Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows
Abstract
:1. Introduction
2. Literature Review
2.1. VRPDCDTW
2.2. MVRPDCDTW
2.3. CMVRPDCDTW
2.4. Related Solution Methodologies
3. Problem Statement and Model Formulation
3.1. Problem Statement
3.2. Definitions
3.3. Model Formulation
4. Solution Methodology
4.1. Customer Clustering
Algorithm 1: Improved k-medoids clustering |
Input: Set of customers and depots, the number of clustering units k |
Output: k clustering units Steps: (1) Randomly select k customers as medoids (2) Repeat (i) Calculate the distance between medoids and customers (ii) Assign the customers to the nearest clusters (iii) Randomly select customer h to replace medoid i (iv) Calculate the total cost TCih when new clusters are formed (v) If TCih > 0 then Replace medoid i with the customer h and update the set of medoids End (3) Until clustering results no longer change (4) Calculate the distance between each medoid and each depot (5) Assign each clustering unit to the nearest depot (6) Output k clustering units |
4.2. IMOPSO-DIS
Algorithm 2: IMOPSO-DIS |
Input: Clustering units (coordinates, time windows, and demands), i_max (number of maximum iteration), Npop (size of the swarm), Narc (capacity of the external archive), c1 (personal learning coefficient), c2 (global learning coefficient), w (inertia weight), γ (elitist learning rate) |
Output: Nondominated particles in the external archive Steps: (1) Initialize the particles in the swarm P0 (vp,0, xp,0) (2) Evaluate each particle in P0 and Nondominated sorting (P0) (3) Initialize the external archive A0 by nondominated solution maintaining (4) Initialize pbestp,0 and gbest0 (5) While i< i_max do (6) For each particle p = 1: Npop (7) Update the velocity and position by using Equations (33) and (34) (8) Evaluate the new particle (9) Update pbestp,i (10) End for (11) Ai←External archive updating (Ai−1) (12) Select gbesti according to the crowding distance (13) If rand () < γ (14) Update Ai by ELS (15) End If (16) While DCD d appears do (17) For each particle p in Ai (18) xp,i←DIS (d, xp,i) and update Ai (19) End for (20) End while (21) i = i + 1 (22) End while (23) Output results in the external archive |
4.2.1. Particle Updating
4.2.2. Selection of pbest and Nondominated Sorting
Algorithm 3: Nondominated sorting |
Input: Particle swarm P = {p1, p2, p3, …, pj}, rank counter r |
Output: r and a set of particles in different ranks Steps: (1) Initialize rank counter r as 0 (2) Repeat (i) r←r + 1 (ii) Evaluate the particles (iii) Find the nondominated particles from P based on the dominance relationship (iv) Assign rank r to these particles (v) Remove these particles from P (3) Until the P←ø (4) Output the nondominated soring results |
4.2.3. External Archive Updating Strategy and Gbest Selection
Algorithm 4: External archive updating |
Input: External archive Ai−1, new particle swarm P = {p1, p2, p3, …, pj}, Narc |
Output: Updated external archive Ai Steps: (1) Ai←Ai−1 (2) For j= 1: |j| (3) Evaluate the new particle pj (4) If new particle pj is dominated by any particles in Ai (5) New particle pj cannot add to Ai (6) Else (7) Ai←Ai ∪ pj (8) End if (9) End for (10) If |Ai|> Narc (11) Nondominated sorting (Ai) (12) For j = 1: |Ai| (13) Calculate the CD(j) by Equation (38) (14) End for (15) Remove the particle with the lowest CD from Ai (16) End if (17) Output Ai |
4.2.4. ELS
4.2.5. DIS
Algorithm 5: DIS |
Input: External archive Ai−1, new particle swarm P = {p1, p2, p3, …, pj}, Narc |
Output: Updated external archive Ai Steps: (1) While DCDs exist, do (2) For each DCD d (3) Perform the feasibility insertion checks (4) If DCD d can be inserted into xp,i (5) Feasible insertion points in xp,i are found (6) Calculate Δfij(d) after inserting d (7) Choose the insertion point with minimum Δfij(d) as the best insertion point for DCD (8) Else (9) Plan a new route for DCD (10) xp,i←xp,i∪d (11) End If (12) End for (13) Compare the Δfij(d) of each DCD d (14) Insert DCD d with the maximum Δfij(d) into the best insertion point (15) Update xp,i and external archive Ai (16) End while (17) Output the external archive Ai |
5. Implementation and Analysis
5.1. Algorithm Comparison
5.2. Case Study
5.2.1. Data Description and Parameter Setting
5.2.2. Customer Clustering Results
5.2.3. Results of Routing Optimization with Resource Sharing and DIS
5.3. Analysis and Discussion
5.3.1. Results of Different Numbers of Service Periods
5.3.2. Results of Different Optimization Strategies
5.4. Management Insights
