Oleic Acid-Tailored Geopolymer Microspheres with Tunable Porous Structure for Enhanced Removal from Tetracycline in Saline Water
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Preparation of MM
2.3. Characterizations
2.4. Batchwise Adsorption
2.5. Fixed-Bed Column Experiments
3. Results and Discussion
3.1. Fabrication of MM
3.2. Characterization of MM
3.3. Batchwise Adsorption Studies
3.3.1. Effects of Adsorbent Dosage and pH Value
3.3.2. Effect of Contact Time, TC Initial Concentration and Temperature
3.4. Adsorption Kinetics and Isotherms
3.5. Adsorption Thermodynamics
3.6. Adsorption Performance in Salt Solution of MM3
3.7. Regeneration Performance of MM3
3.8. Column Studies
3.9. Proposed Adsorption Mechanism
- (i).
- Van der Waals forces and electrostatic interations
- (ii).
- Hydrogen–bonding interactions and ion exchange
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Imran, M.; Das, K.R.; Naik, M.M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere 2019, 215, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J.J. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Hu, C.; Hu, X.; Wei, D.; Chen, Y.; Qu, J. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. J. Hazard. Mater. 2011, 185, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Sun, Q.; Wang, W.; Lu, L.; Zhang, K.; Xu, J.; et al. A review on pollution situation and treatment methods of tetracycline in groundwater. Sep. Sci. Technol. 2019, 55, 1005–1021. [Google Scholar] [CrossRef]
- Ahmad, F.; Zhu, D.; Sun, J. Environmental fate of tetracycline antibiotics: Degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. 2021, 33, 64. [Google Scholar] [CrossRef]
- Naghipour, D.; Hoseinzadeh, L.; Taghavi, K.; Jaafari, J.; Amouei, A. Effective removal of tetracycline from aqueous solution using biochar prepared from pine bark: Isotherms, kinetics and thermodynamic analyses. Int. J. Environ. Anal. Chem. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Hu, C.; Zuo, C.; Wang, P.; Chen, W.; Ao, T. Efficient removal of tetracycline by a hierarchically porous ZIF-8 metal organic framework. Environ. Res. 2021, 198, 111254. [Google Scholar] [CrossRef]
- Qu, J.; Wang, S.; Jin, L.; Liu, Y.; Yin, R.; Jiang, Z.; Tao, Y.; Huang, J.; Zhang, Y. Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(VI) and tetracycline adsorption from water. Bioresour. Technol. 2021, 340, 125692. [Google Scholar] [CrossRef]
- Li, B.; Huang, Y.; Wang, Z.; Li, J.; Liu, Z.; Fan, S. Enhanced adsorption capacity of tetracycline on tea waste biochar with KHCO3 activation from aqueous solution. Environ. Sci. Pollut. Res. 2021, 28, 44140–44151. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tian, Y.; Wang, H.; Zhang, J.; Kong, L.; Zuo, W.; Li, D.; Yin, L. Strong adsorption of tetracycline on octahedral Cu2O nanocrystals exposed with {111} facets: Adsorption behavior and mechanism insight. Appl. Surf. Sci. 2021, 542, 148545. [Google Scholar] [CrossRef]
- Tanyol, M.; Torğut, G. Chitosan-graft-poly(N-tert-butylacrylamide) Copolymer: Synthesis, Characterization and Optimization of Tetracycline Removal Using RSM. J. Polym. Environ. 2021, 30, 752–764. [Google Scholar] [CrossRef]
