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Abstract: This study demonstrated associations between multimodality and built environment char-
acteristics, and proposed policy implications for fostering multimodal travel behaviors. It conducted
a U.S. nationwide analysis using ordinary least square regression and gradient boosting decision
tree regressor models with American Community Survey 2015–2019 5-year estimates and the United
States Environmental Protection Agency Smart Location Database version 3.0. Notable findings
were as follows: First, built environment characteristics were found to be statistically significant
predictors of multimodality across the U.S. Second, certain features were identified as having con-
siderable importance, specifically including population density, regional accessibility, walkability
index, and network density, all of which should be given particular attention by transportation and
land-use planners. Third, the non-linear effects of built environment characteristics on multimodality
suggested an effective range to encourage multimodal transportation choice behaviors in various
situations. The findings can guide the development of effective strategies to transform the built
environment, which may subsequently be used to minimize reliance on automobiles and promote
people to travel more sustainably.

Keywords: multimodality; built environment; planning; U.S. nationwide analysis

1. Introduction

Multimodality refers to a modal variety that includes single-occupied vehicles as
well as public transit, bicycling, walking, carpooling, and other modes; in other words,
many perceive it as a counter-movement to autocentrism [1]. Multimodality has gained
popularity in urban affairs and transportation planning studies [2], since it has been in-
terconnected to economic, environmental, and social benefits [3–6]. Accordingly, there
have been strategies for encouraging sustainable mobility patterns mainly at three levels,
including the vehicle level, the transportation system (e.g., infrastructure), and the level of
traffic participants (e.g., vehicle owners) [7]. However, the role and importance of the built
environment on multimodality have not been sufficiently explored and considered from
the planning perspective. Therefore, the purposes of this study were to (1) demonstrate
associations between multimodality and built environment characteristics and (2) propose
policy implications for fostering multimodal travel behaviors. The research questions were
as follows: (1) whether there were significant relationships between multimodality and
built environment characteristics across the United States, (2) whether the built environ-
ment characteristics were more important than other covariates in showing multimodal
travel patterns, and (3) whether there were non-linear effects. Having these types of in-
sights will ultimately aid in the development of appropriate plans and policies to promote
multimodality more effectively. The following sections review previous literature, describe
the research design, present findings, and conclude this study.

2. Literature Review

This study attempts to connect two bodies of the previous literature: (1) multimodality
and (2) the relationship between travel behavior and the built environment. Thus, this
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section presents the two themes to offer a broader context of this study and then discusses
the research gap and contribution of this work.

2.1. Multimodality
2.1.1. Needs for Multimodality

Transportation mode choice behavior is intertwined with many aspects of our lives,
such as employment, housing, schools, shopping, and health [8]. As the automobility
system has evolved and established itself as the dominant mode of transportation, it has
pushed other modes of transportation, such as public transit and active transportation, to
the sidelines [9]. The widespread use of automobiles has linked to obesity, traffic congestion,
environmental pollution, urban sprawl, and social marginalization, which have been long
acknowledged as severe consequences [6,10–14]. Moreover, the automobile-dependent
society cannot meet the diverse transportation needs of different population groups, such
as youths, seniors, adults unable to drive due to disability, and low-income households
burdened by vehicle expenses.

Accordingly, planners and researchers are attempting to understand how a tran-
sition from automobile use toward more sustainable modes of transportation can be
achieved [9,15,16]. These considerations underline the practical importance of knowing the
circumstances under which people increase their usage of diverse transportation modes in
their daily lives [17] to not only alleviate a variety of issues that an auto-dependent society
can cause, but also bring benefits, such as quality of life [18].

2.1.2. Factors Influencing Multimodality

A small body of literature has explored factors influencing multimodality. For instance,
they generally found that multimodality has been significantly associated with several socio-
demographic characteristics, such as household income, employment status, education
attainment, and race/ethnicity [19–21]. Additionally, previous literature has identified
additional factors, including personal attitudinal features, car ownership, and current travel
behaviors [22,23]. In addition, Astroza et al. [24] found that utilizing technology, such as
smartphones, resulted in an expansion of the multimodal travel dimensions. Interestingly,
Scheiner et al. [17] demonstrated significant associations between life-course events and
multimodal travel behaviors; for instance, the multimodality of the parents increases when
a child leaves the household.