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bent, R.W.; Van Hentenryck, P. Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper. Res. 2004, 52, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Mańdziuk, J.; Żychowski, A. A memetic approach to vehicle routing problem with dynamic requests. Appl. Soft Comput. 2016, 48, 522–534. [Google Scholar] [CrossRef]
- Ahkamiraad, A.; Wang, Y. Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Comput. Ind. Eng. 2018, 119, 76–84. [Google Scholar] [CrossRef]
- Bettinelli, A.; Ceselli, A.; Righini, G. A branch-and-cut-and-price algorithm for the multi-depot heterogeneous vehicle routing problem with time windows. Transp. Res. Part C Emerg. Technol. 2011, 19, 723–740. [Google Scholar] [CrossRef]
- Sadati, M.E.H.; Çatay, B. A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102293. [Google Scholar] [CrossRef]
- Wang, S.H.; Han, C.; Yu, Y.; Huang, M.; Sun, W.; Kaku, I. Reducing carbon emissions for the vehicle routing problem by utilizing multiple depots. Sustainability 2022, 14, 1264. [Google Scholar] [CrossRef]
- Xu, Z.T.; Elomri, A.; Pokharel, S.; Mutlu, F. A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows. Comput. Ind. Eng. 2019, 137, 106011. [Google Scholar] [CrossRef]
- Li, J.Q.; Han, Y.Q.; Duan, P.Y.; Han, Y.Y.; Niu, B.; Li, C.D.; Zheng, Z.X.; Liu, Y.P. Meta-heuristic algorithm for solving vehicle routing problems with time windows and synchronized visit constraints in prefabricated systems. J. Clean. Prod. 2020, 250, 119464. [Google Scholar] [CrossRef]
- Bae, H.; Moon, I. Multi-depot vehicle routing problem with time windows considering delivery and installation vehicles. Appl. Math. Model. 2016, 40, 6536–6549. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.G.; Tian, P.J.; Lv, Y.C.; Fan, H. Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance. Comput. Oper. Res. 2021, 129, 105211. [Google Scholar] [CrossRef]
- Dayarian, I.; Crainic, T.G.; Gendreau, M.; Rei, W. An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem. Transp. Res. Part E Logist. Transp. Rev. 2016, 95, 95–123. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Guan, X.Y.; Xu, M.Z.; Liu, Y.; Wang, H.Z. Two-echelon collaborative multi-depot multi-period vehicle routing problem. Expert Syst. Appl. 2021, 167, 114201. [Google Scholar] [CrossRef]
- Kuo, R.J.; Wibowo, B.S.; Zulvia, F.E. Application of a fuzzy ant colony system to solve the dynamic vehicle routing problem with uncertain service time. Appl. Math. Model. 2016, 40, 9990–10001. [Google Scholar] [CrossRef]
- Zhang, J.L.; Lam, W.H.K.; Chen, B.Y. On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows. Eur. J. Oper. Res. 2016, 249, 144–154. [Google Scholar] [CrossRef]
- Wang, Y.; Ran, L.Y.; Guan, X.Y.; Fan, J.X.; Sun, Y.Y.; Wang, H.Z. Collaborative multicenter vehicle routing problem with time windows and mixed deliveries and pickups. Expert Syst. Appl. 2022, 197, 116690. [Google Scholar] [CrossRef]
- Albareda-Sambola, M.; Fernández, E.; Laporte, G. The dynamic multiperiod vehicle routing problem with probabilistic information. Comput. Oper. Res. 2014, 48, 31–39. [Google Scholar] [CrossRef]
- Sarasola, B.; Doerner, K.F.; Schmid, V.; Alba, E. Variable neighborhood search for the stochastic and dynamic vehicle routing problem. Ann. Oper. Res. 2015, 236, 425–461. [Google Scholar] [CrossRef]
- Xu, H.T.; Pu, P.; Duan, F. Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization. Discret. Dyn. Nat. Soc. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Los, J.; Schulte, F.; Spaan, M.T.J.; Negenborn, R.R. The value of information sharing for platform-based collaborative vehicle routing. Transp. Res. Part E Logist. Transp. Rev. 2020, 141, 102011. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Guan, X.Y.; Fan, J.X.; Liu, Y.; Wang, H.Z. Collaboration and resource sharing in the multidepot multiperiod vehicle routing problem with pickups and deliveries. Sustainability 2020, 12, 5966. [Google Scholar] [CrossRef]
- Chakraborty, D.; Garai, T.; Jana, D.K.; Roy, T.K. A three-layer supply chain inventory model for non-instantaneous deteriorating item with inflation and delay in payments in random fuzzy environment. J. Ind. Prod. Eng. 2017, 34, 407–424. [Google Scholar] [CrossRef]
- Paul, A.; Garai, T.; Giri, B. Sustainable supply chain coordination with greening and promotional effort dependent demand. Int. J. Procure. Manag. 2021, in press. [Google Scholar] [CrossRef]
- Xiang, X.S.; Qiu, J.F.; Xiao, J.H.; Zhang, X.Y. Demand coverage diversity based ant colony optimization for dynamic vehicle routing problems. Eng. Appl. Artif. Intell. 2020, 91, 103582. [Google Scholar] [CrossRef]
- Niu, Y.Y.; Zhang, Y.P.; Cao, Z.G.; Gao, K.Z.; Xiao, J.H.; Song, W.; Zhang, F.W. MIMOA: A membrane-inspired multi-objective algorithm for green vehicle routing problem with stochastic demands. Swarm Evol. Comput. 2021, 60, 100767. [Google Scholar] [CrossRef]
- Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.Y.; Guan, X.Y.; Fan, J.X.; Xu, M.Z.; Wang, H.Z. Two-echelon multi-period location routing problem with shared transportation resource. Knowl. -Based Syst. 2021, 226, 107168. [Google Scholar] [CrossRef]
- Hanshar, F.T.; Ombuki-Berman, B.M. Dynamic vehicle routing using genetic algorithms. Appl. Intell. 2007, 27, 89–99. [Google Scholar] [CrossRef]
- Xu, H.T.; Pu, P.; Duan, F. A hybrid ant colony optimization for dynamic multidepot vehicle routing problem. Discret. Dyn. Nat. Soc. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Okulewicz, M.; Mańdziuk, J. The impact of particular components of the PSO-based algorithm solving the Dynamic Vehicle Routing Problem. Appl. Soft Comput. 2017, 58, 586–604. [Google Scholar] [CrossRef]
- Hong, L.X. An improved LNS algorithm for real-time vehicle routing problem with time windows. Comput. Oper. Res. 2012, 39, 151–163. [Google Scholar] [CrossRef]
- Barkaoui, M.; Berger, J.; Boukhtouta, A. Customer satisfaction in dynamic vehicle routing problem with time windows. Appl. Soft Comput. 2015, 35, 423–432. [Google Scholar] [CrossRef]
- Goel, R.; Maini, R.; Bansal, S. Vehicle routing problem with time windows having stochastic customer demands and stochastic service times: Modelling and solution. J. Comput. Sci. 2019, 34, 1–10. [Google Scholar] [CrossRef]
- Errico, F.; Desaulniers, G.; Gendreau, M.; Rei, W.; Rousseau, L.M. The vehicle routing problem with hard time windows and stochastic service times. EURO J. Transp. Logist. 2018, 7, 223–251. [Google Scholar] [CrossRef]
- Basso, R.; Kulcsár, B.; Sanchez-Diaz, I.; Qu, X.B. Dynamic stochastic electric vehicle routing with safe reinforcement learning. Transp. Res. Part E Logist. Transp. Rev. 2022, 157, 102496. [Google Scholar] [CrossRef]
- Carrese, S.; Cipriani, E.; Mannini, L.; Nigro, M. Dynamic demand estimation and prediction for traffic urban networks adopting new data sources. Transp. Res. Part C Emerg. Technol. 2017, 81, 83–98. [Google Scholar] [CrossRef]
- Roy, K.C.; Hasan, S.; Culotta, A.; Eluru, N. Predicting traffic demand during hurricane evacuation using Real-time data from transportation systems and social media. Transp. Res. Part C Emerg. Technol. 2021, 131, 103339. [Google Scholar] [CrossRef]
- Huang, F.H.; Yi, P.Y.; Wang, J.C.; Li, M.S.; Peng, J.; Xiong, X. A dynamical spatial-temporal graph neural network for traffic demand prediction. Inf. Sci. 2022, 594, 286–304. [Google Scholar] [CrossRef]
- Jie, K.W.; Liu, S.Y.; Sun, X.J. A hybrid algorithm for time-dependent vehicle routing problem with soft time windows and stochastic factors. Eng. Appl. Artif. Intell. 2022, 109, 104606. [Google Scholar] [CrossRef]
- Peled, I.; Lee, K.; Jiang, Y.; Dauwels, J.; Pereira, F.C. On the quality requirements of demand prediction for dynamic public transport. Commun. Transp. Res. 2021, 1, 100008. [Google Scholar] [CrossRef]
- Chen, S.F.; Chen, R.; Wang, G.G.; Gao, J.; Sangaiah, A.K. An adaptive large neighborhood search heuristic for dynamic vehicle routing problems. Comput. Electr. Eng. 2018, 67, 596–607. [Google Scholar] [CrossRef]
- Laganà, D.; Laporte, G.; Vocaturo, F. A dynamic multi-period general routing problem arising in postal service and parcel delivery systems. Comput. Oper. Res. 2021, 129, 105195. [Google Scholar] [CrossRef]
- Xue, G.Q.; Wang, Y.; Guan, X.Y.; Wang, Z. A combined GA-TS algorithm for two-echelon dynamic vehicle routing with proactive satellite stations. Comput. Ind. Eng. 2022, 164, 107899. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Li, T.T.; Lu, Z.X.; Pardalos, P.M. Benefit analysis of shared depot resources for multi-depot vehicle routing problem with fuel consumption. Transp. Res. Part D Transp. Environ. 2018, 59, 417–432. [Google Scholar] [CrossRef]
- Soeanu, A.; Ray, S.; Berger, J.; Boukhtouta, A.; Debbabi, M. Multi-depot vehicle routing problem with risk mitigation: Model and solution algorithm. Expert Syst. Appl. 2020, 145, 113099. [Google Scholar] [CrossRef]
- Wang, X.P.; Lin, N.; Li, Y.; Shi, Y.; Ruan, J.H. An integrated modeling method for collaborative vehicle routing: Facilitating the unmanned micro warehouse pattern in new retail. Expert Syst. Appl. 2021, 168, 114307. [Google Scholar] [CrossRef]
- Zhen, L.; Ma, C.L.; Wang, K.; Xiao, L.Y.; Zhang, W. Multi-depot multi-trip vehicle routing problem with time windows and release dates. Transp. Res. Part E Logist. Transp. Rev. 2020, 135, 101866. [Google Scholar] [CrossRef]
- Sadati, M.E.H.; Çatay, B.; Aksen, D. An efficient variable neighborhood search with tabu shaking for a class of multi-depot vehicle routing problems. Comput. Oper. Res. 2021, 133, 105269. [Google Scholar] [CrossRef]
