the ranges of parameters based on experts’ experiences to find optimum solutions
for better calibration results. They claimed that hourly interval calibrations could provide
better accuracy compared to monthly calibrations. In their paper, they used a floor-area-
weighted average for the indoor air temperature calibration because their simulation model
used a single zone for the case study of a three story library building, although they had
measured data for multiple indoor air temperatures with varying profiles. However, the
study did not specifically compare the simulated results with the measured data in order
to identify the impact of individual changed parameters.

Lam et al. [13] developed a hybrid approach for their calibration process. In the approach,
they used an inverse calibration procedure using hourly measured lighting/equipment energy
use data to match against monthly measured data. They also used manufacturer data sheets
and testing data for the HVAC system. Using a forward calibration method, they adjusted
their simulation parameters and control of the HVAC system using measured hourly
indoor air temperature data and monthly total electricity use data. In addition, they used
an occupancy schedule extracted from data-mining techniques. In the paper, they compared
monthly simulated lighting and equipment energy use and hourly simulated HVAC and
whole-building energy use with the corresponding measured data (i.e., measured data for
the model output calibration). Overall, they developed a systematic framework for their
high accuracy calibration of office buildings.

Royapoor and Roskilly [14] conducted an evidence-based calibration using two cal-
ibrated indoor air temperature sensors for the calibration of their simulation. In their
analysis, they compared the averaged indoor air temperatures from the two sensors with
the simulated hourly temperatures during a year (i.e., measured data for the model output
calibration). They found that the simulation of the indoor air temperatures was well cali-
brated when the heating system was turned off. However, their two temperature sensors
were installed at a similar location, so they were not representative of the temperature
trends in different thermal zones on the same floor. In addition, their study measured the
power of computers and office equipment to use them for the model inputs (i.e., measured
data for model inputs). They found that annual measured and/or sub-metered data were
useful to improve the calibration accuracy. However, they did not show the individual
calibrated parameter changes to observe how the use of the measured input data improved
the simulated results.

Paliouras et al. [15] also conducted an evidence-based calibration process using indoor
operative temperatures, relative humidity, and carbon dioxide (CO2) measurements for
their calibration as well as the measured electricity use data from the ventilation, heating,
and equipment use (i.e., measured data for the model output calibration). Daily data
representing the operative temperatures, relative humidity, and CO2 were calibrated to four
different zones in the single family case study house. In addition, three types of the energy
use data (i.e., heating, ventilation, and lighting electricity use) were used to calibrate the
simulation model. They used various measured parameters to enhance of the calibration
accuracy, but it was found that energy-related occupancy behavior should be considered to
help reduce the uncertainty during the calibration process.

Goldwasser et al. [16] conducted both manual iterative and automated calibration
approaches using a parametric analysis. They used the smallest time interval among the
previous papers for the calibration process. In their study, they used 15-min interval data,
and reported that the high resolution interval was useful to find problems at the building
operation level. They also found that the categorization between normal and abnormal
building operation periods can help improve the calibration accuracy. In addition, they
found that time-stamp errors can occur between the simulated and measured data. For
example, the time stamp of the simulation results can be at the end of the time period while
the time stamp of measured data is at the start of the time interval, which causes a noticeable
decrease in how well the simulation matches the measured data. Their approaches provided
useful insight when high resolution interval data was used for the calibration process.
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Kim and Oldham [17] conducted an evidence-based calibration using one year of
hourly measured occupancy and indoor air temperature data in hotel guest rooms for their
calibration process. In the paper, they considered the effect of occupancy and indoor air
temperature data to better estimate the energy savings from motion sensors in the guest
rooms (i.e., measured data for model inputs). They also compared the simulated energy use
of the HVAC units (i.e., Variable Refrigerant Flow (VRF) indoor and outdoor units), rooftop
Dedicated Outdoor Air System (DOAS), indoor lighting, and plug loads with the measured
data (i.e., measured data for model outputs). Their approaches showed the calibration
improved from the use of measured occupancy and indoor air temperature data, but they
did not provide the step-by-step comparisons and changes from the individual parameters.

In summary, all the previous studies developed an initial model using design-level,
building information data, and then developed an updated model using measured indoor
environmental data from a building. In the previous studies, different estimated and
measured model input data were used to reduce the difference between simulated and
measured model outputs. However, due to the difficulty in collecting data from residences,
many of the previous studies applied their calibration methods to commercial buildings
rather than residential buildings [10–14,16,17]. For commercial buildings, many of the
previous studies used one hourly-indoor air temperature profile for the entire building
as part of the calibration process [10–13,17]. In addition, in many cases, the previous
studies lacked any discussion about the residential building simulations that used indoor
environmental data. In one study of a residence, average daily profiles were used rather
than high granularity, hourly profiles [15].

