Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Material for Analysis and Sample Preparation
2.3. Radical Scavenging Properties Evaluation, DPPH Assay
2.4. Determination of Phenolic Compounds
2.4.1. Total Phenolic Content (TPC) Analysis
2.4.2. Extraction Procedure of Free and Bound Phenolics in Red Grape Skins and Defatted Red Grape Seeds
2.4.3. Analysis of Phenolics in Grape Seeds and Skins by High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry
2.5. Statistical Analysis
3. Results
3.1. Radical Scavenging Properties of Defatted Grape Seed (DGS) and Red Grape Skin (RGSK) Flours
3.2. Qualitative and Quantitative Analysis of Phenolics in Grape Seeds and Skins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gonzalez-San José, M.L.; García-Lomillo, J.; Del Pino-García, R.; Rivero-Pérez, D.; Ortega-Heras, M.; Muniz, P. Seasoning Products from Wine Pomace with Interesting Preservative and Healthful Properties; World Bulk Wine Exhibition SLU: Amsterdam, The Netherlands, 2014. [Google Scholar]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules 2018, 23, 1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llobera, A.; Canellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Vislocky, L.M.; Fernandez, M.L. Biomedical effects of grape products. Nutr. Rev. 2010, 68, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef]
- Castello, F.; Costabile, G.; Bresciani, L.; Tassotti, M.; Naviglio, D.; Luongo, D.; Ciciola, P.; Vitale, M.; Vetrani, C.; Galaverna, G.; et al. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch. Biochem. Biophys. 2018, 646, 1–9. [Google Scholar] [CrossRef]
- BedÊ, T.P.; Jesuz, V.A.; Souza, V.R.; Elias, M.B.; Oliveira, F.L.; Dias, J.F.; Teodoro, A.J.; Azeredo, V.B. Effects of grape juice, red wine and resveratrol on liver parameters of rat submitted high-fat diet. An. Acad. Bras. Cienc. 2020, 92, e20191230. [Google Scholar] [CrossRef]
- Di Stefano, V.; Bongiorno, D.; Buzzanca, C.; Indelicato, S.; Santini, A.; Lucarini, M.; Fabbrizio, A.; Mauro, M.; Vazzana, M.; Arizza, V.; et al. Fatty Acids and Triacylglycerols Profiles from Sicilian (Cold Pressed vs. Soxhlet) Grape Seed Oils. Sustainability 2021, 13, 13038. [Google Scholar] [CrossRef]
- Bongiorno, D.; Di Stefano, V.; Indelicato, S.; Avellone, G.; Ceraulo, L. Bio-phenols determination in olive oils: Recent mass spectrometry approaches. Mass Spectrom. Rev. 2021, e21744. [Google Scholar] [CrossRef]
- Mauro, M.; Pinto, P.; Settanni, L.; Puccio, V.; Vazzana, M.; Hornsby, B.L.; Fabbrizio, A.; Di Stefano, V.; Barone, G.; Arizza, V. Chitosan film functionalized with grape seed oil—Preliminary evaluation of the antimicrobial activity. Sustainability 2022, 41, 5410. [Google Scholar] [CrossRef]
- Melilli, M.G.; Pagliaro, A.; Bognanni, R.; Scandurra, S.; Di Stefano, V. Antioxidant activity and fatty acids quantification in Sicilian purslane germplasm. Nat. Prod. Res. 2019, 34, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Melilli, M.G.; Di Stefano, V.; Sciacca, F.; Pagliaro, A.; Bognanni, R.; Scandurra, S.; Virzì, N.; Gentile, C.; Palumbo, M. Improvement of Fatty Acid Profile in Durum Wheat Breads Supplemented with Portulaca oleracea L. Quality Traits of Purslane-Fortified Bread. Foods 2020, 9, 764. [Google Scholar] [CrossRef] [PubMed]