- Nasiri, A.; Malakootian, M.; Shiri, M.A.; Yazdanpanah, G.; Nozari, M. CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: Modeling, analysis, and optimization by response surface methodology. J. Polym. Res. 2021, 28, 192. [Google Scholar] [CrossRef]
- Zhang, G.; Wo, R.; Sun, Z.; Hao, G.; Liu, G.; Zhang, Y.; Guo, H.; Jiang, W. Effective Magnetic MOFs Adsorbent for the Removal of Bisphenol A, Tetracycline, Congo Red and Methylene Blue Pollutions. Nanomaterials 2021, 11, 1917. [Google Scholar] [CrossRef]
- Chen, B.; Li, Y.; Li, M.; Cui, M.; Xu, W.; Li, L.; Sun, Y.; Wang, M.; Zhang, Y.; Chen, K. Rapid adsorption of tetracycline in aqueous solution by using MOF-525/graphene oxide composite. Microporous Mesoporous Mater. 2021, 328, 111457. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, M.; Xia, M.; Wang, F.; Zhao, F. The Adsorption Mechanism of Montmorillonite for Different Tetracycline Species at Different pH Conditions: The Novel Visual Analysis of Intermolecular Interactions. Water Air Soil Pollut. 2021, 232, 65. [Google Scholar] [CrossRef]
- Chang, P.-H.; Jean, J.-S.; Jiang, W.-T.; Li, Z. Mechanism of tetracycline sorption on rectorite. Colloids Surf. A Physicochem. Eng. Asp. 2009, 339, 94–99. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review. J. Clean. Prod. 2019, 213, 42–58. [Google Scholar] [CrossRef]
- Villaquirán Caicedo, M.A.; Gutiérrez, R.M.D. Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. Dyna 2015, 82, 104–110. [Google Scholar] [CrossRef]
- Ma, S.; Fu, S.; Zhao, S.; He, P.; Ma, G.; Wang, M.; Jia, D.; Zhou, Y. Direct ink writing of geopolymer with high spatial resolution and tunable mechanical properties. Addit. Manuf. 2021, 46, 102202. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Khan, M.I.; Rabat, N.E.; Zulfiqar, M.; Man, Z.; Siame, J.; Azizli, K.A. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J. Environ. Manag. 2018, 224, 327–339. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhang, Y.; Zhang, X.; Chen, H. Diverse zeolites derived from a circulating fluidized bed fly ash based geopolymer for the adsorption of lead ions from wastewater. J. Clean. Prod. 2021, 312, 127769. [Google Scholar] [CrossRef]
- Salam, M.A.; Mokhtar, M.; Albukhari, S.M.; Baamer, D.F.; Palmisano, L.; Abukhadra, M.R. Insight into the role of the zeolitization process in enhancing the adsorption performance of kaolinite/diatomite geopolymer for effective retention of Sr (II) ions; batch and column studies. J. Environ. Manag. 2021, 294, 112984. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Khahro, S.H.; Low, A.; Ayoub, M. Optimization of synthesis of geopolymer adsorbent for the effective removal of anionic surfactant from aqueous solution. J. Environ. Chem. Eng. 2021, 9, 104949. [Google Scholar] [CrossRef]
- Tome, S.; Hermann, D.T.; Shikuku, V.O.; Otieno, S. Synthesis, characterization and application of acid and alkaline activated volcanic ash-based geopolymers for adsorptive remotion of cationic and anionic dyes from water. Ceram. Int. 2021, 47, 20965–20973. [Google Scholar] [CrossRef]