Moreover, all the previous studies did not provide side-by-side comparisons for both
indoor environmental data and whole-building energy use during the individual parameter
changes of the calibration process, which allows one to detect how a specific parameter
change systematically affects the simulation outputs of the indoor environmental data and
whole-building energy use at specific times. In addition, these studies did not attempt
to match measured on/off HVAC schedules and/or measured heating/cooling setpoints
from the HVAC system in the simulation inputs.

Therefore, this study suggested a new tuning process that compares both the indoor
environmental data and whole-building energy use data using a side-by-side comparison
based on individual parameter changes in order to identify the impact of each simulation
input. In addition, this study used coincident, measured HVAC system on/off data and
coincident measured heating/cooling setpoint data from a smart thermostat for the model
tuning process, which was not reported in the previous studies. Last but not least, this
study used an average hourly, indoor air temperature profile from the measurements in
seven different zones in the residence to better calibrate the simulation model. In other
words, although there is a large variation in the indoor air temperatures in the individual
zones [19], the average temperature profile was used because it was more representative of
the single-zone HVAC system installed in the residence that had one thermostat.

The results of this paper show that this level of details is very useful for a more
accurate model tuning process that can help the calibration. This paper provides a detailed
description of the process steps, and shows the resultant improvement for each step of the
model tuning. In the next section (i.e., Section 2), the materials and methods used in this
study are described. In Section 3, the results from the multi-stage tuning process are shown.
In Sections 4 and 5, the discussion and the conclusions of this study are presented.

2. Materials and Methods

In this paper, a case study, single-family residence was used that is a one-story, fourplex
townhouse, constructed in 1982, in central Texas. One occupant lived in the residence.
On Fridays, it was observed that additional people often visited the residence during the
evening. The case study residence has two bedrooms, and one and a half baths with a
total conditioned floor area of 111 m2 (1199 ft2). The front of the residence faces west with
covered parking on the east side of the residence. Two other townhouses are attached
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on the north and south sides, respectively. Figure 1 shows a bird’s eye view of the case
study residence [20]. In February 2017, the existing thermostat was replaced with a new
smart thermostat that provided measured interval data for occupancy, heating and cooling
setpoints, inside air temperatures, inside relative humidity, and HVAC system on and
off schedule in 5-min intervals. Although the 5-min intervals were selected using the
manufacturer’s setting, the 5-min interval data were converted to hourly intervals for this
paper. The details about the measurements at the site can be found in [19]. The indoor air
temperature sensors and the occupancy sensors (i.e., Passive Infrared (PIR) sensor) were
associated with the smart thermostat. However, additional data loggers for indoor air
temperature and occupancy were installed by the researchers to compare the results from
the thermostat sensors and the data loggers. The sensors and the data loggers were placed
in each location by the researchers.
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Figure 1. Satellite view of the case study residence [20].

In this study, an improved building energy simulation model was developed using
the measured data from a smart thermostat with remote and wireless inside temperature
and occupancy sensors as well as measured energy use data from the smart meter (i.e.,
interval electricity use) that served the residence.

The tuning process used in this paper was manual. As a first step in the process for a
building simulation model, initial parameters were determined for the case study residence,
as shown in Table A1, using estimated and actual characteristics obtained from an onsite
visit. Next, the 2000 or 2009 International Energy Conservation Code (IECC) performance
path [21,22] and the information from the simulation program’s default library (i.e., nominal
values) [23] were used for estimated information regarding the building energy simulation
model inputs for the existing building.

Figure 2 shows a rendering of the residential building simulation model of the case
study residence using a visualization tool (i.e., DrawBDL [24]) that reads the input file
of the DOE-2.1E program and draws the image. The DOE-2.1E simulation program was
used for the analysis because it is a very reliable and well documented program that is
accredited by Residential Energy Services Network (RESNET) for residential simulations
of the code-compliant buildings using the Home Energy Rating System (HERS) index [25].
In the figure, the yellow surfaces are the roofs, the red surfaces are the exterior walls, the
brown surfaces are the doors, the blue surfaces are the windows, and the gray surfaces are
the interior walls that separate the residence from the adjacent residences.

Next, coincident weather data was collected from a nearby weather station that was
approximately 9.2 km (5.8 miles) away from the case study residence. The weather data
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included 1-min interval data of dry-bulb temperature, wet-bulb temperature, dew-point
temperature, wind speed, wind direction, global solar radiation, and direct normal solar
radiation [26]. The measured weather data were converted into the appropriate hourly
binary format for use by the building simulation model [23].
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the case study residence [27].