2.2. Travel Behavior and Built Environment

Another body of literature on this study contributes to understanding how travel
behavior and built environment characteristics have been connected [25–28]. The built
environment in the literature has generally been operationalized in so-called D variables,
which include density (e.g., population density), diversity (e.g., job–housing balance),
design (e.g., intersection density), destination accessibility (e.g., regional centrality), and
distance to transit.

Previous studies in the U.S. have observed the associations between built environ-
ments and travel behavior of different types of transportation, such as vehicles, public
transportation, and active transportation. For instance, Sabouri et al. [29] found a significant
association between vehicle ownership and built environment characteristics. Moreover,
previous studies have acknowledged the significant association between bicycling and
the D variables [30–32]. Additionally, existing research has explored the impact of the
built environment on the ridership of shared mobility services, such as ride-hailing and
bike-sharing services [33–35]. For instance, Malik et al. [36] observed that individuals
in vibrant and walkable communities have a higher proportion of choosing ride-hailing.
Additionally, population and employment density, transit density, university density, and
the degree of mixed land use were positively and significantly associated with the trip
generation of bike-sharing services [37,38]. In sum, generalizing this vast literature, the D
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variables that quantify built environment characteristics have been significantly associated
with travel behavior at the individual or zonal levels in the U.S.

2.3. Research Gaps and Contribution of This Study

The literature review identified several research gaps. First, the connection between
multimodality and the built environment features has not been fully explored. Second, a
large body of research has examined the relationship between travel behavior of a particular
transportation mode, such as ride-hailing services, and the built environment. Third, this
strand of literature has investigated limited geographical scales (e.g., a case study of a city).
Fourth, to the best of my knowledge, none of the previous literature has employed both
econometrics models and machine learning algorithms to address a variety of questions.

Therefore, this study aims at enriching the body of literature by filling the critical
gaps and investigating the following three research questions. First, were relationships
between the built environment and multimodality significant at the Census Block Group
level throughout the United States? Second, to what extent did the built environment
characteristics play a role in showing multimodal travel behaviors? Third, were there
non-linear effects of built environment features on multimodality? The answers to the
three questions contribute to the existing body of research and inform policymakers about
transforming travel behaviors in a more sustainable manner.

3. Materials and Methods

This section describes the study area, data, and methodological approaches used to
address the three research questions in this study.

3.1. Study Area and Data Collection

This study area was the United States. A few large-scale studies conducted in the
United States have focused on several metropolitan areas [35,39,40]. In this case, selection
bias may exist since travel behaviors in highly populated areas such as metropolitan areas
may differ from those in less densely populated areas. Therefore, this study did not use a
certain population cap (e.g., metropolitan area with 200,000 persons or greater) to exclude
certain areas.

This study used two publicly available data sources: (1) American Community Survey
2015–2019 5-year estimates (ACS) and (2) the United States Environmental Protection
Agency Smart Location Database version 3.0 (SLD). The two data sets were appropriate
since they contained crucial information for this study, such as commuter transportation
mode choices and built environment characteristics with representative samples throughout
the U.S. Unfortunately, since ACS does not collect data on trips that are not considered
commutes, including trips for recreation, school, and personal obligations, this study only
focused on commute trips. Given differences in commute and non-commute trip patterns
in the U.S., it is one of the limitations of this study.

This study did not use the latest data (i.e., ACS 2020) for the following reasons. First,
ACS 2020 contained information derived from an interview sample of persons interviewed
between March and December 2020, indicating that the data included some information
since the COVID-19 outbreak. It can raise a validity issue of the final results due to the
considerable influence of the pandemic on the transportation sector in the U.S. [41–44].
Additionally, according to Census Bureau [45], the pandemic adversely influenced the
data collection process and may produce quality issues. Specifically, the sample obtained
may not represent the entire population in the U.S. because the final number of interviews
significantly reduced in 2020 [46].