- Yang, F.; Dai, Y.; Ma, Z.J. A cooperative rich vehicle routing problem in the last-mile logistics industry in rural areas. Transp. Res. Part E Logist. Transp. Rev. 2020, 141, 102024. [Google Scholar] [CrossRef]
- Mancini, S.; Gansterer, M.; Hartl, R.F. The collaborative consistent vehicle routing problem with workload balance. Eur. J. Oper. Res. 2021, 293, 955–965. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.W.; Guan, X.Y.; Li, Q.; Fan, J.X.; Wang, H.Z. A combined intelligent and game theoretical methodology for collaborative multicenter pickup and delivery problems with time window assignment. Appl. Soft Comput. 2021, 113, 107875. [Google Scholar] [CrossRef]
- Qin, X.R.; Yang, H.; Wu, Y.H.; Zhu, H.T. Multi-party ride-matching problem in the ride-hailing market with bundled option services. Transp. Res. Part C Emerg. Technol. 2021, 131, 103287. [Google Scholar] [CrossRef]
- Gao, J.; Li, S.; Yang, H. Shared parking for ride-sourcing platforms to reduce cruising traffic. Transp. Res. Part C Emerg. Technol. 2022, 137, 103562. [Google Scholar] [CrossRef]
- Wei, S.Q.; Feng, S.Y.; Ke, J.T.; Yang, H. Calibration and validation of matching functions for ride-sourcing markets. Commun. Transp. Res. 2022, 2, 100058. [Google Scholar] [CrossRef]
- Muñoz-Villamizar, A.; Montoya-Torres, J.R.; Faulin, J. Impact of the use of electric vehicles in collaborative urban transport networks: A case study. Transp. Res. Part D Transp. Environ. 2017, 50, 40–54. [Google Scholar] [CrossRef]
- Vaziri, S.; Etebari, F.; Vahdani, B. Development and optimization of a horizontal carrier collaboration vehicle routing model with multi-commodity request allocation. J. Clean. Prod. 2019, 224, 492–505. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Wang, Z.T.; Huang, M.; Yu, Y.; Fang, S.C. Heterogeneous multi-depot collaborative vehicle routing problem. Transp. Res. Part B Methodol. 2022, 160, 1–20. [Google Scholar] [CrossRef]
- Mancini, S. A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet: Formulation and adaptive large neighborhood search based matheuristic. Transp. Res. Part C Emerg. Technol. 2016, 70, 100–112. [Google Scholar] [CrossRef]
- Ting, C.K.; Liao, X.L.; Huang, Y.H.; Liaw, R.T. Multi-vehicle selective pickup and delivery using metaheuristic algorithms. Inf. Sci. 2017, 406–407, 146–169. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, Z. A hybrid large-neighborhood search algorithm for the cumulative capacitated vehicle routing problem with time-window constraints. Appl. Soft Comput. 2019, 80, 18–30. [Google Scholar] [CrossRef]
- Lin, C.K.Y. A cooperative strategy for a vehicle routing problem with pickup and delivery time windows. Comput. Ind. Eng. 2008, 55, 766–782. [Google Scholar] [CrossRef]
- Ghannadpour, S.F.; Noori, S.; Tavakkoli-Moghaddam, R.; Ghoseiri, K. A multi-objective dynamic vehicle routing problem with fuzzy time windows: Model, solution and application. Appl. Soft Comput. 2014, 14, 504–527. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Pardalos, P.M. Multi-depot vehicle routing problem with time windows under shared depot resources. J. Comb. Optim. 2014, 31, 515–532. [Google Scholar] [CrossRef]
- Fernández, E.; Roca-Riu, M.; Speranza, M.G. The Shared Customer Collaboration Vehicle Routing Problem. Eur. J. Oper. Res. 2018, 265, 1078–1093. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.B.; Soleimani, H.; Zohal, M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives. J. Clean. Prod. 2019, 227, 1161–1172. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Chen, Z.X.; Zhang, S.; Wang, W.R.; Yang, S.Q.; Cai, Y.S. Composite multi-objective optimization on a new collaborative vehicle routing problem with shared carriers and depots. J. Clean. Prod. 2020, 274, 122593. [Google Scholar] [CrossRef]
- Wang, F.; Liao, F.S.; Li, Y.X.; Yan, X.S.; Chen, X. An ensemble learning based multi-objective evolutionary algorithm for the dynamic vehicle routing problem with time windows. Comput. Ind. Eng. 2021, 154, 107131. [Google Scholar] [CrossRef]
- Khouadjia, M.R.; Sarasola, B.; Alba, E.; Jourdan, L.; Talbi, E.G. A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl. Soft Comput. 2012, 12, 1426–1439. [Google Scholar] [CrossRef]
- Abdallah, A.M.F.M.; Essam, D.L.; Sarker, R.A. On solving periodic re-optimization dynamic vehicle routing problems. Appl. Soft Comput. 2017, 55, 1–12. [Google Scholar] [CrossRef]
- Ganji, M.; Kazemipoor, H.; Molana, S.M.H.; Sajadi, S.M. A green multi-objective integrated scheduling of production and distribution with heterogeneous fleet vehicle routing and time windows. J. Clean. Prod. 2020, 259, 120824. [Google Scholar] [CrossRef]