In addition, measured hourly occupancy data from the seven portable data loggers
were collected for the model input. We measured the occupancy using the 1-min interval
data from the occupancy data loggers of the seven zones. Then, we converted the 1-min
interval data into the hourly interval data that represents the presence of an occupant over
the period of one hour (i.e., diversity factor). The hourly occupancy diversity factors from
the seven zones were then averaged. The average hourly occupancy diversity factor from
the seven zones [19] was then used for the simulation to better represent the occupancy in
the actual residence that had the single-zone HVAC system. The occupancy diversity factor
was calculated using the ratio of the measured averaged occupancy from the seven zones
to the maximum of occupancy (i.e., 1). Of special interest to this study, the measured hourly
HVAC system operation status data and measured hourly heating and cooling setpoint
data were also collected from the smart thermostat and used to improve the tuning process.
In contrast to most of the previous studies (see the sixth column in Table 1), in this study
the measured heating and cooling setpoints and the measured HVAC operation data were
also used as model inputs. Then, after running the simulation model, the simulated hourly
electricity use data and the simulated hourly indoor air temperature data were extracted
from the simulation output file, and compared with the corresponding measured data
during a one-week period.

As previously mentioned, measured hourly electricity use data was collected from
the smart meter at the case study residence. In addition, measured hourly indoor air
temperatures from the seven portable wireless sensors were collected. An additional indoor
air temperature sensor, at the location of the actual thermostat, was installed to identify the
indoor air temperature profile near the thermostat. The other seven indoor air temperature
profiles were averaged, and compared with the simulated, single indoor air temperature
profile output since the simulation model had a single-zone residential HVAC system that
assumed a well-mixed, single indoor air temperature. A single-zone system was chosen
for the simulation analysis because it was more representative of the system used in the
actual case study residence that had one thermostat in the hallway. Using measured data
from the seven indoor air temperature sensors at different locations, inside air temperature
versus ambient air temperature profiles were also generated [19]. It was found that the
indoor air temperature profiles were significantly different between the seven locations as
well as different from the profiles of the heating and cooling setpoints.



Sustainability 2022, 14, 6299 8 of 21

Finally, whole-building electricity use data and indoor air temperature data were
used for the model outputs in terms of the tuning process. In summary, compared to the
previous studies, the measured hourly whole-building electricity use and the measured
hourly indoor air temperature data, as well as the measured hourly heating and cooling
setpoints and the measured hourly HVAC system operation status data from a smart
thermostat, were used for the tuning process in this study.

Multiple simulation runs were conducted where the input parameters were adjusted
in order for the simulated whole-building electricity use to better match the measured
whole-building electricity use. Mean Bias Error (MBE) (kWh), Normalized Mean Bias
Error (NMBE) (%), and Coefficient of Variation of the Root Mean Square Error (CV-RMSE)
(%) were used as the goodness-of-fit indicators [28,29]. To match the simulated indoor
air temperatures (IATs) with measured indoor air temperatures, the MBE (◦C), NMBE
(%), and CV-RMSE (%) were used. In this process, several different approaches were
used to adjust the input parameters, including: fixing the simulation input parameters to
values obtained from an onsite visit; information from the 2000/2009 IECC; simulation
libraries; and measured data (i.e., estimated/fixed model inputs). Adjusting the simulation
was then accomplished by adjusting the other estimated simulation inputs to obtain a
better prediction of the whole-building electricity use and the indoor air temperatures
(i.e., the tuning process). Again, it is worth noting that measured hourly heating and
cooling setpoints and measured hourly HVAC system operation status data from a smart
thermostat were used as fixed model inputs, whereas the hourly measured whole-building
electricity use and hourly measured indoor air temperature data were used for the tuning
process.

For the MBE, Equation (1) was used since the absolute scale of the hourly electricity
use data and hourly indoor air temperature were significantly different. In the analysis,
MBE was calculated to see how the measured values were different from the simulated
values. Positive values represent the under prediction of the simulation results, and smaller
values indicate less differences [29].

MBE =
∑i(yi − ŷi)

n− p
(1)

where yi is the measured data, ŷi is the simulated data by the building simulation model, n
is the number of data points, and p is the number of parameters (i.e., p is 1 in this paper for
the tuning process [28]).

The NMBE using Equation (2) was also used to indicate normalized, biased errors by
dividing MBE by the average value of the measured data [29]. In addition, CV-RMSE using
Equation (3) was used to represent how well the simulation model predicts the measured
data. Smaller NMBE and CV-RMSE values indicate less biased errors and better models,
respectively. MBE, NMBE, and CV-RMSE were simultaneously used to better compare
the simulated results with the measured data, observing the degree of the simulation
model errors and the confidence of the model. These three indicators are recommended by
ASHRAE Guideline 14 [28].

NMBE =
∑i (yi − ŷi)

(n− p)× y
× 100 (%) (2)

where yi is the measured data, ŷi is the simulated data by the building simulation model, y
is the average of the measured data, n is the number of data points, and p is the number of
parameters (i.e., p is 1 in this paper for the tuning process [28]).