- He, P.; Wang, Q.; Fu, S.; Wang, M.; Zhao, S.; Liu, X.; Jiang, Y.; Jia, D.; Zhou, Y. Hydrothermal transformation of geopolymers to bulk zeolite structures for efficient hazardous elements adsorption. Sci. Total Environ. 2021, 767, 144973. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, Y.; Li, Z.; Wang, Y. Facile fabrication of a low-cost and environmentally friendly inorganic-organic composite membrane for aquatic dye removal. J. Environ. Manag. 2020, 256, 109969. [Google Scholar] [CrossRef]
- Kutuniva, J.; Mäkinen, J.; Kauppila, T.; Karppinen, A.; Hellsten, S.; Luukkonen, T.; Lassi, U. Geopolymers as active capping materials for in situ remediation of metal(loid)-contaminated lake sediments. J. Environ. Chem. Eng. 2019, 7, 102852. [Google Scholar] [CrossRef]
- El Alouani, M.; Saufi, H.; Moutaoukil, G.; Alehyen, S.; Nematollahi, B.; Belmaghraoui, W.; Taibi, M. Application of geopolymers for treatment of water contaminated with organic and inorganic pollutants: State-of-the-art review. J. Environ. Chem. Eng. 2021, 9, 105095. [Google Scholar] [CrossRef]
- Tang, Q.; Ge, Y.-Y.; Wang, K.-T.; He, Y.; Cui, X.-M. Preparation and characterization of porous metakaolin-based inorganic polymer spheres as an adsorbent. Mater. Des. 2015, 88, 1244–1249. [Google Scholar] [CrossRef]
- Papa, E.; Mor, M.; Murri, A.N.; Landi, E.; Medri, V. Ice-templated geopolymer beads for dye removal. J. Colloid Interface Sci. 2020, 572, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, C.; Zhang, Z.; Li, L.; Wang, H.; Pu, S. One-step fabrication of novel porous and permeable self-supporting zeolite block from fly ash. Mater. Lett. 2017, 196, 328–331. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Chen, W.; Bao, Y.; Zheng, Y.; Huang, B.; Mu, Q.; Wen, D.; Feng, C. Antibiotics in coastal water and sediments of the East China Sea: Distribution, ecological risk assessment and indicators screening. Mar. Pollut. Bull. 2020, 151, 110810. [Google Scholar] [CrossRef]
- Zaidi, F.H.A.; Ahmad, R.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Yahya, Z.; Li, L.Y.; Ediati, R. Geopolymer as underwater concreting material: A review. Constr. Build. Mater. 2021, 291, 123276. [Google Scholar] [CrossRef]
- Su, Q.; Deng, L.; Ye, Q.; He, Y.; Cui, X. KOH-Activated Geopolymer Microspheres Recycle Co(II) with Higher Adsorption Capacity than NaOH-Activated Ones. ACS Omega 2020, 5, 23898–23908. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Dardir, F.M.; Ahmed, E.A.; Soliman, M.F. Efficient removal of Sr ions from water utilizing a novel Ni-/Fe-doped spongy apatite through fixed bed column system: Optimization and realistic application. Clean Technol. Environ. Policy 2018, 21, 69–80. [Google Scholar] [CrossRef]
- Mostafa, M.; Bin Jumah, M.N.; Othman, S.I.; Alruhaimi, R.S.; Salama, Y.F.; Allam, A.A.; Abukhadra, M.R. Effective removal of different species of organophosphorus pesticides (acephate, omthosate, and methyl parathion) using chitosan/Zeolite-A as multifunctional adsorbent. Environ. Technol. Innov. 2021, 24, 101875. [Google Scholar] [CrossRef]
