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Abstract: Rock disasters caused by rock fractures seriously threaten the safe and sustainable mining
of deep coal resources. The infrared thermal imaging of rock fractures has a non-uniform distribution.
This is important information for the monitoring and early warning of rock mass instability. In this
paper, the multi-fractal theory was introduced to analyze the infrared thermal image obtained from
the uniaxial loading of sandstone, which is expected to provide quantitative indicators for the infrared
monitoring of rock failure. The results show that the multi-fractal parameters ∆α (non-uniformity of
temperature) and ∆ f (frequency diversity of minimum and maximum temperature) can be used to
describe the distribution of the thermal field; they are sensitive to the rock macro fracture. Both ∆α

and ∆ f are constant during the initial loading stage. When the samples yield and there is a failure in
the later stage of loading, the ∆α and ∆ f change abruptly. The sudden change in ∆α and ∆ f can be
regarded as the precursor to rock failure. The research results preliminarily show the feasibility and
potential of multi-fractal analysis in rock mass disaster monitoring and early warning.

Keywords: quantitative analysis; infrared thermal image; multi-fractal theory; sandstone; fracture

1. Introduction

China’s coal resources have gradually entered the deep stratum, due to the depletion
of shallow resources. In the process of deep mining, coal and rock mass are in a more
severe geomechanical environment of high geostress, high ground temperature and strong
dynamic disturbance. Moreover, rock mass disasters (e.g., rockburst, roof caving) caused
by rock fracture occur often [1–4], which seriously threatens the safety and sustainability
of mining. To predict these disasters, various monitoring methods have been proposed
and applied, such as acoustic emission (AE) [5], electromagnetic radiation (EMR) [6,7]
and infrared radiation (IRR) [8–11]. Among them, infrared technology is considered to
be a potential method for monitoring rock mass instability; it assumes that the infrared
radiation temperature (IRT) of the rock surface changes in the process of rock deformation
and fracture [12–16]. Infrared technology has the characteristics of being non-destructive,
non-contact and observable. It is also widely used and studied in different rock engineering
fields, such as roadway excavation [17] and landslides [18].

A large number of scholars have studied the characteristics of IRR in the rock loading
process. Deng et al. [19,20] found that the IRT of rock increases with an increase in stress;
an abnormal high or low temperature region on the infrared thermal image appears when
the rock fractures. Wu et al. [21–24] explored the characteristics of the temperature–time
curve and infrared thermal image in the rock loading process through different loading
experiments (uniaxial compression, shear, impact, etc.). They took the abrupt change in
average infrared radiation temperature (AIRT) and infrared thermal image as the precursor
to rock failure. Moreover, the shear fracture of rock causes the IRT to rise and the tensile

Sustainability 2022, 14, 6543. https://doi.org/10.3390/su14116543 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14116543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7776-5285
https://orcid.org/0000-0001-9847-6733
https://doi.org/10.3390/su14116543
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14116543?type=check_update&version=1


Sustainability 2022, 14, 6543 2 of 11

fracture causes the IRT to decrease. Freund [25] studied the IRR during the loading process
of granite and put forward the P-hole theory; he considered the electron flow in the rock
as the source of IRR. Cao et al. found that the AIRT rate of rock before and after dilatancy
changes [26,27]. Sun et al. [16] compared the AE and IRR characteristics of rocks during the
true triaxial loading and unloading experiments. Li et al. [28] investigated the characteristics
of IRR during the loading of coal containing gas. However, all the above research focused
on the application and mechanism of infrared technology, while most descriptions of IRT
and infrared thermal images are qualitative, which is not conducive to the further practical
application of such technology to engineering.

