
Citation: Wang, Q.; Huang, J.; Zhou,

H.; Sun, J.; Yao, M. Carbon Emission

Inversion Model from Provincial to

Municipal Scale Based on Nighttime

Light Remote Sensing and Improved

STIRPAT. Sustainability 2022, 14, 6813.

https://doi.org/10.3390/su14116813

Academic Editors: Ayyoob Sharifi,

Baojie He, Chi Feng and Jun Yang

Received: 12 April 2022

Accepted: 31 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Carbon Emission Inversion Model from Provincial to
Municipal Scale Based on Nighttime Light Remote Sensing and
Improved STIRPAT
Qi Wang , Jiejun Huang * , Han Zhou * , Jiaqi Sun and Mingkun Yao

School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430062, China;
wangqi19190504@163.com (Q.W.); jiaqi5192021@163.com (J.S.); ymk1349318342@163.com (M.Y.)
* Correspondence: hjj@whut.edu.cn (J.H.); hanzhou0925@whut.edu.cn (H.Z.)

Abstract: Carbon emissions and consequent climate change directly affect the sustainable develop-
ment of ecological environment systems and human society, which is a pertinent issue of concern for
all countries globally. The construction of a carbon emission inversion model has significant theoreti-
cal importance and practical significance for carbon emission accounting and control. Established
carbon emission models usually adopt socio-economic parameters or energy statistics to calculate
carbon emissions. However, high-precision estimates of carbon emissions in administrative regions
lacking energy statistics are difficult. This problem is especially prominent in small-scale regions.
Methods to accurately estimate carbon emissions in small-scale regions are needed. Based on night-
time light remote-sensing data and the STIRPAT (Stochastic Impacts by Regression on Population,
Affluence, and Technology) model, combined with the environmental Kuznets curve, this paper
proposes an ISTIRPAT (Improved Stochastic Impacts by Regression on Population, Affluence, and
Technology) model. Through the improved STIRPAT model (ISTIRPAT) and panel data regression,
provincial carbon emission inventory data were downscaled to the municipal level, and municipal
scale carbon emission inventories were obtained. This study took the 17 cities and prefectures of
Hubei Province, China, as an example to verify the accuracy of the model. Carbon emissions for
17 cities and prefectures from 2012 to 2018 calculated from the original STIRPAT model and the
ISTIRPAT model were compared with real values. The results show that using the ISTIRPAT model
to downscale the provincial carbon emission inventory to the municipal level, the inversion accuracy
reached 0.9, which was higher than that of the original model. Overall, carbon emissions in Hubei
Province showed an upward trend. Regarding the spatial distribution, the main carbon emission
area was formed in the central part of Hubei Province as a ring-shaped mountain peak. The lowest
carbon emissions in the central area expanded outward, increased, and gradually decreased to the
edge of the province. The overall composition of carbon emissions in eastern Hubei was higher than
those in western Hubei.

Keywords: carbon emissions; STIRPAT model; nighttime light remote sensing; environmental
Kuznets curve

1. Introduction

Climate change has become an important challenge globally for sustainable devel-
opment. Calculating and controlling carbon emissions is a critical issue of concern for
the international community. Since the industrial revolution, the extensive use of energy
sources, such as oil and coal, has increased carbon dioxide emissions annually. Currently,
178 Parties worldwide have signed the Paris Agreement aimed at addressing climate
change. China, the United States of America, the European Union (including the United
Kingdom), India, Russia, and Japan are the six major greenhouse gas emitters (regions),
as per UNEP (United Nations Environment Programme) data. These countries accounted
for 62.5% of the global carbon emissions in the last decade (2010–2019). As a developing
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country, China accounted for 26.7% of global carbon emissions in 2019. In 2020, China
proposed that carbon dioxide emissions should peak by 2030, and it endeavored to imple-
ment carbon neutralization (carbon neutrality) by 2060. Therefore, accurate accounting of
carbon emissions at different scales has reference value and guiding significance for the
implementation of regional carbon emission policies and the achievement of the ‘Carbon
peaking and carbon neutrality goals’.

