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Abstract: The purpose of this article is to determine the critical velocities for five railway vehicle
objects and to find possible generalizations of these results. It is done in the context of increasing
the safety of travel on modern railways. The article discusses four methods of determining these
velocities, and then the results obtained, mainly using one of the methods, are presented in tabular
and graphical form. The chosen method is supplemented with the second one when higher accuracy
or certainty is necessary. Finally, the results are discussed and the similarities and differences between
them for different groups of railway vehicle class objects are shown.
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1. Introduction

The authors of this article focus their general studies on the lateral dynamics (motion)
of rail vehicles that move along the transition curve (TC) section. A need exists in these
general studies to determine the critical velocity(ies) of the objects representing railway
vehicles. The purpose of the studies discussed in the present article and the article itself is
meant to determine the critical velocities (vn) for five railway vehicle objects: three bogies
(25TN bogie of a freight car, a bogie with averaged parameters, and a bogie of the MKIII
passenger car) and two 2-axle freight cars (the car with averaged parameters and the hsfv1
car). Moreover, the results of a 4-axle passenger car MKIII from [1] are considered as
well. Note in this context that very often researchers focus on a single object and try to
learn about or find a solution for it. The present paper is different, the authors are not
attached to and restricted by such a single object. They consider six objects of different
classes that cover a wide range of real railway vehicles. Then they look for similarities and
differences between these objects rather than for any restricted solution for a particular
object. The authors are on their way to hopefully finding some generalizations or showing
honestly that they do not exist or at the current stage cannot be formulated. Papers with
such an approach are rather exceptional in the field studied. The paper’s purpose and
scope just formulated are also different from the authors’ earlier papers. For example,
in [1], just two objects were of interest and just one was identical to discussed here. In [2],
the objects’ non-linear behaviour was of interest. The critical velocity was neither of the
main interest nor compared for different objects. Determining the critical velocity in the
context of the dynamics of rail vehicles in TCs and their vicinity, especially at velocities
higher than the critical velocity, is important for modern railways. Everyone expects that
rail vehicles will travel at higher and higher velocities. Railway vehicles as a rule are built
so that their range of exploitation velocities is below the critical velocity. On the other hand,
exceeding critical velocity does not at once means some unacceptable or dangerous state. It
is usually just a less favourable state than motion below the critical velocity. However, the
higher the velocity above the critical one, the higher amplitudes of vehicle hunting motion
occur. At some stage, these are so high that a real danger of vehicle derailment can appear.
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These basic features of critical velocity connected with motion below and above the critical
value of velocity explain its importance both for vehicle construction, modernization, and
exploitation as well as safety of motion.

Despite the simplicity of the above-described features, some difficulties appear when
it comes to their practical utilization. These are connected with the accuracy of critical and
derailment velocities determination, which arises from imperfections of railway vehicle
models. It is obvious as models are always some approximation of reality. The methods
of critical velocity determination can be divided into two groups. The first are analytical
methods, while the second are simulation methods. The analytical methods have some
serious limitations. Namely, they are efficient for low dimensions of the models. In practice,
it is 1 or 2 degrees of freedom (DOFs) only. They are valid in the small vicinity of the system
equilibrium position. Moreover, they often make use of linear models, which makes these
models even less credible. The main advantage of the simulation methods is the possibility
of their use for high dimension systems (of many DOFs), which actually correspond to
railway vehicle models. Many non-linearities of the system can be taken into account
as well. On the other hand, these methods are still based on some mathematical models
converted next into numerical (simulation) models with their limitations concerning accu-
racy. Concluding, the limited accuracy of the critical velocity determination with limited
ability to project derailment processes with the simulation methods makes results from
both groups of methods useful in a qualitative but not quantitative sense. This means that
qualitative comparisons between particular vehicle variants or between different vehicles
are sensible and credible while the quantitative determination of critical or derailment
velocity is burdened with too high a possible error.