- Kumar, R.S.; Kondapaneni, K.; Dixit, V.; Goswami, A.; Thakur, L.S.; Tiwari, M.K. Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach. Comput. Ind. Eng. 2016, 99, 29–40. [Google Scholar] [CrossRef]
- Srivastava, G.; Singh, A.; Mallipeddi, R. NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows. Expert Syst. Appl. 2021, 176, 114779. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Yang, D.J.; Zhang, G.H.; Gen, M. Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW. Expert Syst. Appl. 2020, 145, 113151. [Google Scholar] [CrossRef]
- Niu, Y.Y.; Kong, D.; Wen, R.; Cao, Z.G.; Xiao, J.H. An improved learnable evolution model for solving multi-objective vehicle routing problem with stochastic demand. Knowl. -Based Syst. 2021, 230, 107378. [Google Scholar] [CrossRef]
- Zarouk, Y.; Mahdavi, I.; Rezaeian, J.; Santos-Arteaga, F.J. A novel multi-objective green vehicle routing and scheduling model with stochastic demand, supply, and variable travel times. Comput. Oper. Res. 2022, 141, 105698. [Google Scholar] [CrossRef]
- Eskandarpour, M.; Ouelhadj, D.; Hatami, S.; Juan, A.A.; Khosravi, B. Enhanced multi-directional local search for the bi-objective heterogeneous vehicle routing problem with multiple driving ranges. Eur. J. Oper. Res. 2019, 277, 479–491. [Google Scholar] [CrossRef]
- Asadi, E.; Habibi, F.; Nickel, S.; Sahebi, H. A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain. Appl. Energy 2018, 228, 2235–2261. [Google Scholar] [CrossRef]
- Farham, M.S.; Süral, H.; Iyigun, C. A column generation approach for the location-routing problem with time windows. Comput. Oper. Res. 2018, 90, 249–263. [Google Scholar] [CrossRef]
- Mokhtarzadeh, M.; Tavakkoli-Moghaddam, R.; Triki, C.; Rahimi, Y. A hybrid of clustering and meta-heuristic algorithms to solve a p-mobile hub location–allocation problem with the depreciation cost of hub facilities. Eng. Appl. Artif. Intell. 2021, 98, 104121. [Google Scholar] [CrossRef]
- Lyu, Y.; Chow, C.Y.; Lee VC, S.; Ng JK, Y.; Li, Y.H.; Zeng, J. CB-Planner: A bus line planning framework for customized bus systems. Transp. Res. Part C Emerg. Technol. 2019, 101, 233–253. [Google Scholar] [CrossRef]
- Rabbani, M.; Heidari, R.; Farrokhi-Asl, H.; Rahimi, N. Using metaheuristic algorithms to solve a multi-objective industrial hazardous waste location-routing problem considering incompatible waste types. J. Clean. Prod. 2018, 170, 227–241. [Google Scholar] [CrossRef]
- Rezaei, M.; Afsahi, M.; Shafiee, M.; Patriksson, M. A bi-objective optimization framework for designing an efficient fuel supply chain network in post-earthquakes. Comput. Ind. Eng. 2020, 147, 106654. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 39–43. [Google Scholar]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Moslemi, H.; Zandieh, M. Comparisons of some improving strategies on MOPSO for multi-objective (r,Q) inventory system. Expert Syst. Appl. 2011, 38, 12051–12057. [Google Scholar] [CrossRef]
- Li, L.; Li, G.P.; Chang, L. A many-objective particle swarm optimization with grid dominance ranking and clustering. Appl. Soft Comput. 2020, 96, 106661. [Google Scholar] [CrossRef]
- Govindan, K.; Jafarian, A.; Khodaverdi, R.; Devika, K. Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int. J. Prod. Econ. 2014, 152, 9–28. [Google Scholar] [CrossRef]
- Lim, W.H.; Isa, N.A.M. An adaptive two-layer particle swarm optimization with elitist learning strategy. Inf. Sci. 2014, 273, 49–72. [Google Scholar] [CrossRef]
- Ding, S.X.; Chen, C.; Xin, B.; Pardalos, P.M. A bi-objective load balancing model in a distributed simulation system using NSGA-II and MOPSO approaches. Appl. Soft Comput. 2018, 63, 249–267. [Google Scholar] [CrossRef]
- Renaud, J.; Boctor, F.F.; Ouenniche, J. A heuristic for the pickup and delivery traveling salesman problem. Comput. Oper. Res. 2000, 27, 905–916. [Google Scholar] [CrossRef]
- Rashidnejad, M.; Ebrahimnejad, S.; Safari, J. A bi-objective model of preventive maintenance planning in distributed systems considering vehicle routing problem. Comput. Ind. Eng. 2018, 120, 360–381. [Google Scholar] [CrossRef]
- Lin, Q.Z.; Li, J.Q.; Du, Z.H.; Chen, J.Y.; Ming, Z. A novel multi-objective particle swarm optimization with multiple search strategies. Eur. J. Oper. Res. 2015, 247, 732–744. [Google Scholar] [CrossRef]
- Yang, S.X.; Jiang, S.Y.; Jiang, Y. Improving the multiobjective evolutionary algorithm based on decomposition with new penalty schemes. Soft Comput. 2016, 21, 4677–4691. [Google Scholar] [CrossRef] [Green Version]
- Ghodratnama, A.; Jolai, F.; Tavakkoli-Moghaddam, R. Solving a new multi-objective multi-route flexible flow line problem by multi-objective particle swarm optimization and NSGA-II. J. Manuf. Syst. 2015, 36, 189–202. [Google Scholar] [CrossRef]