The unit of analysis was the census block group (CBG), the smallest geographical unit
in the nationwide data sets used in this study. Initially, data included 220,333 CBGs in the
U.S. The sample was reduced due to missing values in either ACS or SLD for the large
number of variables used in this study. Thus, the results of this study presented here were
based on 206,380 valid CBGs.
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3.2. Variables

This subsection summarizes the rationale for constructing and selecting dependent
and independent variables. Table 1 describes the details of the variables, and Table 2 shows
their descriptive statistics.

Table 1. Variables used in this study.

Name Description Equation Data
Source

Dependent Variable
Multimodality

index Entropy index for multimodality Y ACS

Independent Variables of Interest

Pop_den The total population per acre at the census
block group level in 10,000 X1 ACS

Diversity_HH_job Jobs to household balance in 1,000 X2 SLD

Diversity_job

Entropy index for job diversity at the census
block group level using the eight-tier

employment categories, including retail,
office, industry, service, entertainment,

education, healthcare, and public sectors

X3 SLD

Net_den Network density in 10,000 X4 SLD
Int_den Intersection density in 10,000 X5 SLD

Walkability index
Walkability index characterized by

components of the built environment that
influence the likelihood of walking

X6 SLD

Job_proximity Percentage of residents who take less than
10 min to commute in 10 X7 SLD

Auto_accessibility The relative regional accessibility measure by
using the regional centrality index by auto X8 SLD

Transit_accessibility The relative regional accessibility measure by
using the regional centrality index by transit X9 SLD

Independent Variables
HH_size Average household size X10 ACS

HH_income Median household income in 10,000 X11 ACS

White Percentage of the residents who are
non-Hispanic white in 10 X12 ACS

Black Percentage of the residents who are
non-Hispanic black in 10 X13 ACS

Asian Percentage of the residents who are
non-Hispanic Asian in 10 X14 ACS

Single Percentage of the residents who have not
married in 10 X15 ACS

Low education
Percentage of the residents who attained less

than a bachelors’ degree, including high
school and college, in 10

X16 ACS

No_car Percentage of the residents who do not own a
car in 10 X17 ACS

Work_at_home Percentage of the residents who work at home
in 10 X18 ACS

Note: All variables are at the census block group (CBG) level. Further details on independent variables can be
found in the technical documentation of the two data sources. Source: American Community Survey 2015–2019
5-year estimates (ACS) and the United States Environmental Protection Agency Smart Location Database version
3.0 (SLD).
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Table 2. Descriptive statistics of the variables (N = 206,380).

Variables Mean Median Std. Dev Min Max

Multimodality index 0.555 0.525 0.27 0.000 1.588
Pop_den 0.635 0.264 1.53 0.000 81.131

Diversity_HH_job 0.001 0.001 0.01 0.000 1.631
Diversity_job 0.539 0.576 0.22 0.000 0.994

Net_den 0.001 0.001 0.00 0.000 0.012
Int_den 0.007 0.006 0.01 0.000 0.193

Walkability index 9.596 9.167 4.35 1.000 20.000
Job_proximity 1.293 0.961 1.22 0.000 10.000

Auto_accessibility 0.433 0.441 0.28 0.000 1.000
Transit_accessibility 0.112 0.000 0.20 0.000 1.000

HH_size 2.633 2.560 0.59 1.010 9.250
HH_income 6.707 5.917 3.63 0.249 25.000

White 7.313 8.232 2.63 0.000 10.000
Black 1.314 0.299 2.23 0.000 10.000
Asian 0.469 0.073 0.98 0.000 10.000
Single 3.319 3.076 1.42 0.000 10.000

Low education 7.008 7.521 2.04 0.000 10.000
No_car 1.402 0.620 1.92 0.000 10.000

Work_at_home 0.492 0.350 0.55 0.000 10.000

3.2.1. Dependent Variable: Operationalizing Multimodality

This study used the multimodality index as a dependent variable. This study used the
entropy index to operationalize multimodality at CBGs, a widely-used matrix to represent
diversity in a variety of fields [47,48].