- Melilli, M.G.; Pagliaro, A.; Scandurra, S.; Gentile, C.; Di Stefano, V. Omega-3 rich foods: Durum wheat spaghetti fortified with Portulaca oleracea. Food Biosci. 2020, 37, 100730. [Google Scholar] [CrossRef]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M. Editorial: The state of science and innovation of bioactive research and applications, health, and diseases. Front. Nutr. 2019, 6, 178. [Google Scholar] [CrossRef]
- Giribabu, N.; Karim, K.; Kilari, E.K.; Kassim, N.M.; Salleh, N. Anti-Inflammatory, Antiapoptotic and Proliferative Effects of Vitis vinifera Seed Ethanolic Extract in the Liver of Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Male Rats. Can. J. Diabetes 2018, 42, 138–149. [Google Scholar] [CrossRef]
- Ali, K.; Maltese, F.; Choi, Y.H.; Verpoorte, R. Metabolic constituents of grapevine and grape-derived products. Phytochem. Rev. 2010, 9, 357–378. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.Q.; Hogan, S.; Canning, C.; Sun, S. Inhibition of Intestinal Alpha-Glucosidases and Anti-Postprandial Hyperglycemic Effect of Grape Seed Extract. In Emerging Trends in Dietary Components for Preventing and Combating Disease; Patil, B.S., Jayaprakasha, G.K., Murthy, K.N.C., Seeram, N.P., Eds.; American Chemical Societz: Washington, DC, USA, 2012; Volume 1093, pp. 431–441. [Google Scholar]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [Green Version]
- Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-Boccia, G.; Souto, E.B.; Romani, A.; Lampe, A.; Ferrari Nicoli, S.; Gabrielli, P.; et al. Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods 2019, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; Martínez de la Ossa, E.J. Green extraction of antioxidants from different varieties of red grape pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Lucarini, M. A Current Shot and Re-thinking of Antioxidant Research Strategy. Braz. J. Anal. Chem. 2019, 5, 9–11. [Google Scholar] [CrossRef]
- Di Stefano, V.; Pitonzo, R.; Novara, M.E.; Bongiorno, D.; Indelicato, S.; Gentile, C.; Avellone, G.; Bognanni, R.; Scandurra, S.; Melilli, M.G. Antioxidant activity and phenolic composition in pomegranate (Punica granatum L.) genotypes from south Italy by UHPLC-Orbitrap-MS approach. J. Sci. Food Agric. 2019, 99, 1038–1045. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives—Inter-laboratory evaluation study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Sciacca, F.; Palumbo, M.; Pagliaro, A.; Di Stefano, V.; Scandurra, S.; Virzì, N.; Melilli, M.G. Opuntia cladodes as functional ingredient in durum wheat bread: Rheological, sensory, and chemical characterization. CYTA-J. Food 2021, 19, 96–104. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–153. [Google Scholar]
- Durazzo, A.; Lucarini, M. Extractable and Non-Extractable Antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Sarrías, A.; Espín, J.C.; Tomás-Barberán, F.A. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci. Technol. 2017, 69, 281–288. [Google Scholar] [CrossRef]
- Gong, E.S.; Gao, N.; Li, T.; Chen, H.; Wang, Y.; Si, X.; Tian, J.; Shu, C.; Luo, S.; Zhang, J.; et al. Effect of in vitro digestion on phytochemical profiles and cellular antioxidant activity of whole grains. J. Agric. Food Chem. 2019, 67, 7016–7024. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.S.; Li, B.; Podio, N.S.; Chen, H.; Li, T.; Sun, X.; Gao, N.; Wu, W.; Yang, T.; Xin, G.; et al. Identification of key phenolic compounds responsible for antioxidant activities of free and bound fractions of blackberry varieties’ extracts by boosted regression trees. J. Sci. Food Agric. 2022, 102, 984–994. [Google Scholar] [CrossRef]