Extensive studies have been focused on the accounting and prediction of carbon emis-
sions, and these can be divided into three categories: influencing factor decomposition
method, regression analysis method, and energy statistics method [1]. Among the decom-
position methods of influencing factors, the most representative one is the logarithmic
Divish index model (LMDI). Using spatial and temporal dimensions, the LMDI model
decomposes carbon emissions as targets to form multiple single influencing factors for
calculating the contribution of a particular factor toward changing carbon emissions over
time [2,3]. As per the spatial and temporal characteristics of the LMDI model, historical
and predicted carbon emissions can be decomposed, and regional carbon emissions can
be predicted and affected by population, industry, and other factors [4,5]. Regression
analysis methods include the IPAT (Impact, Population, Affluence, Technology) model,
its extended STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and
Technology) model, OLS (Ordinary Least Squares) regression model, and neural network
algorithms [6,7]. For example, only the STIRPAT model [8–11], or the combination of
neural network and STIRPAT model [12], is used for predictions, and the improved IPAT
model is used to simulate and predict future urban development [13–19]. Energy statistics
methods can be divided into two types: carbon emission statistics based on production and
consumption [20]. The former has been used to calculate carbon emissions from domestic
production and export products, mainly considering the carbon emissions at the production
point but not considering those created by users and at usage places [21,22]. The latter is
an assessment of carbon emissions from end-of-life consumption activities, mainly applied
to national and urban carbon emission calculations [23–25]. Irrespective of the method, few
studies have focused on carbon emissions accounting at a small spatial scale due to the
requirement for highly detailed energy statistics.

In recent years, the scale of carbon emission calculations has gradually shifted to
municipal and county levels [26,27]. However, the current method model is only estab-
lished for specific regions, and it cannot be applied in other regions. Whether it is through
land-use data to obtain carbon emissions [28] or proportionally allocate provincial carbon
emissions to the municipal level [29], the factors affecting carbon emissions considered
in these approaches are not comprehensive, resulting in large errors in the carbon emis-
sion accounting process. Nighttime lighting data have been widely used to simulate
socio-economic conditions as the intensity of night lighting can be used to indicate en-
ergy consumption level [30,31]. These data are typically evaluated by linear, exponential,
logarithmic, and quadratic polynomial simulation, and panel data regression is the most
effective method [32–34]. These methods to obtain carbon emissions are based only on
remote-sensing data without incorporating multi-source social data, making it difficult to
identify social factors that have important impacts on carbon emissions.

Energy statistics can be used for national or provincial carbon emission accounting;
however, this approach has various issues, such as missing data and inconsistent statistical
caliber for municipal carbon emission accounting [35,36]. The efficient and accurate estima-
tion of carbon emissions at a small scale is a key issue in achieving regional sustainable
development under carbon emission targets. In this paper, an improved STIRPAT carbon
emission inversion model (ISTIRPAT) is proposed based on the city development element
(CDE) constructed using NPP/VIIRS (National Polar-Orbiting Partnership/Visible Infrared
Imaging Radiometer Suite) nighttime lighting data. The provincial carbon emission inven-
tory was downscaled to the municipal level by panel regression and the ISTIRPAT model.
Hubei Province was taken as an example to verify the inversion accuracy of the model.
Carbon emissions and spatiotemporal patterns were analyzed for 17 cities and prefectures
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in Hubei Province from 2012 to 2018. This paper provides an improved model (ISTIRPAT)
that can downscale carbon emissions from large-scale regions to small-scale regions, and it
addresses the lack of energy statistics at small scale in various countries or regions and is
expected to contribute to the accounting of carbon emissions at a small scale.

2. Study Area and Data
2.1. Study Area

Hubei Province is located in eastern China, between 29◦01′53′′–33◦6′47′′N and 108◦21′42′′–
116◦07′50′′ E (Figure 1). The province spans 740 km in the east-west direction and approx-
imately 470 km in the north-south direction, with a total area of 185.9 million sq km, ac-
counting for 1.94% of the total area of China. By 2020, Hubei Province had jurisdiction over
12 prefecture-level cities, 1 autonomous prefecture, 26 county-level cities, 35 counties, 2 au-
tonomous counties, and 1 forest area, with a permanent population of 57.75 million and GDP
of CNY 434.4346 million. Among them, the values added for primary, secondary, and tertiary
industries are CNY 413.191, 172.390, and 222.8765 billion, respectively.
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important role in the transportation hub. It is dependent on the Yangtze River Basin and 
is located in an urban agglomeration in the middle of the Yangtze River. It has become an 
important strategic area for economic development in the development pattern of ‘one 
axis, two wings, three levels and multiple points’ of the Yangtze River Economic Belt [37]. 
However, the infrastructure construction level in Hubei Province is not balanced, resource 
integration is insufficient, and environmental protection is under significant pressure. 