CV− RMSE =

√
∑i (yi−ŷi)

2

(n−p)

y
× 100 (%) (3)
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3. Results

Table 2 shows a summary of the individual parameter changes during the entire
process and the corresponding statistical indices of both the indoor air temperatures and
the whole-building electricity use. From Run #1 to Run #2, the process was conducted
with the fixed model inputs using estimated information and measured data. From Run
#3 to Run #5, the process was conducted with estimations used in Run #1 and Run #2
replaced by measured inputs. From Run #6 to Run #10, the process further tuned the
model by adjusting the estimated model inputs based on the comparison of simulated and
measured outputs.

Run #1 shows the simulation results of the nominal base-case model. The nominal
base-case model was created using an estimated constant heating setpoint of 22 ◦C (72 ◦F)
and constant cooling setpoint of 26 ◦C (79 ◦F) for all hours for the period from 20 February
2017 to 26 February 2017. These setpoints were obtained from the occupant. Occupancy,
lighting, and equipment schedules were also estimated for the model inputs based on
communications with the occupant.

For Run #2, to better match the measured indoor air temperatures and whole-building
electricity use, the lighting and equipment schedules were fixed based on the estimation
from the measured occupancy data of the seven occupancy sensors. In addition, occupancy
schedules in the simulation were directly fixed using the measured occupancy data. This
parameter change slightly worsened the statistical indices of the indoor air temperatures,
but significantly improved the indices of the whole-building electricity use, when they
were compared to Run #1. This improvement was reasonable because the lighting and
equipment schedules directly impact the whole-building electricity use for many of the
hours of the measurement period.

For Run #3, the heating and cooling setpoints of the building simulation model were
fixed using the measured average indoor air temperatures. At this step, it should be noted
that the measured average indoor air temperature from all the seven zones was used to fix
the thermostat schedule of the simulation model to better match the simulated indoor air
temperatures with the measured indoor air temperatures. This resulted in a significantly
improved goodness-of-fit for the indoor air temperatures (i.e., MBE of 0.04 ◦C, NMBE of
0.11%, and CV-RMSE of 0.17%). However, the simulation still did not exactly match the
measured whole-building electricity use because the simulated HVAC system was running
more often than the measured HVAC system operation status. As a result, in Run #3, the
building simulation model showed MBE of −0.56 kWh, NMBE of −92.07% and CV-RMSE
of 135.44% for the whole-building electricity use, which resulted in increasing the absolute
value of MBE of 0.15 kWh with NMBE of 22.15% and CV-RMSE of 9.75%, when they were
compared to Run #2.

For Run #4, the heating and cooling setpoints were again fixed using the measured
setpoint data from the smart thermostat. Run #4 and subsequent runs (#5 through #10) did
not include the fixed heating and cooling setpoints using the measured average indoor air
temperatures, shown in Run #3. The results of Run #4 showed that the setpoint changes
using the measured setpoint data made a large difference between the measured indoor air
temperatures and the simulated indoor air temperatures because the base-case building
model’s characteristics of the residence, such as the thermal mass, did not exactly match
with the actual building’s characteristics. However, this setpoint change in Run #4 improved
the goodness-of-fit of the simulated whole-building electricity use because it helped to
correct the runtime of the heating and cooling system when indoor air temperatures were
below the heating setpoint or above the cooling setpoint. As a result, Run #4 showed
improved statistical indices with NMBE of 0.11% and CV-RMSE of 1.81% for the whole-
building electricity use, when they were compared to Run #2. MBE for the whole-building
electricity use was slightly increased to 0.01 kWh.
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Table 2. Parameter changes for the multi-stage tuning process using hourly measured data of the one
week. ( ) indicates what previous runs are included.

Run
Number

Category for a
Simulation Model Parameter Changed Indoor Air Temperature Whole-Building Electricity Use

MBE
(◦C)

NMBE
(%)

CV-RMSE
(%)

MBE
(◦C)

NMBE
(%)

CV-RMSE
(%)

Run 1

Estimated
information and

measured data for
model inputs

(fixed): Run 1 and
Run 2

Created base-case model
(nominal) with estimated

heating setpoint and
cooling setpoints and

occupancy, lighting, and
equipment schedules.

0.32 0.79 2.18 −0.56 −91.36 132.59

Run 2
(1 + 2)

Changed occupancy,
lighting, and equipment

schedules based on
the measured

occupancy data.

0.45 1.10 2.27 −0.41 −69.92 125.69

Run 3
(1 + 2 + 3)

Measured data for
model inputs
(fixed): Run 3
through Run 5

Fixed heating and
cooling setpoints using
the measured indoor air

temperature data.

0.04 0.11 0.17 −0.56 −92.07 135.44

Run 4
(1 + 2 + 4)

Fixed heating and cooling
setpoints using the

measured heating and
cooling setpoint data.

0.68 1.65 2.48 −0.42 −69.81 123.88

Run 5
(1 + 2 + 4 + 5)

Fixed heating and cooling
system operation status

schedules using the
measured system data.