The entropy index was appropriate in this study for the following reasons. First
and foremost, the entropy index adequately assesses the evenness of the distribution
across the shares of different transportation modes for commute trips, including single-
occupied vehicles, carpooling, public transportation, active transportation (e.g., bicycling
and walking), and others at CBGs. Second, a straightforward variation ratio to measure
the share of trips made by certain transportation modes [18] can be inappropriate due to
the absence of consideration of the distribution of diverse transportation mode choices.
Third, previous literature has developed diverse indicators, including the Herfindahl index,
Dalton index, and probability-based multimodality indicator [5,17,49]. However, given that
a comparative study by Diana and Pirra [50] revealed that none of the indices consistently
outperforms all the others in any situation, the choice of the entropy index over others may
not pose a threat to the validity of the final models in this study.

The multimodality index (MIi) is formalized as follows:

MIi = −[Ssov,i × log(Ssov,i) + Scp,i × log
(
Scp,i

)
+ Spt,i × log

(
Spt,i

)
+ Sat,i × log(Sat,i)

+Sothers,i × log(Sothers,i)]
(1)

where Ssov,i is the share of single-occupied vehicles for commute trips at CBG i, Scp,i is the
share of carpooling, Spt,i is the share of public transportation, Sat,i is the share of active
transportation, and Sothers,i is the share of other modes of transportation.

3.2.2. Independent Variables

This study used nine independent variables of interest regarding built environment
characteristics based on the D variables established in previous literature [26]: (1) den-
sity (i.e., population density), (2) diversity (i.e., job–household balance and job diversity),
(3) design (i.e., intersection density, network density, and walkability index), and (4) des-
tination accessibility (i.e., proximity to job and regional accessibility by car and transit).
Unfortunately, this study dropped one important variable: the network distance to the
nearest transit station, due to two-thirds of the missing values in the data set. Specifically,
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since SLD omitted CBGs that were further than three-quarter miles from a transit stop,
the inclusion of the variable may lead to the validity issue of the results. Further details,
such as the equations to operationalize the built environment indicators, advantages, and
limitations, can be found in the SLD technical documentation [51].

This study controlled for nine covariates since multimodality has been significantly
associated with the factors, such as household income, employment status, education
attainment, car availability, and race/ethnicity [20,22]. This study did not apply the regional
dummy variable to control the spatial heterogeneity among regional areas because it can
lead to over-fitting issues, particularly in a machine learning algorithm. Figure 1 shows
the Pearson correlation matrix between any two variables used in this study and indicates
that a multicollinearity issue may be present. However, variance inflation factors (VIFs) of
variables in Table 3 were lower than 10, confirming that the inclusion of all 18 variables in a
model should not be cause for concern.

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 

𝑀𝐼 = −[𝑆௦௩,  ×  log൫𝑆௦௩,൯ + 𝑆,  ×  log൫𝑆,൯ + 𝑆௧,  ×  log൫𝑆௧,൯ + 𝑆௧,  ×  log൫𝑆௧,൯+ 𝑆௧௦,  ×  log൫𝑆௧௦,൯] (1)

where 𝑆௦௩, is the share of single-occupied vehicles for commute trips at CBG i, 𝑆, is 
the share of carpooling, 𝑆௧, is the share of public transportation, 𝑆௧, is the share of ac-
tive transportation, and 𝑆௧௦, is the share of other modes of transportation. 

3.2.2. Independent Variables 
This study used nine independent variables of interest regarding built environment 

characteristics based on the D variables established in previous literature [26]: (1) density 
(i.e., population density), (2) diversity (i.e., job–household balance and job diversity), (3) 
design (i.e., intersection density, network density, and walkability index), and (4) destina-
tion accessibility (i.e., proximity to job and regional accessibility by car and transit). Un-
fortunately, this study dropped one important variable: the network distance to the near-
est transit station, due to two-thirds of the missing values in the data set. Specifically, since 
SLD omitted CBGs that were further than three-quarter miles from a transit stop, the in-
clusion of the variable may lead to the validity issue of the results. Further details, such as 
the equations to operationalize the built environment indicators, advantages, and limita-
tions, can be found in the SLD technical documentation [51]. 