High critical velocities in straight track (ST), resulting in high exploitation velocities,
and good driving performance in a circular curve (CC), resulting in reduced wheel–rail
wear and increased safety, are the features that are difficult to reconcile. It is the reason
why the modern approach to rail vehicles’ stability refers to looking for stable periodic
solutions (hunting motion) both in ST and CCs. Correspondingly, the issue of critical
velocity determination concerns nowadays ST and CCs, taking account of different the
curves’ radii R. It should be noted that periodic stable solutions may appear only in the
case of these two track sections, i.e., ST and CC, as they are sections of the route with fixed
motion conditions. Such fixed conditions cannot be expected in the case of TC, where the
radius of curvature and superelevation (considering the route in general as 3-dimensional)
change continuously along the entire TC length. Therefore, in the case of the TC one not
only cannot expect, but it is also of no sense to look for, stable periodic (limit cycles) and
stable stationary solutions, which is the essence of the analysis of the rail vehicles stability.
Going further, also the critical velocity in the TC cannot be calculated. Nevertheless, the
transition nature of the phenomena in the TC and studying them allows for the recognition
of non-linear dynamic features of rail vehicle class systems, which are difficult to detect
in case of motion in ST and CC. One should remember, however, that any solution, even
non-stationary or non-periodic, can be checked for stability. Thus, also for solutions in the
TC, it is possible to introduce a series of small disturbances (e.g., non-zero initial conditions)
into the system and check whether the newly obtained solutions are close enough to the
solution adopted as a model solution. If yes, the solution in the TC will be stable.

2. The Basics of the Motion Stability Analysis

The connection of the rail vehicle stability issue with the studies of dynamics in TCs
was explained in the previous section. This issue is treated by the authors in a manner
called the bifurcation approach and, as most often in the literature, this applies to the
so-called non-linear lateral stability. The term non-linear means non-linear models of rail
vehicles, but also the so-called non-linear methods of stability testing. The term “lateral”
means the interest in lateral displacements and rotation angles around the vertical axis
(yaw angles) of vehicle elements. In practice, it is limited to the leading wheelsets most
often. The subject of the stability study of non-linear systems is the search for the critical
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value of the bifurcation parameter as well as the nature and value of solutions for the entire
range of its changes. In the case of rail vehicles, the major bifurcation parameter is velocity,
while its critical value corresponds to the non-linear critical velocity vn.

As discussed, among others, in [3–6], the theory of self-excited vibrations [7] can be
used to describe the hunting motion of a wheelset as well.

In stability theory, the bifurcation plots present non-linear features (the behaviour)
of an object (system) represented by its non-linear model. In particular, the bifurcation
of solutions is presented. On these plots, the values of the model coordinate directly or
their maximum values (in the case of vibrations) subject to observation are presented in the
function of the bifurcation parameter. An example of the most typical bifurcation graph
for rail vehicles in CC, assuming the subcritical features [2,8,9] of the system, is shown in
Figure 1. Example figures for ST can be found in [8,9]. It must be highlighted here that
Figure 1 is not the general case. It is one of the simplest possible cases. On the other hand,
quite many real vehicles (their models) possess features as shown in Figure 1. Example
solutions of a character different than in Figure 1 can be found in [10–12].
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Figure 1. Typical bifurcation graph for a wheelset in CC [2].

Figure 1 includes two types of critical velocities which are denoted with vc and vn and
called the linear and non-linear critical velocity, respectively. They are related to Hopf’s
bifurcation and saddle-node bifurcation (e.g., [8,13]), respectively. This in fact means they
are different physical quantities. The linear speed vc is defined by the place where the stable
stationary solution bifurcates. For the subcritical system, it bifurcates into unstable periodic
and unstable stationary solutions (Figure 1). The stable solutions are presented in Figure 1
by a solid line and the unstable solutions by a dashed line. For a supercritical system,
the stable stationary solution bifurcates at velocity vc into unstable stationary and stable
periodic solutions, while vn = vc, e.g., [13]. The linear velocity vc can be calculated with the
use of linear stability analysis methods, analytically (e.g., by testing the eigenvalues of the
system) or numerically, applying simulation of the motion of linear rail vehicles models
(in particular the linear description of the wheel–rail contact). In the last case, velocity
vc is considered the one where the hunting motion no longer tends to disappear. On the
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other hand, non-linear velocity vn is the lowest velocity at which in the mechanical system
represented by a non-linear dynamic model of a rail vehicle (in particular with a non-linear
description of the wheel–rail contact), stable periodic solutions may occur, i.e., at the state
where the vehicle begins hunting motion reaching the limit cycle. Velocities vn cannot be
determined using linear models of rail vehicles, especially with linear wheel–rail contact.
Moreover, there are no general, effective analytical methods for testing the stability of
non-linear systems, especially those with large dimensions (large number of DOFs). Thus
velocity vn is most often determined by simulation (numerical) methods.