3.11 7.58 8.78 0.00 −1.79 95.11

Run 6
(1 + 2 + 4 + 5

+ 6)

Estimated
information for
model tuning

(adjusted): Run 6
through Run 10

Adjusted the effective
U-value of a floor from

0.078 to 0.001.
1.75 4.27 6.15 0.02 1.30 83.85

Run 7
(1 + 2 + 4 + 5

+ 6 + 7)

Adjusted Window Frame
Conductance from 3.04

to 1.00.
1.75 4.27 5.97 0.03 2.27 83.64

Run 8
(1 + 2 + 4 + 5
+ 6 + 7 + 8)

Adjusted Weighting
Factor from 0 to 130. 0.87 2.11 2.62 0.06 6.31 84.07

Run 9
(1 + 2 + 4 + 5
+ 6 + 7 + 8

+ 9)

Adjusted the infiltration
rate from 3.0 ACH50 to

0.03 ACH50 when HVAC
system is on.

0.82 2.01 2.56 0.14 18.28 69.76

Run 10 (1 + 2
+ 4 + 5 + 6 + 7
+ 8 + 9 + 10)

Adjusted lighting,
equipment, and DHW

system schedules based
on the measured

occupancy data Adjusted
the whole-building

electricity use based on
the data analysis.

0.58 1.41 2.17 −0.02 −2.67 10.89

For Run #5, the heating and cooling system schedules were fixed using the measured
HVAC system operation status data (i.e., system on and off), which was available from the
smart thermostat. Unfortunately, the system schedule change significantly worsened the
differences between the measured indoor air temperatures and the simulated indoor air
temperatures (i.e., MBE of 2.43 ◦C, NMBE of 5.93%, and CV-RMSE of 6.30% compared to
Run #4) because the base-case simulation model did not have accurate building charac-
teristics for the indoor environment. However, the system schedule change significantly
improved the goodness-of-fit of the whole-building electricity use because the schedule
corrected the runtime of the simulated heating and cooling system to match the actual sys-
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tem runtime. As a result, Run #5 showed significant improvements for the absolute value
of MBE of 0.42 kWh with NMBE of 68.02% and CV-RMSE of 28.77% for the whole-building
electricity use, when they were compared to Run #4.

Run #6 shows the results from the use of an effective U-value [30] used for the case
study house’s slab-on-grade floor. In this run, the effective U-value was adjusted from
0.442 W/m2-K (0.078 Btu/hr-ft2-◦F), which was calculated using the underground surface
heat transfer calculation method [31], to 0.006 W/m2-K (0.001 Btu/hr-ft2-◦F), which better
represented the conductive heat transfer of the actual building. The adjustment improved
the goodness-of-fit of both the statistical indices of the indoor air temperatures and the
whole-building electricity use compared to Run #5 (i.e., the absolute value of MBE of
1.36 ◦C with NMBE of 3.31% and CV-RMSE of 2.63% for the indoor air temperatures, as
well as NMBE of 0.49% and CV-RMSE of 11.26% for the whole-building electricity use).
MBE for the whole-building electricity use was slightly increased to 0.02 kWh.

Run #7 shows the results of adjusting the effective window frame conductance from
17.23 W/m2-K (3.04 Btu/hr-ft2-◦F) to 5.67 W/m2-K (1.00 Btu/hr-ft2-◦F). In this run, the
adjustment slightly improved the goodness-of-fit of the indoor air temperatures. However,
it did not improve the goodness-of-fit of the whole-building electricity use. This same trend
was also seen when the effective wall R-value was adjusted.

Run #8 shows the improved results from modifying the DOE-2.1E weighting factors
from 0 to 635 kg/m2 (130 lb/ft2), where the weighting factors of “0” are used for DOE-2′s
custom weighting factors. The pre-calculated weighting factor of 635 kg/m2 (130 lb/ft2)
was used to estimate the characteristics of the thermal mass in the residence. Since the
material properties of the actual floor, walls, and ceiling were not specifically known
for the simulation model, the pre-calculated weighting factors gave a more reasonable
fit for simulated the indoor air temperatures. However, it worsened the goodness-of-
fit of the simulated whole-building electricity use versus the measured whole-building
electricity use.

Run #9 shows improved results by changing the infiltration rate from 3 ACH50 to
0.03 ACH50 when the heating or the cooling system was on. This adjustment estimated
a reduced infiltration rate when the HVAC system was turned on because the system
slightly pressurized the house. The change improved the goodness-of-fit of the indoor air
temperatures. In addition, the change improved CV-RMSE of the whole-building electricity
use. However, the change worsened NMBE of the whole-building electricity use.