This study controlled for nine covariates since multimodality has been significantly 
associated with the factors, such as household income, employment status, education at-
tainment, car availability, and race/ethnicity [20,22]. This study did not apply the regional 
dummy variable to control the spatial heterogeneity among regional areas because it can 
lead to over-fitting issues, particularly in a machine learning algorithm. Figure 1 shows 
the Pearson correlation matrix between any two variables used in this study and indicates 
that a multicollinearity issue may be present. However, variance inflation factors (VIFs) 
of variables in Table 3 were lower than 10, confirming that the inclusion of all 18 variables 
in a model should not be cause for concern. 

 
Figure 1. Pearson correlation matrix between variables. Figure 1. Pearson correlation matrix between variables.

3.3. Analytic Strategies

This study developed two models to answer the three research questions: (1) the
ordinary least square regression model in econometrics and (2) the gradient boosting
decision tree regressor model in machine learning.

3.3.1. Ordinary Least Square Regression

This study first employed the ordinary least square (OLS) regression model to ex-
plore (1) statistically significant relationships between the multimodality index, and mul-
tidimensional covariates, including built environment characteristics, (2) directions, and
(3) magnitudes. The equation of OLS is as follows:

y = β0 + β1X1 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 + β9X9 + β10X10 + β11X11
+β12X12 + β13X13 + β14X14 + β15X15 + β16X16 + β17X17 + β18X18 + ε

(2)
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where the dependent variable y is the multimodality index, and ε denotes the error term.
The focus of the model was on the parameter estimate βi for variables Xi described in
Table 1.

Despite the possible spatial correlations observed in Figure 1, this study did not control
for spatial autocorrelation in the final model since it may be less valuable to consider
the spatial relationships when the unit of analysis is an administrative boundary (i.e.,
CBGs) [35]. Two regional job accessibility variables (X8 and X9) were instead included to
capture the influence of contextual effects that may exist within it.

Moreover, this study did not use a multilevel regression, which is the widely-used
method in previous literature to explore relationship between built environment and travel
behavior [27], since there was no variance associated with the levels of the data used in
this study.

3.3.2. Gradient Boosting Decision Tree Regressor

This study also used Gradient Boosting Decision Tree Regressor Model (GBDT) pro-
posed by Friedman [52]. The machine learning algorithm has not been employed previously
in the literature, although it is capable of estimating feature importance and non-linearity,
which aids in answering the remaining two research questions and provides vital insights
into this study. Noteworthy is the fact that the GBDT does not differentiate between causes
and effects; rather, it draws associations between the dependent variable (target) and the
covariates (input features).

The underlying process of the algorithm is to merge a series of weak base classifiers
with different weights into a final one [53]. It is different from the traditional boosting
algorithm since it causes global convergence of the algorithm by following the direction of
the negative gradient [54]. Its generic procedure consists of several steps when {xi, yi}n

i=1
assumes the dataset [55,56]. Specifically, the first step initializes the initial constant value of
the algorithm β:

fo(x) = arg minβ

N

∑
i=1

L(yi, β) (3)

Second, the gradient direction of residuals (called pseudo-residuals) is estimated for
the number of iterations m to M:

yi = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(X)−Fm−1(x)

, i = {1, 2, . . . , N} (4)

Third, the basic classifiers are used to fit sample data and produce the initial algorithm
(also called base learner). The least squared approach finds the parameter of the algorithm
am and fits the algorithm h(xi; am):

am = arg minα,β

N

∑
i=1

[yi − βh(xi; α)]2 (5)

Then, the following loss function is minimized by solving the one-dimensional opti-
mization problem:

βm = arg minα,β

N

∑
i=1

L(yi, Fm−1(x) + βh(xi; α)) (6)

The fifth step updates the model:

Fm(x) = Fm−1(x) + βmh(xi; α) (7)

Finally, the final classification algorithm Fm(x) is produced. The residuals steadily
decrease during the stepwise process, and the loss approaches approximately the minimum.
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After training the optimal GBDT algorithm with hyperparameters tuned in the grid-
search, this study used two global model-agnostic explainable AI (XAI) approaches [57,58]
to answer the remaining two questions: (1) permutation-based feature importance (PBFI)
and (2) partial dependence plot (PDP).