In Figure 1, at the end of the stable periodic solutions line, a point is shown corre-
sponding to the velocity marked as vs. This velocity, understood just as in [5], represents
the value at which numerical simulations stop for whatever reason. Such a stop may be
arbitrary by the software operator, e.g., when the velocity values reach unrealistically large
values. The calculation may also be stopped for computational reasons. The latter situation
is sometimes referred to as “numerical derailment” and the velocity vs can then be referred
to as “velocity of numerical derailment” [5].

When using the term “critical velocity” later in this article, the authors always mean
the non-linear critical velocity vn.

3. Methods of Determining the Value of Critical Velocity

In [5], the classification is presented concerning methods of determining the value of
the non-linear critical velocity vn, based on the papers related to this issue. Four available
methods are mentioned.

The first method, which is used e.g., in [1,14–16], is an approach that leads to an
approximate determination of the critical velocity vn. The method is based on formulating
the stability problem as a problem of stability for a stable periodic solution. It requires, for
each velocity v being considered, to sweep over the values of the initial conditions and
check whether the same solution was obtained despite their different values. Approximate
values of vn in this method can result from a non-complete search for sets of solutions over
the initial conditions, and application of not necessarily small the velocity v interval. This
results in a relatively fast calculation of velocity vn.

The second method, i.e., the one called the extended method [9] of determining the
velocity vn, refines the results of the first method and leads to exact results. The procedure
applied therein is the same as in the first method, but without any simplifications. Here,
the solution sets over the initial conditions are carefully searched for and a small velocity
interval is used.

The advantage of the third method, i.e., the ramping method described or applied
in [2,5,17–24], is the possibility to calculate vn during a single simulation with variable
velocity. This method may lead to results that are approximate or even inaccurate as
compared to other methods. Basically, when increasing and decreasing the velocity v the
obtained values of the critical velocity are different. In such circumstances, for the right
action for determining vn, there are simulations for the decreasing velocity v. The use of
this method requires experience, and in a technical sense, it may sometimes be necessary
to perform several simulations to ensure that the result is correct. Moreover, the serious
practical trouble with the use of this method in CCs is described in [5].

The fourth method of determining the critical velocity is based on a series of simu-
lations for decreasing velocities, where the results of the preceding simulation constitute
the initial conditions for the current simulation. These are so-called continuation methods.
The method was referred to by W. Schiehlen in [25] and H. True in [22,26–28]. As in the
third method, this method is only valid for descending v, but it offers the possibility of a
very precise calculation of the vn. This accuracy depends on the velocity v sampling step
(interval) for subsequent simulations. The accuracy of this method and the second method
are potentially the same. The authors have not found the publication where the fourth
method was used for vn determination in CCs so far.
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4. Critical Velocity Determined for the Objects Tested
4.1. The Method Used

As regards this article, calculation of the critical velocity vn in ST and CC with different
radii R was primarily realized with the first method. This is due to obtaining the result
relatively quickly and generally small differences in vn between the first (approximate) and
the second (exact) method shown in [9]. However, some elements of the second method
were utilized as well. First, the second method was used occasionally when in doubt about
the character and accuracy of the results. Second, the element regularly used was the dense
variation of the velocity while approaching the critical value vn (with an interval of up to
0.1 m/s). Searching the range of solutions with sweeping over the initial conditions has
been significantly limited in the present paper. The justification for this limitation is a very
thorough study of the stability properties of the objects (vehicles) of interest in the present
paper, carried out e.g., in [1,3,5,8,9,14–16,21] by their authors. This practically means that
features of these objects related to critical velocity determination are already known to the
authors of the present paper.

The authors determined the values of the non-linear critical velocity vn for three tested
bogies (25TN, with averaged parameters, and of the MKIII car) and two 2-axle wagons
(with averaged parameters and hsfv1). Additionally, the data on the velocity vn for the
4-axle vehicle (passenger MKIII car) is quoted further on basing on the results presented
in [1].