- Di Stefano, V.; Scandurra, S.; Pagliaro, A.; Di Martino, V.; Melilli, M.G. Effect of Sunlight Exposure on Anthocyanin and Non-Anthocyanin Phenolic Levels in Pomegranate Juices by High Resolution Mass Spectrometry Approach. Foods 2020, 9, 1161. [Google Scholar] [CrossRef]
- Di Stefano, V.; Melilli, M.G. Effect of storage on quality parameters and phenolic content of Italian extra-virgin olive oils. Nat. Prod. Res. 2020, 34, 78–86. [Google Scholar] [CrossRef]
- Chamorro, S.; Goñi, I.; Viveros, A.; Hervert-Hernández, D.; Brenes, A. Changes in polyphenolic content and antioxidant activity after thermal treatments of grape seed extract and grape pomace. Eur. Food Res. Technol. 2012, 234, 147–155. [Google Scholar] [CrossRef]
- Casagrande, M.; Zanela, J.; Pereira, D.; de Lima, V.A.; Oldoni, T.L.C.; Carpes, S.T. Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. J. Food Meas. Charact. 2019, 13, 1120–1129. [Google Scholar] [CrossRef]
- Beres, C.; Freitas, S.P.; Godoy, R.L.; de Oliveira, D.C.R.; Deliza, R.; Iacomini, M.; Mellinger-Silva, C.; Cabral, L.M.C. Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? J. Funct. Foods 2019, 56, 276–285. [Google Scholar] [CrossRef]
- Costa, G.; Tonon, R.V.; Mellinger-Silva, C.; Galdeano, M.C.; Iacomini, M.; Santiago, M.; Almeida, E.L.; Freitas, S.P. Grape seed pomace as a valuable source of antioxidant fibers. J. Sci. Food Agric. 2019, 99, 4593–4601. [Google Scholar] [CrossRef]
- Sung, J.; Lee, J. Antioxidant and antiproliferative activities of grape seeds from different cultivars. Food Sci. Biotechnol. 2010, 19, 321–326. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Gu, L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 2005, 66, 2264–2280. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, S.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Hong, J.; Liu, R. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol. Nutr. Food Res. 2017, 61, 1601082. [Google Scholar] [CrossRef] [PubMed]
Defatted Red Grape Seeds (DGS) | Red Grape Skins (RGSK) | |
---|---|---|
Total phenolic content (TPC) (mg GAE g−1) | 20.69 ± 0.13 | 24.16 ± 0.18 |
TEAC (µM Trolox Equivalent g−1) | 134.2 ± 2.22 | 101.3 ± 1.32 |
IC50 (µM) | 26.85 | 20.27 |
Biophenols | Formula | m/z [M − H]− | Δ ppm | RT (min) | |
---|---|---|---|---|---|
Calculated | Experimental | ||||
Delphinidin-3-glucoside | C15H11ClO6 | 463.067 | 463.075 | 17 | 10.1 |
Isorhamnetin | C16H12O7 | 315.050 | 315.0504 | 1.2 | 12.7 |
Kaempferol | C15H10O6 | 285.041 | 285.039 | −7.0 | 12.8 |
Quercetin 3-O-hexuronide | C21H18O13 | 477.067 | 477.0742 | 15 | 10.0 |
Quercetin 3-O-hexoside | C21H20O12 | 463.088 | 463.0863 | −3.7 | 10.1 |
Myricetin | C21H19O12 | 317.031 | 317.032 | 3.2 | 7.8 |
Epicatechin | C15H14O6 | 289.072 | 289.0697 | −8.0 | 7.9 |
Procyanidin dimer isomer 1 | C15H10O8 | 577.135 | 577.1375 | 4.3 | 7.9 |
Ellagic acid | C15H14O6 | 300.999 | 301.002 | 10 | 11.6 |
Procyanidin dimer isomer 2 | C30H26O12 | 577.135 | 577.1375 | 4.3 | 7.4 |
Quercetin | C14H6O8 | 301.035 | 301.039 | 13 | 11.7 |