Figure 1. Overview of Hubei Province: (a) Location of Hubei Province; (b) Hubei’s topography and
17 cities; (c) Nightlight remote-sensing data for Hubei Province, 2015.

Hubei Province, the central region of the Yangtze River Economic Belt, plays an
important role in the transportation hub. It is dependent on the Yangtze River Basin and
is located in an urban agglomeration in the middle of the Yangtze River. It has become
an important strategic area for economic development in the development pattern of ‘one
axis, two wings, three levels and multiple points’ of the Yangtze River Economic Belt [37].
However, the infrastructure construction level in Hubei Province is not balanced, resource
integration is insufficient, and environmental protection is under significant pressure.
Hubei is mainly a heavy industrial area, with many energy-intensive industries, such as
steel, shipbuilding, and chemical industries. Carbon emissions have gradually increased
with the development of industry and increasing energy consumption. From 2001, after
China became a member of the WTO (World Trade Organization), carbon emissions in the
province increased from 126.84 million tons to 322.37 million tons in 2018, with an annual
growth rate of 11.5018 million tons [38].
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2.2. Data Sources

Provincial carbon emission inventories and carbon emission inventories for 17 admin-
istrative regions of Hubei Province were obtained from the dataset released by CEADs
(https://www.ceads.net.cn/, accessed on 20 September 2021), China Carbon Account-
ing Database. The nighttime lighting remote-sensing data NPP/VIIRS is a Beta1 dataset
for 2012 to 2018 for China provided by the Aerospace Information Research Institute,
Chinese Academy of Sciences (https://www.zybuluo.com/novachen/note/1741875, ac-
cessed on 19 August 2021). The nighttime light remote-sensing images had a resolution
of 1500 m, which is 0.0125 degrees per pixel (28,800 × 11,200 pixels). The nighttime light
remote-sensing images were preprocessed, and DN values were normalized in the range of
0–256. Provincial statistics for China were obtained from the National Statistical Yearbook
(http://www.stats.gov.cn/, accessed on 18 September 2021). The statistical data for the
cities in Hubei Province were obtained from the Statistical Yearbook of Hubei Province
(http://tjj.hubei.gov.cn/, accessed on 9 October 2021). The provincial carbon emission
inventories for 2012–2018 obtained from the CEADs database were used as training sets,
and the carbon emission inventories of 17 cities and prefectures in Hubei Province from
2012 to 2017 obtained from the CEADs database were used as the verification set.

3. Methods
3.1. Extension of the STIRPAT Model

As one of the environmental impact factor models, IPAT and extended models based
on IPAT have been widely used to analyze the impact of socio-economic factors on pollutant
emissions. However, the model needs to unify the dimensions of environmental impact
factors and cannot accurately reflect the impact on the environment when the influencing
factors change. Dietz improved the IPAT model and proposed a random regression model
known as STIRPAT [39] (Formula (1)).

The basic formula of the STIRPAT model is as follows:

I = aPb AcTde (1)

where I, P, A, and T represent the environmental conditions, population, economic devel-
opment, and technological innovation, b, c, and d are the estimation coefficients of the three
driving factors, a denotes the model parameter, and e indicates the error term. Therefore,
in this paper, environmental condition I represents carbon emission (CE), its driving factor
P represents the population (People), A represents gross domestic product (GDP), and T
represents the added value of the secondary industry (SeGDP). Carbon emissions mainly
involve energy combustion in the cement industry, and energy is mainly related to the use
of coal, diesel, and other combustion materials. The use of these fuels is closely linked with
the production in heavy, light, and manufacturing industries in cities. Data acquisition for
the cement industry is difficult at the municipal level. However, for the cement industry
production and consumption, construction industry becomes the main component, and
most cement consumption takes place at the construction site. Therefore, in this paper,
adding the total value of the secondary (SeGDP) and construction industries (CI) into
the model, the basic formula for the STIRPAT model for carbon emissions is obtained, as
shown in Formula (2).