4.2. Models of the Considered Objects

In fact, discrete models of the vehicle-track system are used. Thus, each of the models
of the six above-mentioned objects represented with rigid bodies is supplemented with the
same discrete models of laterally and vertically flexible track.

The structure of the studied 2-axle bogies is shown in Figure 2a [2], while of the 2-axle
freight cars in Figure 2b [3,5]. Actually, the structure of the bogie of passenger car MKIII,
bogie of averaged parameters, and both 2-axle freight cars is the same. It means the same
number of DOFs, which together with track equals 18. The exception is the structure of
the 25TN bogie of freight cars. Here, the number of DOFs equals 16. Two constraints that
reduce this number from 18 to 16 are those causing yaw rotation of wheelsets relative to
bogie frame impossible.
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The structure of the 4-axle passenger car MKIII is shown in Figure 3 [1,5,21]. Including
the track model, it has 38 DOFs.
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Figure 3. Structure of nominal model of MKIII passenger car [1,2,5].

The structure of the track model’s lateral flexibility is shown in Figure 4a [5,29], while
the model’s vertical flexibility is shown in Figure 4b [5,29]. The model of track flexible
laterally increases the DOFs by 1 for each wheelset, compared to the stiff track model. The
model of track flexible vertically increases the DOFs by 2 for each wheelset and reduces
them by 2 at the same time due to constraints in a wheelset–track system [5]. Finally, both
track models increase the DOFs by 1 for each wheelset existing in the vehicle, as compared
to the stiff track model.
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The most convenient source of parameters for the above models of objects of railway
vehicle class as well as the track is [2]. All the parameters are collected there. On the other
hand, the primary sources for these parameters are earlier publications [3,5].

Tangential contact forces in the vehicle models are non-linear and calculated with the
use of a simplified theory of rolling contact as described in [30] and implemented in the
FASTSIM program. Non-linear contact geometry taking account of real wheel and rail
profiles is calculated according to [31] in a form implemented in the RSGEO program.

A generalized approach to modelling is applied in terms of conditions of motion,
i.e., the same model of a particular system is used in straight track, circular curve, and
transition curve sections. Proper adaptation of the model to these different conditions is
achieved by kinematical quantities determined for different track shapes correspondingly.
All non-linear kinematics terms are included in the dynamical equations of motion, while
these latter are built with relative motion methods. This enables taking account of the
inertia terms arising from motion in a curved track (circular and transition sections) very
accurately. It obviously also includes centrifugal forces. These issues are broadly described
and explained in [32]. The lateral components in a track plane of the gravity forces due to
superelevation are obviously taken into consideration as well. The components crucially
important for the proper curving dynamics description are those in the longitudinal and
spin creepages that take account of the track curvature. These are, of course, taken into
consideration in the equations of motion. Thanks to them the creep forces, especially
longitudinal ones governing vehicle dynamics, are properly adapted to conditions of
motion in a curved track.
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4.3. Conditions of the Critical Velocity Determination and Example Simulation Results

Conditions under which non-linear critical velocity vn has been determined are pre-
sented in Tables 1 and 2. Tables 1 and 2 show the route parameters for which the tests were
performed, i.e., for the bogies and 2-axle vehicles, respectively. The route consisted of ST
only in the case of determining the critical velocity for ST. On the other hand, in the case of
determining the critical velocity for a CC, that section was preceded by ST and TC.

Table 1. The route parameters while determining the critical velocity for the bogies.

Object Initial Conditions
yi(0) (m)

ST
Length; l (m)

CC
Length; l (m)

CC
Radius; R (m)

Superelevation
h (m)

Bogie of MKIII car,
Bogie with
averaged

parameters

0.0045 500 - - 0

0.0045 - 500 600 0.1500

0.0045 - 500 1200 0.0750

0.0045 - 500 2000 0.0450

0.0045 - 500 4000 0.0225

0.0045 - 500 6000 0.0150

0.0045 - 500 10,000 0.0090

25TN bogie

0.0045 500 - - 0

0.0045 - 500 300 0.1500

0.0045 - 500 600 0.1500

0.0045 - 500 900 0.1420

0.0045 - 500 1200 0.0750

0.0045 - 500 2000 0.0450

0.0045 - 500 4000 0.0225

0.0045 - 500 6000 0.0150

0.0045 - 500 10,000 0.0090

Table 2. The route parameters while determining the critical velocity for the 2-axle vehicles.