Run #10 was the final tuning step. This step modified the lighting, equipment, and
Domestic Hot Water (DHW) system schedules based on the measured occupancy schedules,
the measured HVAC system on/off operation status, and information from the analysis of
the whole-building electricity use data from the previous study [32] to identify end-use
energy patterns. The modification significantly increased the goodness-of-fit of both the
indoor air temperatures and the whole-building electricity use, when they were compared
to Run #9 (i.e., the absolute values for MBE of 0.24 ◦C, NMBE of 0.60%, and CV-RMSE of
0.39% for the indoor air temperatures, as well as MBE of 0.12 kWh, NMBE of 15.61% and
CV-RMSE of 58.87% for the whole-building electricity use). It should be noted that the
profiles between the measured and simulated indoor air temperatures still showed differ-
ences even though the statistical indices showed an improved goodness-of-fit. The reason
for this seems to be that the estimated information for the model inputs still contained
some uncertainty.

Figure 3 shows the results from the statistical indices of Table 2. For the indoor air
temperatures, the significant improvements occurred from Run #5 to Run #6 and from
Run #7 to Run #8 when the effective U-value of the floor was adjusted and the weighting
factors were adjusted, respectively. The effective U-value was related to the conductive
heat transfer, and the weighting factor was related to the thermal mass effect (i.e., thermal
radiation). For the whole-building electricity use, the significant improvements occurred
from Run #4 to Run #5 and from Run #9 to Run #10 when the heating and cooling system
operation status was fixed to match the measured HVAC operation status, and the lighting,
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equipment, and DHW system schedules were adjusted, respectively. These parameters
significantly affected the building energy consumption.
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Figure 3. Comparisons of MBE, NMBE, and CV-RMSE for each run of the improved tuning process
using both the indoor air temperature data (upper) and the whole-building electricity use (lower).

Figure 4 shows the measured weather data (upper plot), the simulated indoor en-
vironmental conditions and the measured HVAC system operation (middle plot), and
the simulated/measured whole-building electricity use and the simulated HVAC system
operation status (lower plot) for Run #1 (i.e., the initial stage). The measured HVAC system
operation (i.e., the vertical tan-colored bars in the middle plot) was not used for the model
input for Run #1. However, it is displayed in this figure so the reader can compare the
measured HVAC system operation with the simulated HVAC system operation (i.e., the
vertical grey bars in the lower plot). The vertical grey bars for the simulated HVAC system
operation indicate when the simulated heating (i.e., the red line with a square marker) or
cooling (i.e., the blue line with a triangle marker) energy use occurred.

The constant heating/cooling setpoints, and the assumed occupancy, lighting, and
equipment schedules, are also shown in the middle plot of Figure 4. They were estimated
for Run #1. This juxtaposed, superimposed, time-series figure [33] effectively shows the
exact differences of the detailed trends between the simulated and measured data. In the
middle plot, the difference between the measured indoor air temperatures (the green line)
and the simulated indoor air temperatures (the black line) can be clearly seen.
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For example, in Figure 4, it can be seen that the simulated indoor air temperatures
changed more quickly than the measured indoor air temperatures, which implies that the
simulated building lost or gained heat more quickly through the building envelope versus
the observations from the case study building. For example, on Wednesday, February
22, 2017, which was a clear spring day, the simulated indoor air temperatures picked up
quickly in the morning as soon as the solar radiation picked up. However, the average
measured indoor air temperatures from the seven sensors and the measured temperature
at the thermostat increased at a slower rate. In addition, in the afternoon on that same
day, the simulated indoor air temperatures dropped rapidly, while the average measured
indoor air temperatures slowly decreased.

Figure 5 shows the hourly differences between the simulated and measured data
at Run #10 (i.e., the final stage). In the middle plot, improvements in the differences
between the measured indoor air temperature (the green line) and the simulated indoor
air temperature (the black line) can be seen. The middle plot also shows the dynamic
measured heating and cooling setpoints of the smart thermostat that uses the occupancy
schedules and the indoor air temperature (the blue and red lines). Note #1 and Note #2
show the times when the occupant overrode the manual setpoints. In addition, the middle
plot shows that the times when the HVAC system was turned on using the measured
system status data from the smart thermostat. For example, on Saturday, 25 February 2017
at 8:00 p.m., the heating system was turned on, which resulted in the simulated heating
energy use of 0.5 kWh as shown in the lower plot (the red line with the square marker).
At Run #10, the simulated HVAC system operation shown in the lower plot was forced
to match the measured operation shown in the middle plot. In addition, the measured
occupancy diversity factors in the middle plot show that most of the diversity factors
were above 0, which indicates the occupant stayed at home during this time period. For
example, on Thursday, 23 February 2017 at 12:00 p.m., the occupant came back home for
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lunch and moved around the six zones (i.e., 0.86). It is also shown that the smart thermostat
automatically changed the heating and cooling setpoints to the higher heating setpoint
and the lower cooling setpoint by detecting the occupant. In the lower plot, the results
for Run #10 show the simulated whole-building electricity use was well matched with the
measured whole-building electricity use. In addition, the simulated end-use electricity use
was displayed to observe estimated energy behaviors from the simulation model.
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In general, this level of detailed plots and analysis for the tuning process (i.e.,
Figures 4 and 5) is a very useful tool for simulators to better understand the accuracy
and reliability of their building simulation models. In this study, it was found that these
juxtaposed, superimposed time series plots allowed for the exact observation of the simu-
lated/measured indoor environment and energy behaviors, as well as system operation
status, with special attention paid to the temporal characteristics during the tuning process.