- Ozer, I.; Soyer-Uzun, S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios. Ceram. Int. 2015, 41, 10192–10198. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, C.; Zhang, Z.; Gong, Y.; Wang, H.; Qiu, X. A facile method for preparation of floatable and permeable fly ash-based geopolymer block. Mater. Lett. 2016, 185, 370–373. [Google Scholar] [CrossRef]
- Qiu, Y.; Kong, L.; Chen, T.; Xu, Q. Efficient Adsorption of Tetracycline Using Cu+-Modified SBA-15 and Its Adsorption Mechanism. J. Environ. Eng. 2021, 147, 04020142. [Google Scholar] [CrossRef]
- Yuan, M.; Li, C.; Zhang, B.; Wang, J.; Zhu, J.; Ji, J.; Ma, Y. A mild and one-pot method to activate lignin-derived biomass by using boric acid for aqueous tetracycline antibiotics removal in water. Chemosphere 2021, 280, 130877. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Karthikeyan, K.G. Interaction of tetracycline with aluminum and iron hydrous oxides. Environ. Sci. Technol. 2005, 39, 2660–2667. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Liu, Y.; Cheng, L.; Jiang, Z.; Zhang, G.; Deng, F.; Wang, L.; Han, W.; Zhang, Y. Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb(II) scavenging from water: Characterization, kinetics, isotherms and mechanisms. J. Hazard. Mater. 2021, 403, 123607. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, S.; Sarkar, A.K.; Panda, A.B.; Pal, S. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 2013, 144, 485–491. [Google Scholar] [CrossRef]
- Agarwal, S.; Pramanick, S.; Rahaman, S.A.; Ghanta, K.C.; Dutta, S. A cost-effective approach for abatement of cyanide using iron-impregnated activated carbon: Kinetic and equilibrium study. Appl. Water Sci. 2019, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; He, P.; Jia, D.; Wang, Q.; Liu, J.; Yang, J.; Huang, Y. Synthesis of novel low-cost porous gangue microsphere/geopolymer composites and their adsorption properties for dyes. Int. J. Appl. Ceram. Technol. 2018, 15, 1602–1614. [Google Scholar] [CrossRef]
- Teong, C.Q.; Setiabudi, H.D.; El-Arish, N.A.S.; Bahari, M.B.; Teh, L.P. Vatica rassak wood waste-derived activated carbon for effective Pb(II) adsorption: Kinetic, isotherm and reusability studies. Mater. Today Proc. 2021, 42, 165–171. [Google Scholar] [CrossRef]
- Bao, J.; Zhu, Y.; Yuan, S.; Wang, F.; Tang, H.; Bao, Z.; Zhou, H.; Chen, Y. Adsorption of Tetracycline with Reduced Graphene Oxide Decorated with MnFe2O4 Nanoparticles. Nanoscale Res. Lett. 2018, 13, 396. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Rehman, H.U.; Ali, Z.; Qadeer, A.; Haseeb, A.; Ajmal, Z. Solvent assisted synthesis of hierarchical magnesium oxide flowers for adsorption of phosphate and methyl orange: Kinetic, isotherm, thermodynamic and removal mechanism. Surfaces Interfaces 2021, 23, 100953. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, K.; Zhang, Y.; Peng, C.; Robledo-Cabrera, A.; López-Valdivieso, A. Highly surface activated carbon to remove Cr(VI) from aqueous solution with adsorbent recycling. Environ. Res. 2021, 197, 111151. [Google Scholar] [CrossRef] [PubMed]
- Ziyat, H.; Elmzioui, S.; Naciri Bennani, M.; Houssaini, J.; Allaoui, S.; Arhzaf, S. Kinetic, isotherm, and mechanism investigations of the removal of nitrate and nitrite from water by the synthesized hydrotalcite Mg–Al. Res. Chem. Intermed. 2021, 47, 2605–2627. [Google Scholar] [CrossRef]