Object Initial Conditions
yi(0) (m)

ST
Length

l (m)

CC
Length

l (m)

CC
Radius
R (m)

Superelevation
h (m)

hsfv1 car,
Vehicle with

averaged
parameters

0.0045 500 - - 0

0.0045 - 500 300 0.1500

0.0045 - 500 600 0.1500

0.0045 - 500 900 0.1420

0.0045 - 500 1200 0.0750

0.0045 - 500 2000 0.0450

0.0045 - 500 4000 0.0225

0.0045 - 500 6000 0.0150

0.0045 - 500 10,000 0.0090

The model was subject to excitations in the form of initial conditions, i.e., at the
beginning of the ST section, which here were almost always yi(0) = 0.0045 m, a value
imposed on lateral displacements of wheelsets, bogie frames, and vehicle body. This
concerns both vn determination in ST and CCs. The choice of such value arises from the
already stated experience and knowledge of the objects’ properties gathered in the earlier
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studies. Results in [1,3,5,8,9,14–16,21] showed that such a value is enough high to start
periodic motion if it exists. The higher values of the initial conditions give a bigger chance
for the system to take periodic behaviour than the smaller ones that could lead to stationary
behaviour in the range vn < v < vc. As explained in Section 4.1, variation of the initial
condition was performed in case of doubts, too. The length of ST was always l = 500 m.
The length of CC was always l = 500 m. The radii R of the curve ranging from R = 300 m to
R = 10,000 m were tested, with exact discrete values R = 300, 600, 900, 1200, 2000, 4000, 6000,
and 10,000 m. The superelevation h was chosen so that the equilibrium between lateral
components in the track plane of gravity and centrifugal forces was provided at velocity v,
being the maximum velocity allowed by regulations in the CC of R = 600 m. If the value
of h calculated this way exceeded the maximum allowed value (hmax = 150 mm) then hmax
was applied. The interesting and justifying result in this context by the lead author is
presented in [14]. It was shown that taking the variable h guarantees the equilibrium in
each simulation, i.e., for each value of velocity v does not influence values of the critical
velocities in ST and CC of different radii R. It was actually done for the hsfv1 car also
studied in the present paper. Moreover, such h adoption leads to unnaturally high values,
exceeding those allowed by regulations several times. This fact triggered strong criticism
from railway practitioners. Indeed, the superelevation of the real track cannot be freely
changed during exploitation. All these caused the authors to resign from this idea and take
the superelevation value as it is done in this paper.

In order to better visualize the technique of critical velocity determination, the present
subchapter also includes six exemplary graphs (simulation test results) for a bogie of the
MKIII car. The first three are obtained for an ST (Figures 5–7), while the second three
are for a CC (Figures 8–10). Results in Figures 5–10 represent vehicle lateral dynamics
coordinates. These are lateral displacements y and yaw angles ψ. The index accompanying
just mentioned coordinates is k which refers to the trailing wheelset. Formally, all the
wheelsets must be observed. However, the one or ones producing the lowest vn are decisive.
Similar graphs were made for all the objects for ST and CCs sections of different R for
conditions and parameters given in Tables 1 and 2. They were also made for the range of
the object’s velocity v. However, due to paper volume limitation, just three velocities for the
above-mentioned graphs were selected for ST and three for CC. In each tire, in some of the
figures, the velocities are selected to be in order lower, equal, and higher than the critical
velocity. Moreover, Figures 8–10 have a simplified form. They represent motion in CC only,
while in fact the compound route of ST, TC, and CC was used when vn was determined in
CC. The horizontal lines in Figures 6 and 9 make it possible to recognize the stable periodic
solution (limit cycle). On that occasion, one can note that solutions in Figures 5–7 (ST),
including limit cycle, are symmetrical relative to the track centre line, while in Figures 8–10
(CC) are shifted laterally i.e., are asymmetric relative to the track centre line.