Therefore, some work has been done to put forward the quantitative description
method of IRR and to try to find the effective indicators for the early warning signs of rock
mass instability. For instance, Liu et al. [29] and Ma et al. [30,31] used variance, entropy,
feature roughness and b-value to capture the evolution characteristics of infrared thermal
images. Shen et al. [8] adopted the method of critical slowing down to quantitatively
analyze the maximum infrared radiation temperature (MaxIRT). In fact, when the rock
fracture occurs, the infrared thermal image clearly shows areas of either abnormally high
temperature (shear fracture zone) or abnormally low temperature (tensile fracture zone),
and the temperature distribution is uneven. Moreover, the simultaneous existence of
a high-temperature anomaly area and low-temperature anomaly area may cause little
change in AIRT. Therefore, a better description of this infrared thermal image feature is
very important and necessary. On the other hand, the multi-fractal theory can be used to
describe the complexity and heterogeneity of data and it has been widely used in different
disciplines [32–35]. Thus, it is possible to introduce the multi-fractal theory to the analysis
of complicated infrared thermal images.

In this paper, the uniaxial compression test of sandstone samples was carried out
and the IRR was collected simultaneously. The multi-fractal theory was introduced to
quantitatively describe the infrared thermal image characteristics of the rock loading
process, which is expected to provide new indicators and guidance for the monitoring and
early warning signs of rock disasters.

2. Experimental Process and Analysis Method
2.1. Materials and Experimental System

According to the standards of the international society of rock mechanics (ISRM),
standard samples of Φ 50 mm × 100 mm were prepared to carry out the uniaxial com-
pression tests. The samples were made of red sandstone from the Linfen mining area,
Shanxi Province. The density of the rock used is 2454.65 kg/m3. In order to ensure the
homogeneity of the samples, the P-wave velocity of the samples was tested. The wave
velocities of all samples are about 3.51 km/s and the homogeneity between samples is good.

The test system consists of two main parts: a loading system and an IRR data ac-
quisition system. The loading system adopted the new SANS microcomputer-controlled
electro-hydraulic servo pressure testing machine. The maximum load capacity is 3000 kN.
The IRR data acquisition system adopted the Optris PI450 high-resolution infrared thermal
imager. The optical resolution is 288 × 382 pixels; the temperature measurement range is
−20~100 ◦C; the spectral range is 7.5~13 µm; the frame frequency is 80 Hz; the field-of-view
angle is 30◦ × 23◦; and the thermal sensitivity is 0.04 k.

To reduce the interference of the external environment, all tests were carried out in an
AFGP-II high-efficiency electromagnetic-shielding room. The infrared thermal imager was
arranged 50 cm away from the sample and the infrared thermal image acquisition rate was
set at 10 Hz. Before the test, the infrared thermal imager was turned on for about 30 min
to preheat and the loading was started after the imager was stable. The loading rate was
controlled as 400 N/s. Once loading was completed, the force, displacement and the IRR
data were synchronously measured and stored. The test was finished upon the failure of
the sandstone.
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2.2. IRR Principle of Rock Fracture

Any object with a temperature higher than absolute zero (−273.15 ◦C) emits waves in
a very wide wavelength range in the form of electromagnetic radiation. IRR is an electro-
magnetic wave in the wavelength range of 0.7–1000 µm and the part with a wavelength of
2.5–15 µm has a thermal effect. The IRR wave is collected by an infrared thermal imager
and converted into temperature information according to the Stefan–Boltzmann law [16,36]:

We = εαT4 (1)

where We is the radiant energy intensity; ε is the emissivity; α is a constant; and T is the
absolute temperature (K). The principle is shown in Figure 1. Under the action of stress,
the internal energy of rock transforms and causes IRR. The IRR can reflect the stress state
of rock. The change in infrared radiation temperature is the comprehensive result of the
thermoelastic effect, pore gas desorption and escape effect, fracture effect, friction thermal
effect, heat transfer effect and environmental radiation effect [24,37].
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Figure 1. Schematic diagram of infrared technology.

2.3. Multi-Fractal Theory

The upper left of Figure 2 shows the original infrared thermal image, which is es-
sentially a matrix composed of IRT data. Each pixel corresponds to the IRT data of the
corresponding position. If the optical resolution of the instrument is 288 × 382 pixels, the
output result will be an IRT matrix T288×382 with the size of 288× 382. The IRT matrix xm×n
at the sample position (valid area) is extracted by MATLAB software, and the multi-fractal
characteristics of the data in the matrix are analyzed according to the literature [38,39].
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The matrix xm×n is divided into boxes of size k× k. The probability density of the box
subset (i, j) is

{
Pij(k)