- Chen, G.; He, S.; Shi, G.; Ma, Y.; Ruan, C.; Jin, X.; Chen, Q.; Liu, X.; Dai, H.; Chen, X.; et al. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chem. Eng. J. 2021, 423, 130184. [Google Scholar] [CrossRef]
- Liu, M.; Hou, L.-A.; Yu, S.; Xi, B.; Zhao, Y.; Xia, X. MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chem. Eng. J. 2013, 223, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 2019, 273, 425–434. [Google Scholar] [CrossRef]
- Srivastava, A.; Parida, V.K.; Majumder, A.; Gupta, B.; Gupta, A.K. Treatment of saline wastewater using physicochemical, biological, and hybrid processes: Insights into inhibition mechanisms, treatment efficiencies and performance enhancement. J. Environ. Chem. Eng. 2021, 9, 105775. [Google Scholar] [CrossRef]
- Spaltro, A.; Pila, M.N.; Colasurdo, D.D.; Grau, E.N.; Román, G.; Simonetti, S.; Ruiz, D.L. Removal of paracetamol from aqueous solution by activated carbon and silica. Experimental and computational study. J. Contam. Hydrol. 2021, 236, 103739. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Aniagor, C.O.; Oba, S.N.; Yap, P.-S.; Iwuchukwu, F.U.; Liu, T.; de Souza, E.C.; Ighalo, J.O. Environmental protection by the adsorptive elimination of acetaminophen from water: A comprehensive review. J. Ind. Eng. Chem. 2021, 104, 117–135. [Google Scholar] [CrossRef]
- Liao, Q.; Rong, H.; Zhao, M.; Luo, H.; Chu, Z.; Wang, R. Strong adsorption properties and mechanism of action with regard to tetracycline adsorption of double-network polyvinyl alcohol-copper alginate gel beads. J. Hazard. Mater. 2021, 422, 126863. [Google Scholar] [CrossRef]
- Mohanta, S.; Sahu, M.K.; Mishra, P.C.; Giri, A.K. Removal of Cr (VI) from aqueous solution by activated charcoal derived from Sapindus trifoliate L fruit biomass using continuous fixed bed column studies. Water Sci. Technol. 2021, 84, 55–65. [Google Scholar] [CrossRef]
- Lin, X.; Huang, Q.; Qi, G.; Shi, S.; Xiong, L.; Huang, C.; Chen, X.; Li, H.; Chen, X. Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin. Sep. Purif. Technol. 2017, 174, 222–231. [Google Scholar] [CrossRef]
- Nazari, G.; Abolghasemi, H.; Esmaieli, M.; Pouya, E.S. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study. Appl. Surf. Sci. 2016, 375, 144–153. [Google Scholar] [CrossRef]
- Ge, Y.; Cui, X.; Liao, C.; Li, Z. Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(II) in water: Batch and column studies. Chem. Eng. J. 2017, 311, 126–134. [Google Scholar] [CrossRef]
- Porubcan, L.S.; Serna, C.J.; White, J.L.; Hem, S.L. Mechanism of Adsorption of Clindamycin and Tetracycline by Montmorillonite. J. Pharm. Sci. 1978, 67, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | BET-Specific Surface Area m2·g−1 | Total Pore Volume cm3·g−1 | Mesoporous Volume cm3·g−1 | Macroporous Volume cm3·g−1 |
---|---|---|---|---|
MM0 | 24.23 | 0.09 | 0.028 | 0.059 |
MM3 | 40.09 | 0.15 | 0.057 | 0.059 |
Qexp mg·g−1 | C0 mg·L−1 | The Pseudo-First-Order Kinetic Model | The Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
k1 | Qe | R2 | k2 | Qe | R2 | ||
min−1 | mg·g−1 | g·(mg·min)−1 | mg·g−1 | ||||