Figures 6 and 9 actually show the source results for the critical velocity vn determina-
tion. According to the definition in Section 2, the value of vn is indicated by the figure in
Figure 6 or Figure 9, obtained at the smallest velocity for which a stable periodic solution
still exists. In Figures 6, 7, 9 and 10 the limit cycles (stable periodic solutions) can be
observed. Their amplitudes are higher for the higher velocities. In Figures 5 and 8, stable
stationary solutions appear resulting from the decaying vibrations.
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4.4. Results of the Critical Velocity Determination

The values of the velocity vn determined in the studies have been presented in Tables 3 and 4.
These tables show the results for five tested vehicles, i.e., for three bogies and two 2-axle
vehicles, respectively. The values of vn in Tables 3 and 4 obviously match the conditions
specified in Tables 1 and 2, correspondingly.
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Table 3. Values of critical velocities vn of bogies for ST and CCs of different radii.

Object ST;
vn (m/s)

CC;
R (m)

CC;
vn (m/s)

Bogie of MKIII car

45.3 - -

600 35.0

900 41.0

1200 44.0

2000 44.0

4000 45.0

6000 45.1

10,000 45.2

Bogie with averaged
parameters

45.8 - -

600 n. derailment—at 42 *

1200 n. derailment—at 59 *

2000 47.1

4000 46.3

6000 45.8

10,000 45.2

25TN bogie

29.2 - -

300 29.1

600 29.1

900 29.2

1200 29.1

2000 29.1

4000 29.2

6000 29.1

10,000 29.2
* vehicle velocity for which so-called numerical derailment occurred below the velocity vn.

Table 4. Values of critical velocities vn of 2-axle vehicles for ST and CCs of different radii.

Object ST
vn (m/s)

CC
R (m)

CC
vn (m/s)

hsfv1 car **

42.8 - -

300 n. derailment—at 39.0 *

600 40.0

900 41.5

1200 42.0

2000 42.3

4000 42.3

6000 42.4

10,000 42.6
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Table 4. Cont.

Object ST
vn (m/s)

CC
R (m)

CC
vn (m/s)

Vehicle with averaged
parameters

40.0 - -

300 n. derailment—at 10.2 *

600 41.0

900 41.0

1200 41.0

2000 40.9

4000 40.3

6000 40.1

10,000 40.0
* vehicle velocity for which a numerical derailment occurred below the critical velocity vn. ** reduced value of the
longitudinal stiffness of in the primary suspension kzx = 206.7 kN/m.

For the sake of correctness, it should be noted that the results for the hsfv1 car have
been obtained for a reduced value of the longitudinal stiffness in the primary suspension,
kzx = 206.7 kN/m. For the nominal stiffness, the kzx = 2067 kN/m value of the critical
velocity in the ST vn = 64.5 m/s [3].

In order to make the analysis of the results for vn easier, Figures 11 and 12 were
elaborated on based on data from Tables 3 and 4, respectively. The changes in the value of
vn depending on the CC radius R are illustrated in Figures 11 and 12 for the bogies and
2-axle vehicles, respectively.
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Additional results for the 4-axle MKIII passenger car invoked from [1] are shown in
Figure 13. The result for this vehicle is limited to a graphic illustration of the changes in vn
depending on the radius R shown. To make the information complete it has to be noted that
this result was obtained for the higher than the nominal value of the longitudinal stiffness
in the secondary suspension, kpzx = 1000 kN/m. For the nominal value, kpzx = 10 kN/m,
while [1] gives the critical velocity vn for the ST only. It is vn = 19.1 m/s. This result was
confirmed by these authors’ own study. Moreover, the study by the authors determined
the value of vn of the MKIII vehicle with nominal parameters in the CC of R = 600 m
as vn = 40 m/s.
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5. Discussion of the Results and Conclusions
5.1. Detailed Discussion of the Results

As mentioned earlier in the paper, the first (simplified) method was used with some
elements of the second (extended) method to determine the non-linear critical velocities
vn for five objects (three bogies and two 2-axle wagons). As a result, it was possible to
determine these velocities relatively quickly, and the method turned out to be very effective.
On the other hand, the results of vn in [1] for the MKIII passenger car invoked in the present
paper were also obtained based on the combination of the first and second methods of vn
determination. A similar conclusion can be formulated from [1], then.