LnCE = Lna + bLnPeople + cLnGDP + dLnSeGDP + jLnCI + Lne (2)

The Kuznets curve was proposed and used by Nobel Prize winner Simon Smith
Kuznets in the 1950s to analyze the relationship between income level and economic
growth [40]. The research results show that social income inequality first increases and then
decreases with economic growth, showing an inverted U-shaped curve relationship [41].
Considering the environmental Kuznets curve, the existing model framework is expanded
to increase the quadratic term of GDP based on the STIRPAT model.

LnCE = Lna + bLnPeople + cLnGDP + f (LnGDP)2 + dLnSeGDP + jLnCI + Lne (3)

https://www.ceads.net.cn/
https://www.zybuluo.com/novachen/note/1741875
http://www.stats.gov.cn/
http://tjj.hubei.gov.cn/
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where CE represents carbon emissions, a denotes the model parameters, People represents
the population, GDP represents GDP, SeGDP is the added value of the secondary industry,
CI represents the total output value of the construction industry, e is the error term, and b,
c, d, f, and j represent the intercepts of the influencing factors.

3.2. Construction of City Development Element Based on Nighttime Lighting Data

Nighttime light remote sensing as a remote-sensing technology using nighttime light
detection can more intuitively reflect the differences between human activities in the region.
In addition, it can be used to analyze the spatial structure and temporal changes in multi-
scale cities (including urban factors and internal spatial structure, urban areas, hierarchical
structure of urban systems, and urban agglomerations) and can be used to estimate multiple
types of social and economic development indicators at multiple scales [42]. In this paper,
we proposed the construction of an urban development factor based on nighttime light
data to reduce the inversion error caused by simulating carbon emissions exclusively using
nighttime brightness. Cities consist of two types of areas: towns and rural areas, with
significant differences in levels of development. When the nighttime light DN (digital
number) values for these two areas are similarly low, a large difference will be observed
in carbon emission values. Therefore, to construct the CDE (urban development factor),
the DN values obtained by nighttime light remote-sensing data are averaged to correct the
difference in carbon emissions between urban and rural areas under the same DN value,
as follows:

MDN =
∑n

1 DNi
n

(4)

In the formula, MDN represents the average brightness in the region, n is the number
of pixels in the nighttime light image of the region, and DNi represents the brightness value
corresponding to pixel i of the region.

Considering the development of the entire city, the level of urban development can
be characterized by nighttime light intensity. Many researchers have constructed a com-
prehensive nighttime light index (CNLI) using nighttime light intensity to reflect the level
of regional urbanization and intensity of surface human activities [43]. In this study, the
overall development of the city or region and corresponding total energy consumption
are represented by the general brightness value (SUML) of the city, and the average devel-
opment level of urbanization and the average energy consumption level of the region are
characterized by light intensity. Therefore, the light intensity (DNQ) is constructed as an
urban development factor, as follows:

SUML =
n

∑
1

DNi (5)

SA =
n

∑
1

areai (6)

DNQ =
SUML

SA
=

∑n
1 DNi

∑n
1 areai

(7)

In the formula, SUML is the sum of nighttime brightness values represented by the
pixel grids of the region, SA is the sum of the nighttime light grid area of the region,
DNQ represents the light intensity value of the region, n is the number of pixels in the
nighttime light image of the region, areai represents the area of pixel i, and DNi represents
the brightness value of pixel i of the region.

The average brightness value MDN, sum of light brightness SUML, and light intensity
value DNQ are combined to construct the urban development factor CDE from nighttime
light remote-sensing data (Formula (8)).

CDE = MDNx·SUMLy·DNQz =
(∑n

1 DNi)
x+y+z

nx·(∑n
1 areai)

z (8)

In Formula (8), x, y, and z are the coefficients of average light brightness MDN, sum of
the light brightness SUML, and light intensity DNQ, respectively. n is the number of pixels
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in the nighttime light image of the region. areai represents the area of the ith pixel, and
DNi represents the brightness value corresponding to the ith pixel in the region.

3.3. An Improved STIRPAT Carbon Emission Inversion Model (ISTIRPAT)

The basic STIRPAT model only calculates carbon emissions using statistical data;
however, the actual statistical data contain errors in the statistical process. Therefore,
there is a significant gap between actual carbon emissions and city-level carbon emissions
calculated only through the provincial-level statistical data.