179.6 | 100 | 0.0123 | 90.3 | 0.966 | 3.03 × 10−4 | 166.7 | 0.996 |
433.3 | 250 | 0.0115 | 394.7 | 0.992 | 0.46 × 10−4 | 454.5 | 0.999 |
603.8 | 400 | 0.0080 | 498.7 | 0.977 | 0.32 × 10−4 | 606.1 | 0.993 |
C0 mg·g−1 | The First Stage | The Second Stage | The Third Stage | ||||||
---|---|---|---|---|---|---|---|---|---|
ki1 mg·(g·min)−1/2 | Cil | R2 | ki2 mg·(g·min)−1/2 | Ci2 | R2 | ki3 mg·(g·min)−1/2 | Ci3 | R2 | |
100 | 17.16 | 1.2 | 0.981 | 5.10 | 80.8 | 0.917 | 0.35 | 151.0 | 0.947 |
250 | 32.94 | 0.3 | 0.949 | 10.68 | 229.0 | 0.961 | 0.57 | 419.4 | 0.993 |
400 | 34.56 | 29.5 | 0.992 | 19.03 | 180.4 | 0.990 | 3.77 | 472.9 | 0.956 |
T K | Qe mg·g−1 | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
Qm mg·g−1 | Kl·103 L·mg−1 | R2 | n | KF (mg·g−1) (L·mg−1)−1/n | R2 | |||
MM3 | 298 | 645.8 | 657.9 | 0.084 | 0.988 | 2.79 | 111.1 | 0.798 |
308 | 701.4 | 719.42 | 0.115 | 0.974 | 2.85 | 128.3 | 0.797 | |
318 | 835.8 | 833.3 | 0.217 | 0.980 | 3.03 | 203.6 | 0.897 | |
MM0 | 298 | 494.7 | 531.9 | 0.054 | 0.999 | 2.52 | 67.1 | 0.901 |
Adsorbent | Qm mg·g−1 | Reference |
---|---|---|
ZIF-67-immobilized WA (wood aerogel) | 195.8 | [53] |
Hierarchical porous ZIF-8 | 976.8 | [9] |
Zeolite A–modified MCM-41 | 419.3 | [54] |
Montmorillonite | 269.0 | [17] |
Biochar prepared from pine bark | 58.5 | [8] |
MnFe2O4 rGO | 41.0 | [49] |
MM0 | 386.9 | This work |
MM3 | 445.0 | This work |
T K | Qe mg·g−1 | ∆G KJ·mol−1 | ∆H KJ·mol−1 | ∆S J·(mol·K)−1 |
---|---|---|---|---|
298 | 645.8 | −8.83 | 37.24 | 154.58 |
308 | 701.4 | −10.37 | ||
318 | 835.8 | −11.92 |
Column Height Z cm | Adsorption Capacity Qf mg·g−1 | Removal Efficiency Y % | Breakthrough Time tb min | Saturation Time ts min |
---|---|---|---|---|
1 | 783.79 | 31.35 | 40 | 480 |
2 | 633.10 | 33.77 | 120 | 600 |
3 | 629.39 | 41.96 | 180 | 840 |
Column Height Z cm | Thomas Model | Yoon–Nelson | ||||
---|---|---|---|---|---|---|
kth L·(g·min)−1 | Qf mg·g−1 | R2 | kyn L·(g·min)−1 | τ min | R2 | |
1 | 0.03776 | 763.3 | 0.950 | 0.00944 | 183.2 | 0.950 |
2 | 0.03612 | 744.4 | 0.902 | 0.00903 | 357.3 | 0.902 |
3 | 0.02772 | 679.8 | 0.938 | 0.00693 | 489.5 | 0.938 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Z.; Ge, Y. Oleic Acid-Tailored Geopolymer Microspheres with Tunable Porous Structure for Enhanced Removal from Tetracycline in Saline Water. Sustainability 2022, 14, 6705. https://doi.org/10.3390/su14116705
Wang X, Zhang Z, Ge Y. Oleic Acid-Tailored Geopolymer Microspheres with Tunable Porous Structure for Enhanced Removal from Tetracycline in Saline Water. Sustainability. 2022; 14(11):6705. https://doi.org/10.3390/su14116705
Chicago/Turabian StyleWang, Xiaoyun, Zheng Zhang, and Yuanyuan Ge. 2022. "Oleic Acid-Tailored Geopolymer Microspheres with Tunable Porous Structure for Enhanced Removal from Tetracycline in Saline Water" Sustainability 14, no. 11: 6705. https://doi.org/10.3390/su14116705
APA StyleWang, X., Zhang, Z., & Ge, Y. (2022). Oleic Acid-Tailored Geopolymer Microspheres with Tunable Porous Structure for Enhanced Removal from Tetracycline in Saline Water. Sustainability, 14(11), 6705. https://doi.org/10.3390/su14116705