4. Discussion

The tuning process developed in this study provided several new improvements over
the previous studies. First, the improved building energy simulation model better predicted
the measured average hourly indoor air temperature profile during the tuning period (see
Figure 5). Although several studies [10–17] reported that they studied how the indoor air
temperatures can be used in the calibration approaches, they did not analyze a dynamic
profile of the indoor air temperatures to improve the outputs of simulation models during
the calibration steps. In addition, the previous studies did use the indoor air temperature
profile that were measured at one or two locations. Therefore, by using simultaneous
measurements of whole-building electricity use and an indoor air temperature profile,
averaged from all the zones, the results from the tuning process of the residential building
energy simulation model used in this study showed an improvement in the reliability of
the model for energy efficiency and comfort analyses.
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Second, the sequence that was developed for tuning the simulation model utilized
three multi-stage steps: (1) it used estimated information for fixed model inputs, (2) it used
measured data for fixed model inputs (e.g., solar radiation, outside humidity, outside air
temperature, inside air temperature, etc.), and (3) it used measured data for model tuning.
In this study, the measured data for fixed model inputs (i.e., measured occupancy data,
measured heating and cooling setpoints, and measured HVAC system’s on and off schedule)
were used to help create an improved building energy simulation model. Particularly, it
was found that the HVAC system’s on and off schedule from the smart thermostat was a
significant parameter affecting the results of the tuning process. The multi-stage approach
using the measured indoor environmental data and the measured HVAC operation data
improved the tuning process when using a simulation model for both the comfort analysis
and the energy use analysis. However, for a future study, it was found that there is a need
to better predict energy-related and non-energy-related occupancy profiles using measured
data. Although the internal heat gains from the occupant(s) are estimated, the use of the
system (e.g., HVAC system and other appliances such as lighting and dryers) on and off
schedules can significantly change the accuracy of the simulation of the whole-building
energy use.

Third, a detailed one-week period was used to demonstrate the tuning process us-
ing juxtaposed, superimposed, time series plots. This process compared measured and
simulated hourly-interval indoor air temperatures and whole-building energy use. The
goal of this paper was to observe how close a simulation program could predict not only
indoor air temperature but also whole-building energy use. Thus, a one-week period of
detailed measured data was used because the one week that was chosen had both periods
of heating and cooling as well as the periods when HVAC system was on and off, including
the periods when the inside temperatures reached heating and cooling setpoints.

The model developed in this study was used to demonstrate how to make a simulation
model more closely match the measured energy use and indoor air temperatures in the
case study residence that has data from a smart thermostat (i.e., HVAC system on and
off data and coincident heating/cooling setpoints data) and smart sensors (i.e., inside
temperature data and occupancy detection data in each room). The results of this study
showed that the simulation results can be closely matched with the measured data. In
addition, tracking each tuning steps allows for a detailed inspection of each step of the
process that better identifies why the simulation result is different from the measured data,
and how each parameter contributed to the tuning process. In contrast to most of the
previous studies, this study found that the simulated hourly HVAC system on and off
status was needed to better match the actual hourly HVAC system on and off status in
order to accomplish the most accurate tuning process for the whole-energy use simulation.
This is an important feature for a well-tuned simulation that is used to simulate a residence
with an occupancy- and temperature-based thermostat control. In future work, a method
to predict the HVAC system on and off status against outside air temperature needs to
be developed for more accurate residential simulation models. In addition, the smart
thermostat used in this study had 5 min intervals to indicate the HVAC system on and
off. However, it did not have runtime data. Thus, future smart thermostats will need to
provide the runtime information to provide more accurate data for the tuning/calibration
approach about how many minutes the system is on during the interval period.

The tuning approach developed in this paper is also very important for the smart
greenhouse building that uses the HVAC system to maintain the optimal indoor air temper-
ature range for growing vegetables and fruits [34,35]. In addition to residential buildings,
the simulation model that reflects the dynamics of indoor air temperature and whole-
building energy use can be effectively used to find the scenarios to increase the products as
well as to save energy use in smart greenhouse buildings.

The limitations of this study include the uncertainty of the estimated information
that was used (i.e., building parameters) such as wall R-value and window U-factor for
model inputs, as well as the impact of the adjusted lighting and equipment schedules in
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the simulation. This study found that such information for the building input parameters is
important for a building energy simulation model. However, the detailed information is not
always available, especially for older, existing residential buildings. Thus, the availability
of data from the smart thermostat is significant to create better residential models [36–38].