In the first group of tests concerning bogies (Table 3), for the bogie of the MKIII car
and the curve radii R= 600, 900, 1200, 2000, 4000, 6000 and 10,000 m, the results of the
critical velocity values in a circular curve were successfully obtained. For the smallest
radius, the value of the critical velocity is the lowest one and amounts to vn= 35 m/s. As
the radius increases, the values of this velocity also increase. The increase is initially faster,
and then at the larger curve radii, it is slower to finally reach the value of vn = 45.2 m/s for
the largest curve radius R. However, in the range of the radii of the curve from R = 1200 m
to R = 10,000 m, the difference in the values of the critical velocities is small and amounts
up to only 1.2 m/s (see also Figure 11). The velocity vn for ST was also successfully found
as vn = 45.5 m/s. It is visible both in Table 3 and Figure 11. One should also realize that
result v = vn= 44.0 m/s for R = 2000 m shown in Figure 9 as well as result v = vn= 45.3 m/s
for ST shown in the Figure 6 do coincide with the results in Table 3 and Figure 11. One can
conclude from all these sources that critical velocity for bogie of MKIII car is in ST higher
(Figure 6, Table 3, and Figure 11) than vn values for all curve radii R (Figure 9, Table 3, and
Figure 11).

For the second tested bogie, the bogie with averaged parameters, the results are
inconsistent and somewhat surprising (Table 3). Initially, for the two CCs with the smallest
values of the curve radius, i.e., R = 600 and 1200 m (no tests were performed for R = 900 m),
the vehicle numerically derailed before a periodic solution appeared. It happened so for
the smaller radius at v = 42 m/s, and for the larger radius at v = 59 m/s. It also means
that the critical velocity vn was not reached. It might be a bit surprising that for the next
radius R = 2000 m the critical velocity vn = 47.1 m/s was obtained while it is lower than the
derailment velocity for the radius R = 1200 m. The successive values of critical velocities
obtained for successively increasing radii are decreasing, which is still strange (see also
Figure 11). One could rather expect that the greater the radius R, the higher the value of
the critical velocity vn. A similar rather unexpected result was also obtained in the group of
2-axle vehicles. The potential for such a feature was also revealed in [2] for the 25TN bogie.
The reasons, or rather conditions, favourable to such a feature have not been explained by
the authors yet. So, for R = 4000 m—vn = 46.3 m/s, R = 6000 m—vn = 45.8 m/s, and for
R = 10,000 m—vn = 45.2 m/s. For the ST, the critical velocity vn = 45.8 m/s and is equal to
the critical velocity for a CC with the R = 6000 m and lower than the critical velocity for
the largest CC of R = 10,000 m (Figure 11). Again, such a result is not obvious but rather
surprising. On the other hand, the differences between vn for ST and CC of R = 6000 and
10,000 are not big. In addition, the critical velocity values for this object can be described as
relatively high for the whole range of the periodic solutions’ existence.

For the third bogie, namely, the 25TN bogie, values of the critical velocities are really
constant. Regardless of the radius of the circular curve, the value of the critical velocity is
alternately either vn = 29.1 m/s or 29.2 m/s (Table 3). Considering this feature, the critical
velocity for the ST does not seem to be a surprise. Its value is vn = 29.2 m/s (see also
Figure 11).

In the second group of tests for 2-axle vehicles (Table 4), for the hsfv1 car and radii
R from 300 to 10,000 m, rather expected values of critical velocities in a circular curve
were obtained. For the smallest radius R = 300 m, the vehicle derailed numerically at
v = 39 m/s. This is an expected result for such a tight circular curve. For the next tested
radius, R = 600 m, the critical velocity is vn = 40 m/s and then vn grows with the increase
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of the radius R, which is a rather obvious feature. The difference in the values of the critical
velocities is small and amounts up to 2.6 m/s for the entire range of the tested circular
curves (see also Figure 12). The critical velocity for ST is vn 42.6 m/s, which is 0.2 m/s
higher than the largest radius tested R = 10,000 m (see Figure 12). For this vehicle, the
behaviour is described as predictable and the graph of the critical velocity values is similar
to that obtained for the bogie of the MKIII car (compare Figure 12 to Figure 11).