Resveratrol tetramer | C30H26O12 | 905.260 | 905.269 | 9.9 | 10.0 |
Resveratrol hexoside | C15H10O7 | 389.124 | 389.128 | 10 | 9.5 |
Ferulic acid | C10H10O4 | 193.051 | 193.052 | 5.2 | 7.1 |
Vanillic acid | C8H8O4 | 167.034 | 167.036 | 12 | 2.0 |
Caffeic acid | C9H8O4 | 179.035 | 179.0341 | −5.0 | 7.1 |
p-Hydroxybenzoic acid | C7H6O3 | 137.024 | 137.024 | 0 | 4.4 |
Gallic acid | C7H6O5 | 169.014 | 169.0128 | −7.1 | 1.2 |
p-Coumaric Acid | C9H8O3 | 163.039 | 163.04 | 6.1 | 8.7 |
Syringic acid | C9H10O5 | 197.045 | 197.044 | −5.1 | 8.6 |
Biophenol | Free Phenolics in DGS Extract | Free Phenolics in RGSK Extract | Bound Phenolics in DGS Extract | Bound Phenolics in RGSK Extract | df | MS | p |
---|---|---|---|---|---|---|---|
µg g−1 | |||||||
Delphinidin-3-glucoside | 4.52 | 0.00 | 39.52 | 0.00 | 3 | 1097 | 4.9 × 10−9 |
Isorhamnetin | 6.09 | 2.70 | 0.00 | 0.00 | 3 | 25.03 | 3.5 × 10−6 |
Kaempferol | 3.60 | 3.17 | 0.00 | 0.00 | 3 | 11.56 | 1.4 × 10−3 |
Quercetin 3-O-hexuronide | 20.08 | 18.13 | 70.55 | 1.19 | 3 | 2689 | 8.1 × 10−7 |
Quercetin 3-O-hexoside | 4.85 | 0.00 | 37.63 | 0.00 | 3 | 988.23 | 4.8 × 10−9 |
Myricetin | 0.00 | 0.00 | 142.69 | 20.07 | 3 | 14,140 | 1.0 × 10−9 |
Epicatechin | 244.79 | 0.00 | 118.21 | 358.43 | 3 | 72,252 | 1.0 × 10−7 |
Procyanidin dimer isom. 1 | 0.00 | 0.00 | 7.50 | 3.98 | 3 | 39.11 | 4.6 × 10−4 |
Ellagic acid | 25.21 | 1.84 | 21.36 | 0.00 | 3 | 509.05 | 8.5 × 10−7 |
Procyanidin dimer isom. 2 | 33.32 | 0.00 | 5.38 | 85.74 | 3 | 4619 | 7.6 × 10−8 |
Quercetin | 110.92 | 91.03 | 90.63 | 15.85 | 3 | 5272 | 2.1 × 10−7 |
Resveratrol tetramer | 71.08 | 0.00 | 0.00 | 0.00 | 3 | 3789 | 6.1 × 10−15 |
Resveratrol hexoside | 73.38 | 0.00 | 72.71 | 96.20 | 3 | 5250 | 9.9 × 10−11 |
Ferulic acid | 0.00 | 0.00 | 70.51 | 73.13 | 3 | 5162 | 8.9 × 10−10 |
Vanillic acid | 69.30 | 0.00 | 96.31 | 130.28 | 3 | 9164 | 3.8 × 10−10 |
Caffeic acid | 86.88 | 67.62 | 1474.13 | 244.74 | 3 | 1,367,708 | 3.2 × 10−12 |
p-Hydroxybenzoic acid | 190.73 | 0.00 | 404.35 | 403.79 | 3 | 113,489 | 6.4 × 10−10 |
Gallic acid | 647.88 | 181.30 | 2649.23 | 3646.40 | 3 | 8,076,547 | 2.0 × 10−12 |
p-Coumaric Acid | 134.33 | 0.00 | 4641.65 | 856.33 | 3 | 14,365,546 | 1.4 × 10−8 |
Syringic acid | 506.70 | 185.21 | 66.78 | 153.61 | 3 | 111,031 | 3.0 × 10−13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stefano, V.; Buzzanca, C.; Melilli, M.G.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 6702. https://doi.org/10.3390/su14116702
Di Stefano V, Buzzanca C, Melilli MG, Indelicato S, Mauro M, Vazzana M, Arizza V, Lucarini M, Durazzo A, Bongiorno D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability. 2022; 14(11):6702. https://doi.org/10.3390/su14116702
Chicago/Turabian StyleDi Stefano, Vita, Carla Buzzanca, Maria Grazia Melilli, Serena Indelicato, Manuela Mauro, Mirella Vazzana, Vincenzo Arizza, Massimo Lucarini, Alessandra Durazzo, and David Bongiorno. 2022. "Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study" Sustainability 14, no. 11: 6702. https://doi.org/10.3390/su14116702
APA StyleDi Stefano, V., Buzzanca, C., Melilli, M. G., Indelicato, S., Mauro, M., Vazzana, M., Arizza, V., Lucarini, M., Durazzo, A., & Bongiorno, D. (2022). Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability, 14(11), 6702. https://doi.org/10.3390/su14116702