This study calculated PBFI, which is the relative magnitude of the influence of input
features on prediction performance [52,59,60]. It compares all input features and ranks
those that contribute to reducing overall variance [61]. This study chose PBFI over impurity-
based feature importance (IBFI) for the following reasons. First, PBFI normalizes the biases
of IBFI, such as the inflation of the values with many categories [62]. Second, the values
of IBFI for certain input features may be high, regardless of limited contribution to the
prediction of the target value. PBFI alleviates the limitation of IBFI.

Furthermore, this study developed PDP to capture the non-linear relationship between
input features and an output target [63–66]. Specifically, PDP estimates the expected effects
of a certain input feature on the outcome target after marginalizing the influences of other
independent variables [66–68]. PDP visualizes PD with a line graph; specifically, the curve
in PDP shows the average predicted effect of the input feature. In the line graph, the x-axis
shows the values of the input features, and the y-axis shows the corresponding marginal
effects [69].

4. Results

This section is divided into four subsections. The first subsection presents a general
distribution of multimodality across the United States before moving on to the presentation
of the two models. The following three subsections correspond to one of the three research
questions using either the ordinary least square regression (OLS) or gradient boosting
decision tree regressor models (GBDT).

4.1. How Did Multimodal Travel Behaviors Vary across the U.S.?

Figure 2 depicts the spatial distribution of the multimodality index for commute trips
across the United States mainland. The figure visually reveals a spatial concentration of the
Census Block Groups (CBGs) in metropolitan areas with a higher degree of multimodality,
such as San Francisco, New York, and Chicago. Interestingly, GBGs in states in the Mountain
area, such as Idaho, Nevada, Utah, Arizona, and New Mexico, demonstrated a relatively
higher rate of multimodality. Figure 3 can confirm the findings, given the somewhat higher
proportion of people who use alternate modes of transportation, such as walking. The
mean and median of the multimodality index in the U.S. were around 0.56 and 0.53, with a
minimum of 0 and a maximum of 1.6 (see Table 2).

4.2. Was Multimodality Associated with Built Environment Characteristics in the U.S.?

As shown in Table 3, the ordinary least square model (OLS) produced relatively well-
fitting results (adjusted R-squared of 0.309). More importantly, most of the coefficients
were statistically significant. Notable findings in the model concern nine built environment
characteristics: after controlling for other variables, this study found that the built envi-
ronment characteristics, except for job and household balance (Diversity_HH_job), were
statistically significant predictors of the extent to which multimodality exists in the United
States. In particular, the multimodality index was found to be significantly and positively
linked with population density. Intriguingly, network density was inversely associated
with multimodal travel behavior (estimate of −5.998), implying that adding additional
lines on the roads may encourage the usage of private automobiles. In contrast, given that
multimodality was found to be positively and significantly associated with intersection
density, the ratio of four-way intersection density may be able to increase the likelihood
that people will choose alternative modes of transportation, such as walking, which cor-
roborates the arguments of Jacobs [70]. Furthermore, multimodal census block groups
(CBGs) tended to have a higher walkability rating and be closer to places of employment.
Additionally, whereas regional accessibility by automobile was found to be negatively
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connected to multimodality (estimate of −0.080), the accessibility by public transit showed
a positive relationship (estimate of 0.146). Also crucial in having multimodality at CBGs
across the U.S. were control variables such as household size, income level, race/ethnicity,
educational achievement, and car ownership.
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Table 3. Results of the ordinary least square model.

Variables Estimate Std. Error t-Value p-Value VIF

Constant 0.359 0.007 48.780 <0.001 -
Pop_den 0.010 <0.001 24.190 <0.001 1.535

Diversity_HH_job −0.082 0.063 −1.294 0.196 1.017
Diversity_job −0.023 0.003 −7.851 <0.001 1.592

Net_den −5.998 1.140 −5.262 <0.001 6.031
Int_den 2.223 0.123 18.091 <0.001 3.936

Walkability index 0.011 <0.001 45.797 <0.001 4.443
Job_proximity 0.014 <0.001 32.686 <0.001 1.180

Auto_accessibility −0.080 0.002 −36.339 <0.001 1.559
Transit_accessibility 0.146 0.003 42.948 <0.001 1.935

HH_size 0.024 0.001 22.794 <0.001 1.606
HH_income 0.001 <0.001 3.826 <0.001 2.995