For the second tested 2-axle railway vehicle, the vehicle with average parameters
(Table 4), the results are inconsistent and somewhat surprising. For the smallest curve
radius R = 300 m, the vehicle derails numerically at the velocity of v = 10.2 m/s. For the
next value of the CC radius R = 600 m, we yet obtain the critical velocity of vn = 41.0 m/s.
The same critical velocity is obtained for two successive circular curve radii R = 900 and
1200 m. Then, starting from CC with the radius of R= 2000 m, the critical velocity decreases
with the increase of the radius. The lowest value of the critical velocity is for the radius
R = 10,000 m and it is vn = 40.0 m/s (see also Figure 12). The same value of the critical
velocity was obtained for ST. These results are rather surprising, because for this vehicle,
by analogy to the hsfv1 car, the highest velocity vn in ST was expected. Thus, that result is
opposite to the generally expected situation. Moreover, an increase of vn with R increase
in the range R = 2000 to 10,000 m would also be expected, by the same analogy to the
hsfv1 car.

As a supplement to the results discussed above obtained for the five tested objects, the
paper invoked results [1] obtained previously for the sixth vehicle, namely the 4-axle MKIII
passenger car (see Figure 13). Here we are dealing with completely different solutions.
First, for small values of the radii of the curve, the critical velocity vn increases with the R
increase, reaching the highest value for the radius R = 2000 m. Then it begins to decrease
with the increase of the radius R. The lowest velocity vn = 36.5 m/s was recorded for ST i.e.,
for R = ∞ (see Figure 13).

5.2. General Conclusions

The most varied results obtained in the studies are those for the car bogies. The best
proof of that is the entirely different shapes of the courses in Figure 11. The change of vn
versus R has got convex shape for the bogie of the MKIII passenger car. Opposite it, the
shape of the bogie with averaged parameters is convex. To make the matter even more
complicated, the shape of the 25TN bogie of a freight car is a horizontal line, which means
a constant vn value in the whole range of R, including ST. The 25TN bogie has a slightly
different structure than the other two bogies, which could potentially explain the difference.
On the other hand, the most surprising is the difference between the bogie of the MKIII
car and the bogie with averaged parameters. They both have the same structure and differ
in their parameters only. Generally, these differences might be subjectively recognized as
rather small.

Some similarities to the group of bogies can be seen in the group of 2-axle freight cars,
namely the hsfv1 and that with averaged parameters. They both have the same structure
and differ in the parameters only. Again, the differences in the parameters could be treated
as small. This result and the result for two bogies of the same structure might prove that
even small differences in the vehicle parameters can have a significant influence on the
critical velocity change not only for ST (to what extent is not known) but also for the entire
range of CC radii R, including ST (R = ∞).

The result for the 4-axle passenger car is different than for all bogies and 2-axle cars.
That, of course, makes trials for some generalizations even more difficult. The initial
increase, next maximum value, and then decrease of vn with the R increase is unique among
all objects of the railway vehicle class considered in the present paper. Interesting, here,
might be looking at the results of the isolated bogie of the MKIII car (Figure 11) and the
complete MKIII car possessing two such bogies (Figure 13). Unfortunately, the shapes of
courses in these objects are entirely different. Even critical velocities in ST vary for both
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these objects considerably, i.e., equal 45.3 and 36.5 m/s, respectively. This confirms the
importance of the secondary suspension in the case of 4-axle vehicles equipped with bogies.

The authors noted some similarities between individual vehicles in different groups
of results. In the first group (bogies), the expected critical velocity plot was obtained for
the bogie of the MKIII car. A graph with a similar course of vn increasing with R increase
was also obtained in the second group of objects (2-axle vehicles) for the hsfv1 car. In
turn, unexpected results were obtained for the bogie with average parameters (bogie) and
vehicle with average parameters (car). In both cases, with the increase of the radius R, the
critical velocity vn decreased and corresponding graphs follow a similar course, they are
just decreasing. Some but a slight exception, here, is the result for bogie with averaged
parameters in ST. The third case was obtained for one object, namely the 25TN bogie. There,
the graph resembles a straight line, parallel to the x-axis, which means the results are almost
identical. The fourth type of plot is obtained for the 4-axle MKIII car. It can be described as
two-stage one, initially increasing and then decreasing with the R increase. Summing up,
it is unfortunately not possible to generalize these test results to all vehicles or a group of
vehicles, because the results are too varied for individual vehicles and for vehicles within
the groups as well.

It seems that further, deeper studies with an intensive variation of the objects’ suspen-
sion parameters, either performed separately for vn or in conjunction with wider stability
studies, could bring some explanation and, thus, a better understanding of the diversity of
the result obtained in the present paper.
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