- Abad, H.K.E.; Vahdani, B.; Sharifi, M.; Etebari, F. A bi-objective model for pickup and delivery pollution-routing problem with integration and consolidation shipments in cross-docking system. J. Clean. Prod. 2018, 193, 784–801. [Google Scholar] [CrossRef]
Reference | Problem Features | Objectives | Solution Methods | |||
---|---|---|---|---|---|---|
MD | TW | DCD | RS | |||
Lin (2008) [60] | ✓ | ✓ | Total cost | Insertion-based construction heuristic | ||
Hong (2012) [30] | ✓ | ✓ | Total service cost | large neighborhood search (LNS) | ||
Ghannadpour et al. (2014) [61] | ✓ | ✓ | Total distance, number of vehicles | GA | ||
Li et al. (2014) [62] | ✓ | ✓ | ✓ | Total travel cost | GA with adaptive local search | |
Bae and Moon (2016) [9] | ✓ | ✓ | Total cost | Heuristic algorithm and GA | ||
Mańdziuk and Żychowski (2016) [2] | ✓ | ✓ | Total distance | GA | ||
Okulewicz and Mańdziuk (2017) [29] | ✓ | ✓ | Total cost | PSO | ||
Fernández et al. (2018) [63] | ✓ | ✓ | Total cost | Branch-and-cut algorithm | ||
Chen et al. (2018) [40] | ✓ | ✓ | Total travel cost, fixed costs of vehicles | Adaptive large neighborhood search | ||
Goel et al. (2019) [32] | ✓ | ✓ | Transportation cost | Ant colony system | ||
Li et al. (2019) [64] | ✓ | Revenue, costs, time, and emission | Improved ACO | |||
Vaziri et al. (2019) [55] | ✓ | ✓ | Total profit fairly, travel time | GA and VNS | ||
Xu et al. (2019) [7] | ✓ | Total fuel consumption, customer satisfaction | NSGA-ΙΙ | |||
Xiang et al. (2020) [23] | ✓ | Total traveling cost | ACO-CD | |||
Yang et al. (2020) [48] | ✓ | ✓ | Total cost | Branch-price-and-cut algorithm | ||
Zhang et al. (2020) [65] | ✓ | ✓ | Operating quality, reliability, cost, time | Extended VNS | ||
Wang et al. (2021) [66] | ✓ | ✓ | Total route distance, waiting time | MOEA | ||
Wang et al. (2021) [12] | ✓ | ✓ | ✓ | Logistics operating cost | GA and tabu search (TS) | |
Niu et al. (2021) [24] | ✓ | ✓ | Total cost and customer satisfaction | Membrane-inspired multi-objective algorithm | ||
Zhang et al. (2022) [56] | ✓ | ✓ | ✓ | Total travel cost | branch-and-cut algorithm | |
This study | ✓ | ✓ | ✓ | ✓ | Total operating cost, number of vehicles | IMOPSO-DIS |
Case | TC ($) | DC ($) | PC ($) | IC ($) | MC ($) | TOC ($) | NST | NV |
---|---|---|---|---|---|---|---|---|
Before optimization | 0 | 2160 | 260 | 0 | 1300 | 3720 | 0 | 13 |
After optimization | 480 | 1110 | 0 | 160 | 600 | 2350 | 1 | 4 |
Sets | Definitions |
---|---|
L | Set of depots, L = {i|i = 1, 2, 3, …, a} and a is the total number of depots |
S | Set of SCDs, S = {s|s = 1,2,3, …, h} and h is total number of SCD |
D | Set of DCDs, D = {d|d = 1, 2, 3, …, c} and c is total number of DCD |
C | Set of total customer demands, C = S∪D = {j|j = 1, 2, 3, …, n} n is total number of customer demands |
T | Set of semitrailer trucks, T = {t|t = 1, 2, 3, …, b} and b is total number of trucks |
V | Set of delivery vehicles, V = {v|v = 1, 2, 3, …, g} and g is total number of vehicles |
R | Set of service periods, R = {r|r = 1, 2, 3, …, h} and h is total number of service periods |
, t∈T, r∈R | |
, v∈V, r∈R | |
, r∈R | |
, r∈R | |
Parameters | |
Fi | Fixed cost of depot i, i∈L |
Mt | Average annual maintenance cost of each semitrailer truck |
Mv | Average annual maintenance cost of each vehicle |
Service time windows of the depot i within rth service period, i∈L, r∈R | |
[aj, bj] | Service time windows of the customer j, j∈C |
Qi | Capacity of depot i, i∈L |
Ct | Capacity of semitrailer truck t, t∈T |
Cv | Capacity of delivery vehicle v, v∈V |
Demand of depot i within rth service period, i∈L, r∈R | |
qjv | Demand of customer j for vehicle v, j∈C, v∈V |
dij | Distance from depots or customer i to customer j, i, j∈L∪C |
ft | Diesel fuel consumption per kilometer of semitrailer truck t, t∈T |
fv | Gasoline fuel consumption per kilometer of delivery vehicle v, v∈V |
pt | Diesel price (dollar/gallon) |
pv | Gasoline price (dollar/gallon) |
λd | Insert cost coefficient of DCD |
N | Number of working periods in one year |
ρe | Penalty cost per time unit for early arrival |
ρl | Penalty cost per time unit for delayed arrival |
, r∈R | |
, r∈R | |
, r∈R | |
Request submit time of DCD d within rth service period, d∈D, r∈R | |
Travel time of vehicle v between node i and node j in the kth route, v∈V, i, j∈L∪C, r∈R | |
Decision variables | |
, r∈R | |
, r∈R | |
, t∈T, r∈R | |
, v∈V, r∈R | |
, i∈L, j∈C, v∈V, r∈R |
Instance | Datasets | Number of Depots | Number of SCDs | Number of DCDs | Capacity of Vehicles |
---|---|---|---|---|---|
1 | Pr01-1 | 4 | 41 | 7 | 200 |
2 | Pr01-2 | 4 | 36 | 12 | 200 |
3 | Pr02-1 | 4 | 82 | 14 | 195 |
4 | Pr02-2 | 4 | 72 | 24 | 195 |
5 | Pr03-1 | 4 | 122 | 22 | 190 |