White −0.018 <0.001 −37.876 <0.001 6.550
Black −0.015 <0.001 −30.829 <0.001 4.905
Asian 0.013 0.001 17.815 <0.001 2.202
Single 0.037 <0.001 78.524 <0.001 1.857

Low education −0.002 <0.001 −5.323 <0.001 2.960
No_car 0.025 <0.001 81.355 <0.001 1.410

Work_at_home 0.048 0.001 49.115 <0.001 1.180

Model Statistics
Observations 206,380

R2 0.309
Adjusted R2 0.309

4.3. To What Extent Did the Built Environment Characteristics Play a Role in Showing
Multimodal Travel Patterns?

The trained optimal gradient boosting decision tree regressor model (GBDT) found
in the grid-search produced the R-squared of 0.410, explained variance of 0.411, and
negative mean absolute error of −0.162 in the 10-fold cross-validation. Table 4 presents the
permutation-based feature importance (PBFI) analysis findings based on the trained GBDT,
which measures the relative contribution of factors within the total contribution of 100%.
The nine factors regarding the built environment were important in showing multimodality
at CBGs in the United States, with 40.8% of the feature importance. However, not all built
environment elements were the input features of outstandingly high value to predict the
extent of multimodality. Particularly, population density, regional accessibility, walkability
index, and network density accounted for approximately 35.1% of the total importance
of all independent variables, and interestingly, the population density was placed second
with a significance of 15.9%, which was much greater than the relevance of the other
built environment elements. Moreover, control variables such as race/ethnicity, marital
status, and car ownership scored significantly higher than the other variables; mainly, non-
Hispanic white and black proportion was the dominant factor with a 30.3% contribution.

4.4. Were There Non-Linear Effects of Built Environment Factors on Multimodality?

This subsection presents partial dependence plots in Figures 4 and 5, where inde-
pendent variables and their corresponding marginal effects on predicted probability are
marked on the x-axis and y-axis while accounting for the average influences of all other
variables in the trained GBDT [71]. This subsection illustrates the non-linear effects of
independent variables on multimodality that traditional linear regression in Table 3 cannot
fully capture.
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Table 4. Results of the feature importance in the gradient boosting decision tree regressor.

Variables
Impurity-Based

Feature Importance
Permutation-Based
Feature Importance

Importance Rank Importance Rank

Built environment characteristics
Pop_den 0.206 1 0.159 2

Diversity_HH_job 0.019 15 0.010 17
Diversity_job 0.011 18 0.004 18

Net_den 0.036 7 0.034 9
Int_den 0.018 16 0.015 16

Walkability index 0.117 3 0.051 7
Job_proximity 0.033 8 0.028 10

Auto_accessibility 0.026 11 0.048 8
Transit_accessibility 0.108 4 0.059 6

Neighborhood characteristics
HH_size 0.024 13 0.022 12

HH_income 0.031 9 0.020 15
White 0.043 6 0.178 1
Black 0.018 16 0.125 3
Asian 0.023 14 0.021 13
Single 0.101 5 0.061 5

Low education 0.025 12 0.021 13
No_car 0.133 2 0.116 4

Work_at_home 0.029 10 0.027 11
Note: This table included impurity-based feature importance for comparison purposes.
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Figure 4a demonstrates that the influence of population density, which was found
to be the most influential factor among built environment characteristics in Table 4 on
multimodality index, was relatively stable roughly until 50,000 persons per acre, while it
exerted significant and positive effects beyond the range. A similar pattern was observed in
the walkability index in Figure 4f; specifically, a walkability index of more than 10 resulted
in a considerable increase in the multimodality index. Figure 4i indicates that the increase in
regional accessibility by transit rapidly increased the multimodality index to 0.1, although
it had marginal effects thereafter. In the United States, regional accessibility by automobile
had a relatively linear negative influence on multimodality, like the findings in Table 3.
CBGs with medium or higher ranges of intersection density, as shown in Figure 4e, had a
greater multimodality index than CBGs with a lower range of intersection density.