}
. The probability distribution

{
Pij(k)

}
is calculated for each subset:

Xq(k) ≡∑ Pij(k)
q ∼ kτ(q) (2)

τ(q) = lim
k→0

ln Xq(k)
ln k

(3)

α =
d(τ(q))

dq
=

d
dq

(
lim
k→0

ln Xq(k)
ln k

)
(4)

f (α) = αq− τ(q) (5)

Among them, Xq(k) is the defined partition function, that is, the statistical moment.
τ(q) is the quality index, with −∞ < q < +∞. α is a constant, called the singularity index,
which controls the singularity of

{
Pij(k)

}
. It reflects the non-uniformity of the probability

subset under different k. f (α) means the frequency of the subset represented by α in all
subset sets and it is also the fractal dimension of subset α.

The curve α− f (α) is the multi-fractal spectrum of the calculated matrix. The width
of the spectrum ∆α = αmax − αmin reflects the differences among the distribution of temper-
ature data. The larger the value of ∆α, the greater the non-uniformity of temperature and
the more obvious the multi-fractal characteristics. The difference between the frequency
of the lowest temperature data and that of the highest temperature data can be obtained
by ∆ f = f (αmax)− f (αmin). A smaller value of ∆ f represents a greater proportion of high
temperature data and vice versa. ∆ f > 0 indicates that the low temperature data dominates,
while ∆ f < 0 signifies the domination of high temperature data.

Therefore, the values of ∆α and ∆ f can be used to describe the differences in infrared
thermal images and the dominant temperature data, respectively. The evolution of these
two multi-fractal indicators during the loading can be used to identify the characteristics of
the thermal field.

3. Analysis and Discussion of Experimental Results
3.1. Time Series Change in IRT

Two typical samples were taken as examples for subsequent analysis, and their num-
bers were S-1 and S-2, respectively. Figure 3 shows the stress and strain of the two samples
during the loading process, as well as the changes in MaxIRT, AIRT and the minimum IRT
(MinIRT) on the surface of the samples. The loading process of rock can be roughly divided
into three stages. I (Compaction stage): the primary pores are closed, the deformation
is large and the deformation rate decreases gradually. II (Elastic deformation stage): the
strain increases linearly with the increase in stress. III (Yield and failure stage): the strain
increases unsteadily, and a large number of micro fractures gather to form macro fractures.
When the stress reaches the peak value, the failure occurs.

In the early stages (I and II) of loading, the changes in MaxIRT, AIRT and MinIRT are
highly synchronous, which indicates that the surface temperature changes are uniform and
integral. The initial MaxIRT, AIRT and MinIRT of sample S-1 are about 31.19 ◦C, 30.58 ◦C
and 20.8 ◦C, respectively, and then the curves show a slow decline trend, but little change.
The initial MaxIRT, AIRT, and MinIRT of sample S-2 are about 30.04 ◦C, 29.63 ◦C, and
29.02 ◦C, respectively, and then the curves are slightly inflected, but they are also basically
unchanged. In most experiments, the IRT of the rock increases during the loading process,
but occasionally the IRT continues to decrease, which may be caused by the exhaust gas
after the rock pore is compressed [8]. The abnormal temperature fluctuation in the early
stages of loading may be caused by changes to the microstructure inside the sample, such
as the closure and propagation of microcracks caused by stress adjustment [14].
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In stage III, the specimens begin to show obvious macro fractures and the surface
infrared temperature fields show local abnormal changes. In the moment of failure, the
MaxIRT of sample S-1 increases from 30.54 ◦C to 31.16 ◦C and then gradually drops, while
AIRT drops and MinIRT drops significantly. For sample S-2, MaxIRT significantly increased
from 29.94 ◦C to 33.19 ◦C and then gradually cooled down, with AIRT being slightly
increased, while MinIRT remained basically unchanged. This is related to the failure modes
of different specimens, which will be discussed in more detail in the next section.
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3.2. Multi-Fractal Analysis of Infrared Thermal Images