5. Conclusions and Future Work

This paper presents the results from the analysis of an improved tuning procedure
for a residential building that uses smart thermostat and smart meter data. The improved
procedure using a side-by-side comparison based on the individual parameter changes was
developed to better match both the whole-building energy use and indoor air temperature.
In this paper, three approaches were identified for the tuning process: (1) estimated infor-
mation for fixed model inputs, (2) measured data for fixed model inputs, and (3) measured
data for model tuning. The use of estimated information for model inputs is a widely-used
approach to create an initial simulation model using information from an onsite visit,
equipment installed onsite, building energy standards, and simulation program default
libraries. However, in this study, measured data from various sensors at the case study
site was used to help tune model inputs to onsite conditions. Particularly, HVAC system
on/off operation status data and heating and cooling setpoint data from a smart thermostat
installed at the case study site were used to improve the residential building energy model
that matches the measured data.

Using both the measured indoor air temperature and measured whole-building energy
use data, a residential building energy simulation model was tuned at the hourly level.
We found that the most significant parameters for predicting the indoor air temperature
and whole-building energy use were the effective U-value of a slab-on-grade floor and the
heating and cooling system operation status, respectively. To effectively tune a simulation
model, it is recommended that the most influential parameters be identified first in the
tuning process that this paper developed.

This paper used statistics (see Figure 3) and graphical displays (see Figures 4, 5, A1 and A2)
to improve the hourly tuning process. These graphical displays provided detailed plots for
the tuning process that helped to better understand how the building energy simulation
model changed to better match the hour-by-hour indoor environment and energy use
during the tuning process. These results also imply that high frequency (i.e., small time
intervals) measurements help improve the accuracy of the tuning process. Tracking each of
tuning steps through statistics and graphical displays can easily detect the differences in
the simulated vs. measured building system data by identifying why the simulation result
is different from the measured data.

For a future study, additional tools for improved matching during the calibration
process need to be developed, including new statistical indices [39] for the calibration of
indoor environmental data and new, more effective graphical calibration displays as shown
in Figures 4, 5, A1 and A2. Even though the suggested approaches were developed using
a manual tuning process, these approaches could be applied to an automated calibration
process. Based on the results of this study, the use of a regression model is proposed that
uses outdoor/indoor air temperatures, whole-building energy use, and system on/off
status for the tuning process. In addition, there is a need to better predict HVAC system on
and off status for the annual-period tuning process.

As more data from smart technologies and/or Internet of Things (IoT) in residential
and other buildings become available, the approaches described in this study will be useful
for building energy modelers.
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Appendix A

Table A1. Parameters used for the initial simulation in the case study residence.

Construction

Residence type Townhouse, attached house
Constructed year 1982

Orientation West
Gross area 111 m2

Number of floors 1
Height 2.7 m

Construction Wood
Floor Slab on grade

Wall color Dark
Wall area 133 m2

Wall R-value 2.16 m2-K/W (12.24 hr-ft2-◦F/Btu)
Stud spacing 38.1 mm × 88.9 mm (2 in × 4 in nominal)
Window type Single pane
Window area 10 m2

Window frame type Aluminum or steel
Window U-factor 0.11 W/m2-K (0.65 Btu/hr-ft2-◦F)
Window SHGC 0.30

Roof configuration Unconditioned, vented attic
Roof color Medium

Roof R-value 4.90 m2-K/W (27.8 hr-ft2-◦F/Btu)
Roof slope 45◦

Space conditions
Number of occupants 1

Setpoint Heating 23.3 ◦C (74.0 ◦F)/Cooling 23.9 ◦C (75.0 ◦F)
Heating and Cooling system

Fuel Electricity
System Type Heat pump (Air to Air)

Capacity 7 kW
Heating Efficiency HSPF 6.8
Cooling Efficiency SEER 10
System Location Attic

Condenser Location Outside
Manufacturer/year Goodman CPKJ30-10/approx. 2006

DHW system
Fuel Electricity

Capacity 0.15 m3

Efficiency 1.0
Location Conditioned zone

Manufacturer/year Whirlpool model # EE2H4DRX9R5V/Unknown
Appliances

Internal equipment
1-Refrigerator, 1-clothes washer, 1-clothes dryer,

1-dish washer, 1-range and oven, 2-television, and
1-laptop

Lighting
Interior lighting: 20-overhead light bulbs and

1-standing lamp
Exterior lighting: 1-light bulb
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Figure A1. Run #1 base-case simulation model results showing IATs, coincident weather data, and
electricity use from Monday to Sunday (from 20 February 2017 to 26 February 2017).
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Figure A2. Run #10 simulation model results showing IATs, coincident weather data, and electricity
use from Monday to Sunday (from 20 February 2017 to 26 February 2017).
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