6 | Pr03-2 | 4 | 108 | 36 | 190 |
7 | Pr04-1 | 4 | 163 | 29 | 185 |
8 | Pr04-2 | 4 | 144 | 48 | 185 |
9 | Pr05-1 | 4 | 204 | 36 | 180 |
10 | Pr05-2 | 4 | 180 | 60 | 180 |
11 | Pr06-1 | 4 | 245 | 43 | 175 |
12 | Pr06-2 | 4 | 216 | 72 | 175 |
13 | Pr07-1 | 6 | 61 | 11 | 200 |
14 | Pr07-2 | 6 | 54 | 18 | 200 |
15 | Pr08-1 | 6 | 122 | 22 | 190 |
16 | Pr08-2 | 6 | 108 | 36 | 190 |
17 | Pr09-1 | 6 | 184 | 32 | 180 |
18 | Pr09-2 | 6 | 162 | 54 | 180 |
19 | Pr10-1 | 6 | 245 | 43 | 170 |
20 | Pr10-2 | 6 | 216 | 72 | 170 |
21 | Pr11-1 | 4 | 41 | 7 | 200 |
22 | Pr11-2 | 4 | 36 | 12 | 200 |
23 | Pr12-1 | 4 | 82 | 14 | 195 |
24 | Pr12-2 | 4 | 72 | 24 | 195 |
25 | Pr13-1 | 4 | 122 | 22 | 190 |
26 | Pr13-2 | 4 | 108 | 36 | 190 |
Instance | IMOPSO-DIS | MOPSO | NSGA-ΙΙ | MOEA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC ($) | NV | WT (min) | TOC ($) | NV | WT (min) | TOC ($) | NV | WT (min) | TOC ($) | NV | WT (min) | |
1 | 3133 | 4 | 33.44 | 3760 | 4 | 36.44 | 6819 | 5 | 48.44 | 4222 | 4 | 37.62 |
2 | 3983 | 4 | 41 | 4381 | 4 | 46.00 | 7245 | 5 | 58.00 | 5062 | 5 | 46.04 |
3 | 5985 | 5 | 65.47 | 6584 | 6 | 66.47 | 10,810 | 7 | 67.47 | 9071 | 7 | 65.92 |
4 | 5564 | 5 | 62.23 | 6677 | 6 | 61.23 | 9480 | 8 | 74.23 | 9213 | 7 | 63.49 |
5 | 7315 | 9 | 77.98 | 8046 | 10 | 82.98 | 11,616 | 10 | 81.98 | 10,342 | 10 | 78.56 |
6 | 8156 | 10 | 74.48 | 9787 | 11 | 89.48 | 18,952 | 12 | 93.48 | 12,931 | 11 | 81.02 |
7 | 11,171 | 15 | 86.14 | 13,405 | 16 | 106.14 | 20,060 | 16 | 102.14 | 21,895 | 16 | 100.08 |
8 | 12,205 | 16 | 97.66 | 13,425 | 17 | 101.66 | 17,209 | 19 | 101.66 | 22,250 | 17 | 109.14 |
9 | 15,869 | 18 | 88.70 | 17,456 | 18 | 95.70 | 24,179 | 20 | 106.70 | 27,893 | 20 | 98.15 |
10 | 16,163 | 20 | 91.47 | 19,396 | 20 | 92.47 | 25,026 | 22 | 116.47 | 26,180 | 21 | 97.61 |
11 | 17,452 | 23 | 141.07 | 19,197 | 23 | 146.07 | 27,738 | 25 | 152.07 | 25,464 | 25 | 155.74 |
12 | 18,674 | 24 | 146.19 | 20,541 | 25 | 150.19 | 28,563 | 26 | 159.19 | 26,738 | 26 | 159.27 |
13 | 7873 | 6 | 59.65 | 8660 | 7 | 68.65 | 11,049 | 11 | 76.65 | 10,896 | 11 | 70.27 |
14 | 7955 | 6 | 64.79 | 9546 | 7 | 81.79 | 11,934 | 11 | 87.79 | 11,991 | 11 | 73.12 |
15 | 10,132 | 10 | 91.37 | 12,159 | 13 | 94.37 | 20,535 | 15 | 102.37 | 22,193 | 15 | 95.44 |
16 | 10,999 | 11 | 84.53 | 13,199 | 14 | 87.53 | 25,576 | 16 | 101.53 | 23,085 | 16 | 109.82 |
17 | 23,275 | 14 | 160.55 | 25,602 | 16 | 164.55 | 28,697 | 18 | 179.55 | 28,372 | 17 | 164.92 |
18 | 24,105 | 16 | 167.33 | 26,516 | 17 | 186.33 | 26,124 | 17 | 174.33 | 29,190 | 18 | 178.90 |
19 | 30,852 | 25 | 213.27 | 33,937 | 25 | 219.27 | 36,706 | 26 | 232.27 | 37,866 | 25 | 221.19 |
20 | 33,945 | 25 | 204.97 | 37,339 | 26 | 213.97 | 36,461 | 27 | 205.97 | 38,975 | 26 | 236.64 |
21 | 3149 | 4 | 32.58 | 3788 | 4 | 36.48 | 6832 | 5 | 50.96 | 4363 | 5 | 38.30 |
22 | 4075 | 4 | 45.76 | 4475 | 4 | 49.84 | 7269 | 5 | 53.84 | 5153 | 5 | 47.78 |
23 | 6084 | 5 | 66.46 | 6620 | 6 | 63.36 | 10,794 | 7 | 66.67 | 9167 | 7 | 63.77 |
24 | 5960 | 5 | 63.51 | 6657 | 6 | 64.37 | 9477 | 7 | 74.54 | 9665 | 7 | 73.07 |
25 | 7326 | 9 | 79.21 | 8121 | 10 | 89.79 | 11,508 | 10 | 89.50 | 10,364 | 11 | 87.59 |
26 | 7893 | 9 | 81.67 | 9861 | 11 | 94.59 | 18,977 | 11 | 90.57 | 15,971 | 11 | 96.18 |
Average | 11,896 | 12 | 93 | 13,428 | 13 | 100 | 18,063 | 14 | 105.71 | 17,635 | 14 | 101.91 |
t-test | −8.63 | −9.34 | −8.00 | |||||||||
p-value | 2.85× 10−9 | 6.31 × 10−10 | 1.17 × 10−8 |
Symbols | Depots/Customers | Number of Customers | Type of Demands |
---|---|---|---|
D1 and its customers | 44 | SCD | |
D2 and its customers | 36 | DCD | |
D3 and its customers | 43 | SCD | |
D4 and its customers | 34 | DCD | |
D5 and its customers | 43 | SCD |
Notation | Definition | Value |
---|---|---|
Parameters in the proposed model | ||
Ct | Capacity of the semitrailer truck | 2000 |
Cv | Capacity of the delivery vehicle | 200 |
Mt | MC of semitrailer truck | 1000 |
Mv | MC of delivery vehicle | 200 |
ρe | PC of early arrival per unit time | 10 |
ρl | PC of late arrival per unit time | 15 |
ft | Fuel consumption of semitrailer truck | 0.25 |
fv | Fuel consumption of delivery vehicle | 0.2 |
pt | Diesel price | 40 |
pv | Gasoline price | 30 |
Parameters in the proposed algorithm | ||
Npop | Swarm size | 100 |
run_max | Maximum number of runs | 500 |
i_max | Maximum number of iterations | 100 |
Narc | The external archive size | 40 |
c1 | Personal acceleration coefficient | 1 |
c2 | Global acceleration coefficient | 1.5 |
wmin | Lower bound of inertia weight | 0.4 |
wmax | Upper bound of inertia weight | 0.9 |
Depots | DC ($) | PC ($) | MC ($) | FC ($) | TOC ($) | NV |
---|---|---|---|---|---|---|
D1 | 12,010.51 | 762.14 | 900 | 200 | 13,872.65 | 9 |