In addition, control factors such as household size, race/ethnicity, marital status, and
car ownership, as shown in Figure 5, had roughly linear impacts on multimodality, like
the OLS model. For example, CBGs with a lower proportion of non-Hispanic white and
black residents had a lower multimodality index than others. The influence of household
income and educational attainment on multimodality was not monotonous, in which
the multimodality index decreased when the two factors ranged from lower values and
thereafter increased with higher values (see Figure 5b,g). Interestingly, as individuals in
the U.S. worked at home, multimodality at CBGs increased.

5. Conclusions and Discussion

Transportation mode choice behavior is intertwined with diverse aspects of our lives,
such as employment, housing, schools, shopping, and health [8]. Since the automobility
system has expanded and established itself as the dominant mode of transportation, it
has pushed alternative transportation modes, such as public transit and walking, to the
sidelines [9]. As a result, there have been several consequences, such as obesity, traffic
congestion, environmental pollution, urban sprawl, and social marginalization [13]. Thus,
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planners are attempting to make a transition away from automobile use and toward more
multimodal and sustainable forms of transportation [9,15,16] by using strategies mainly at
three levels, the vehicle level, the transportation system (e.g., infrastructure), and the level of
traffic participants (e.g., vehicle owners) [7]. However, since the significance and role of the
built environment have not been sufficiently considered, they are currently facing difficulty
in their efforts to fulfill their responsibilities to plan and deliver comprehensive, efficient,
high-performing, multimodal transportation networks that are in line with the goals of the
community. Therefore, this study demonstrated a link between multimodality and built
environment characteristics in the U.S. and proposed policy implications for promoting
multimodal travel behaviors using ordinary least square regression and gradient boosting
decision tree regressor models.

Several findings of the U.S. nationwide analysis deserve further discussion. First,
certain built environment characteristics were predictors of multimodality at census block
groups (CBGs) throughout the U.S., with statistical significance and a relatively higher
contribution. This suggests that planners who would like to encourage multimodal travel
behavior should consider the features, particularly population density, regional accessibility,
walkability index, and network density, when developing their land-use design strategies
for the transportation system. Second, the salient non-linear effects of built environment
characteristics on multimodality suggest an effective range to encourage multimodal trans-
portation mode choice behaviors in various situations in the U.S. For example, the effective
population density exceeded 50,000 people per acre in the U.S. Furthermore, even with a
little improvement in regional accessibility by transit, individuals may significantly alter
their travel behavior toward a more sustainable manner. However, a considerable increase
in walkability is needed to promote multimodal travel behaviors meaningfully. Addi-
tionally, considering that regional accessibility via automobile demonstrated a significant
disincentive toward multimodal travel behavior across all ranges, it is possible that in-
frastructure development and improvement, as well as strategies to improve the level of
services provided for automobiles, may have a negative impact on encouraging individuals
to use a variety of modes of transportation.

In sum, the findings of this study can be applied to a problem that decision-makers are
currently facing: how to encourage multimodal travel behavior while also providing prac-
tical advice for developing appropriate plans. In addition, the integration of these findings
and a variety of mobility management strategies, such as reforming price structures for
transportation, may have a synergistic impact on the promotion of non-automobile travel
behaviors. These considerations highlight the practical necessity of understanding the cir-
cumstances under which individuals increase their use of diverse modes of transportation
in their lives.

This study acknowledges several limitations. For instance, since this study used census
block groups (CBGs) as the unit of analysis, findings may face the so-called ecological
fallacy that transfers relationships between covariates at aggregate scales to individuals [72].
Additionally, the first model did not control for spatial dependence, which may produce
biased and inefficient estimates of covariates [73]. Moreover, an omitted variable bias may
be present in the final results since this study did not include a comprehensive set of built
environment features identified in previous studies [74]. Additionally, the researcher did
not undertake a longitudinal analysis to draw causal inferences from the findings. The
travel patterns of non-commute trips were not investigated in this study. Probably, the
results may not be transferable to other countries because their travel behaviors differ
significantly from those of the United States.

Beyond this study, future research needs to broaden the scope of this research by
investigating whether favorable built environment characteristics aid multimodality in
maintaining or even increasing their previous extent after the COVID-19 outbreak within
the framework of resilience [75]. Additionally, further studies are needed to explore how the
findings of this study are applied at the not national but local level with some case studies.
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