The infrared thermal images of two samples at several typical moments (a1-e1, a2-e2)
were selected. The positions of different time points are shown in Figure 3. The multi-
fractal characteristics of IRT field data at each time were calculated. Figures 4 and 5a show
the calculation results of sample S-1. The infrared thermal images in all the figures were
redrawn by Surfer software. At the time of a1 (47.03 s), the ∆α is low, meaning that the
degree of non-uniformity of the infrared temperature field data distribution is small, and
∆ f is close to 0. With the loading process, the infrared temperature field changes as a whole.
At the time of b1 (190.88 s), the values of ∆α and ∆ f show little change. At c1 (343.45 s),
the loading is close to the peak stress of the specimen, and a macro fracture occurs. The
temperature field of the surface is in the abnormally high-temperature region and develops
continuously. At d1 (345.73 s), the sample is destroyed, and there is an obvious shear
fracture zone on the surface and some rock blocks fall off in the tensile fracture zone.
The MaxIRT of the fracture zone is 31.16 ◦C and the temperature of the falling off area is
the temperature of the background environment. In the process of c1-d1, the difference
in infrared temperature distribution on the surface of samples gradually increases and
∆α increases. The performance of high temperature data is gradually dominant, so ∆ f
decreases. e1 (350.79 s) is the moment after the failure of the sample, at which time the
temperature decreases, but the difference in the temperature distribution is still significant.

Figures 5b and 6 show the calculation results of sample S-2. Local shear failure occurs
in the sample and the changing trend of ∆α and ∆ f is similar to that of sample S-1. However,
during the failure of the sample, the increase in ∆α and the decrease in ∆ f are much lower
than those of S-1. The reason may be that the falling off of some rocks increases the
difference in the infrared temperature field distribution of S-1. The shear fracture area of
S-1 is more serious, so the high temperature data performance is better, even if the increase
in MaxIRT of S-2 is greater than that of S-1.

In general, ∆α and ∆ f are very sensitive to the macroscopic fracture of the rock. In the
early stages of loading, the IRT of the sample surface changes uniformly as a whole and ∆α
and ∆ f are basically unchanged. Entering the yield and failure stage, the macro-fracture of
the sample results in changes to ∆α and ∆ f . This shows the validity of the indicators. The
sudden change in ∆α and ∆ f can be used as a precursor to the occurrence of rock disasters.

In addition, the experimental results show that the variations in ∆α and ∆ f are closely
related to the failure mode of the rock. Different fractures lead to different infrared tem-
perature distributions. For example, due to the frictional thermal effect, the more severe
the shear fracture, the better the high temperature data performance and the more uneven
the overall temperature distribution. This results in an increase in ∆α and a decrease in ∆ f .
However, the failure mode of the rock is related to rock type, loading mode, water bearing
state and so on. Therefore, we intend to carry out more experiments to establish a deeper
relationship between rock fracture and multi-fractal indicators.
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uneven the overall temperature distribution. This results in an increase in ∆𝛼 and a de-
crease in ∆𝑓. However, the failure mode of the rock is related to rock type, loading mode, 
water bearing state and so on. Therefore, we intend to carry out more experiments to es-
tablish a deeper relationship between rock fracture and multi-fractal indicators. 

Figure 6. Multi-fractal features of infrared thermal images at different time points of S-2: (a) a2; (b)
b2; (c) c2; (d) d2; (e) e2.

4. Conclusions

In this paper, a uniaxial compression experiment of sandstone is carried out and the
infrared radiation is monitored at the same time. The multi-fractal theory was introduced
to analyze infrared thermal images. The infrared thermal image of rock during loading
has multi-fractal characteristics. The multi-fractal parameters ∆α (non-uniformity of tem-
perature) and ∆ f (frequency diversity of minimum and maximum temperature) are not
sensitive to changes to the infrared thermal image in the early stage of loading, but are
more sensitive to the macro fracture of rock. When the samples yield and fail in the later
stage of loading, they have an obvious response. The sudden change to ∆α and ∆ f can be
regarded as the precursor of rock failure. The research results preliminarily show that the
multi-fractal analysis of infrared thermal images can provide reference for the monitoring
and early warning signs of rock mass disasters, which has great application value. In the
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future, we intend to establish a deeper relationship between multi-fractal indicators and
rock fracture.
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