D2 | 9236.37 | 847.83 | 700 | 300 | 11,084.2 | 7 |
D3 | 11,840.33 | 777.37 | 900 | 200 | 13,717.7 | 9 |
D4 | 8965.2 | 971.98 | 700 | 300 | 10,937.18 | 7 |
D5 | 9844.87 | 1454.58 | 900 | 200 | 12,399.45 | 9 |
Total | 51,897.28 | 4813.9 | 4100 | 1200 | 62,011.18 | 41 |
Depots | Service Periods | DC ($) | PC ($) | IC ($) | Number of Routes |
---|---|---|---|---|---|
D1 | 1st | 2830.86 | 59.49 | 850 | 3 |
2nd | 1025.47 | 9.43 | 85 | 2 | |
3rd | 2179.1 | 122.92 | 337.5 | 3 | |
Total | 6035.43 | 191.84 | 1272.5 | 8 | |
D2 | 1st | 2779.11 | 46.97 | 645 | 3 |
2nd | 1975.38 | 129.94 | 370 | 2 | |
3rd | 336.5 | 39.5 | 290 | 2 | |
Total | 5090.99 | 216.41 | 1305 | 7 | |
D3 | 1st | 1278.1 | 2.077 | 207.5 | 1 |
2nd | 1540.87 | 41.56 | 370 | 2 | |
3rd | 2100.61 | 333.03 | 357.5 | 3 | |
Total | 4919.58 | 376.66 | 935 | 6 | |
D4 | 1st | 303.02 | 22.18 | 377.5 | 1 |
2nd | 1816 | 129.02 | 877.5 | 2 | |
3rd | 2018.05 | 212.87 | 177.5 | 2 | |
Total | 4137.07 | 364.07 | 1432.5 | 5 | |
D5 | 1st | 2587.51 | 67.87 | 517.5 | 2 |
2nd | 3438.3 | 162.46 | 765 | 3 | |
3rd | 2267.1 | 130.3 | 172.5 | 2 | |
Total | 8292.91 | 360.63 | 1455 | 7 | |
Total | 28,475.98 | 1509.61 | 6400 | 33 |
Depots | Optimized Vehicle Routes | Number of Routes |
---|---|---|
D1 | R1: D1→C87→C31 *→C143→C30 *→C85→C168 *→D1 R2: D1→C6 *→C129→C128→C75→C1 *→D1 R3: D1→C140→C7 *→C27 *→C139→C72→D1 R4: D1→C71→C86→C23 *→C167 *→C141→D1 R5: D1→C5 *→C142→C84→C73→D1 R6: D1→C60→C2 *→C147→C150→C13 *→D1 R7: D1→C148→C28 *→C149→C177 *→C29 *→C146→D1 R8: D1→C151→C152→C92→C63→D1 | 8 |
D2 | R9: D2→C94→C105→C137→C80→C43 *→C34 *→D2 R10: D2→C136→C39→C40→C9 *→C4 *→C124→D2 R11: D2→C35 *→C132→C74→C77→C33 *→D2 R12: D2→C178 *→C135→C81→C179 *→C83→C138→C127→D2 R13: D2→C90→C26 *→C59→C25 *→C123→C42→D2 R14: D2→C130→C3 *→C125→C8 *→C133→C37→D2 R15: D2→C82→C131→C134→C10 *→C38→C91→C180 *→C126→C52→D2 | 7 |
D3 | R16: D3→C51→C104→C184 *→C106→C69→C122→C120→D3R 17: D3→C44→C46→C107→C164→C166→C79→D3 R18: D3→C48→C175 *→C183 *→C121→D3 R19: D3→C47→C108→C110→C32 *→D3 R20: D3→C57→C20 *→C162→C109→C200→C68→C119→D3 R21: D3→C196 *→C198 *→C195 *→D3 | 6 |
D4 | R22: D4→C111→C67→C159→C117→C118→C193 *→C78→D4 R23: D4→C186 *→C116→C197 *→C66→C19 *→C161→C172 *→D4 R24: D4→C54→C112→C113→C190 *→C103→C187 *→C18 *→C163→D4 R25: D4→C174 *→C61→C157→C188 *→C158→C189 *→D4 R26: D4→C53→C114→C191 *→C115→C194 *→C192 *→C160→D4 | 5 |
D5 | R27: D5→C65→C97→C45→C182 *→C12 *→C95→C58→C176 *→D5 R28: D5→C165→C181 *→C41→C55→C76→C62→C170 *→C21 *→C96→D5 R29: D5→C89→C171 *→C11 *→C88→C199 *→C70→C22 *→D5 R30: D5→C145→C14 *→C98→C144→C169 *→C99→D5 R31: D5→C50→C153→C36 *→C154→C155→C49→C185 *→D5 R32: D5→C17 *→C93→C15 *→C156→C16 *→C100→C173 *→D5 R33: D5→C56→C102→C64→C24 *→C101→D5 | 7 |
Cases | TC ($) | DC ($) | PC ($) | IC ($) | FC ($) | MC ($) | TOC ($) | NT | NV |
---|---|---|---|---|---|---|---|---|---|
Before optimization | 0 | 51,897.29 | 4813.9 | 0 | 1200 | 4100 | 62,011.18 | 0 | 41 |
After optimization | 5147.36 | 28,475.98 | 1509.61 | 3840 | 1200 | 1700 | 41,872.97 | 1 | 12 |
Case | tn(h) | Time Windows | |||
---|---|---|---|---|---|
r = 1 | r = 2 | r = 3 | r = 4 | ||
1 | 20 | [0, 24] | -- | -- | -- |
2 | 10 | [0, 12] | [12, 24] | -- | -- |
3 | 6 | [0, 8] | [8, 16] | [16, 24] | -- |
4 | 5 | [0, 6] | [6, 12] | [12, 18] | [18, 24] |
Service Period | r = 1 | r = 2 | r = 3 | r = 4 | ||||
---|---|---|---|---|---|---|---|---|
TOC ($) | NV | TOC ($) | NV | TOC ($) | NV | TOC ($) | NV | |
1st | 53,729.84 | 38 | 22,930.3 | 18 | 14,788.66 | 10 | 13,099.91 | 9 |
2nd | -- | -- | 21,193.69 | 20 | 12,871.24 | 11 | 10,968.88 | 8 |
3rd | -- | -- | -- | -- | 14,213.07 | 12 | 11,513.1 | 8 |
4th | -- | -- | -- | -- | -- | -- | 10,903.7 | 9 |
Total | 53,729.84 | 38 | 44,123.99 | 20 | 41,872.97 | 12 | 46,485.59 | 9 |
Case | TOC | NV | NST | CSS | TRS | DIS |
---|---|---|---|---|---|---|
1 | 62,011.18 | 41 | 0 | |||
2 | 46,440.32 | 37 | 3 | ✓ | ||
3 | 43,240.32 | 15 | 1 | ✓ | ✓ | |
4 | 41,872.97 | 12 | 1 | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhe, J.; Wang, X.; Sun, Y.; Wang, H. Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows. Sustainability 2022, 14, 6709. https://doi.org/10.3390/su14116709
Wang Y, Zhe J, Wang X, Sun Y, Wang H. Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows. Sustainability. 2022; 14(11):6709. https://doi.org/10.3390/su14116709
Chicago/Turabian StyleWang, Yong, Jiayi Zhe, Xiuwen Wang, Yaoyao Sun, and Haizhong Wang. 2022. "Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows" Sustainability 14, no. 11: 6709. https://doi.org/10.3390/su14116709
APA StyleWang, Y., Zhe, J., Wang, X., Sun, Y., & Wang, H. (2022). Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows. Sustainability, 14(11), 6709. https://doi.org/10.3390/su14116709