However, nighttime light remote-sensing data are highly accurate at both provincial
and municipal scales. Therefore, based on the extension of the STIRPAT model, this paper
proposes a new downscaling method (Figure 2) and introduces the urban development
factor (CDE) and extends the urban development factor constructed by nighttime light
remote-sensing data as a dimensionless variable CDE to the STIRPAT model to obtain an
improved STIRPAT carbon emission inversion model (Formulas (9) and (11)).

LnCE = Lna + LnCDE + dLnPeople + f LnGDP + g(LnGDP)2 + hLnSeGDP + jLnCI + Lne (9)

LnCDE= xLnMDN + yLnSUML + zLnDNQ (10)

LnCE = Lna + xLnMDN + yLnSUML + zLnDNQ + dLnPeople + f LnGDP + g(LnGDP)2 + hLnSeGDP + jLnCI + Lne (11)

where CE represents carbon emissions, and x, y, and z are the coefficients of the
average brightness value MDN, sum of brightness values SUML, and light intensity value
DNQ, respectively. n is the number of pixels in the nighttime light image of the region,
areai represents the area of pixel i, DNi represents the brightness value corresponding to
pixel i of the region, a represents the model parameters, People represents the population,
GDP represents the gross domestic product, SeGDP represents the added value of the
secondary industry, CI represents the total output value of the construction industry, and e
is an error term. b, c, d, f , and j indicate the intercepts of the influencing factor.
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4. Results and Discussion
4.1. Model Verification and Comparative Analysis
4.1.1. Verification of ISTIRPAT Model

In this study, the provincial carbon emission panel data were constructed to invert car-
bon emissions at the municipal level. Although the panel data reduced the non-stationarity
of the data and correlations between variables, the variables may still have trend and
intercept problems, which may be due to nonstationary data and unit roots. Therefore, in
order to avoid false regression when using panel regression, the panel data model must
test whether each variable has unit roots before conducting regression analysis. This study
mainly adopted the Levin–Lin–Chu (LLC) and ADF–Fisher (ADF) panel root tests [44], and
each variable passed the tests (Table 1), indicating no pseudo-regression in the panel data
model. Therefore, the intercept term for each factor was obtained in the ISTIRPAT model
by a panel data regression of the random effect model (Table 2).

Table 1. LLC and ADF test results for panel data items (* represents the results under first-order
difference).

Levin–Lin–Chu (LLC) Fisher–ADF

LnCE 0.000 0.3419
LnDNQ 0.000 * 0.0478 *
LnGDP 0.000 * 0.2960 *

(LnGDP)2 0.000 * 0.4379 *
LnSeGDP 0.000 0.9566
LnPeople 0.000 * 0.0262 *

LnCI 0.000 0.0602
LnMDN 0.000 * 0.0478 *
LnSUML 0.000 * 0.0478

Table 2. Regression results for the random effect model of panel data.

Coefficient Std. Error T-Statistic Prob

Lne −15.41744 3.750565 3.750565 0.0001
LnDNQ −2.18689 0.783035 0.783035 0.0057
LnGDP 0.642356 0.297547 0.297547 0.0320

(LnGDP)2 −0.031573 0.014857 0.014857 0.0348
LnSeGDP 0.215767 0.089851 0.089851 0.0172
LnPeople 0.544228 0.096255 0.096255 0.0001

LnCI −0.084016 0.03568 0.03568 0.0195
LnMDN 2.613019 0.696867 0.696867 0.0002
LnSUML 0.201933 0.087698 0.087698 0.0223

The accuracy of the improved carbon emission inversion model was verified. The
improved model was used to calculate the carbon emissions in 17 cities and prefectures
of Hubei Province over the past seven years, and the data at the county level provided by
CEADs were summarized as the true data of carbon emissions at the municipal level. From
provincial scale regression and municipal scale calculation and verification, the verification
results were obtained at municipal and provincial scales (Figure 3). The accuracy verifica-
tion showed that the improved model for downscaling from the provincial to municipal
level exhibited high accuracy for municipal calculations and better reflected the carbon
emissions of cities and prefectures in Hubei Province at the municipal level.
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4.1.2. Comparative Analysis of the Original STIRPAT Model and ISTIRPAT Model

In this study, the carbon emissions for 17 cities and prefectures in Hubei Province
estimated by the original STIRPAT and ISTIRPAT models were compared with the real
values to verify the accuracy of the improved model. For an intuitive comparison of carbon
emissions obtained by the ISTIRPAT model and the original model after downscaling
at the municipal scale, a plot representing the city along the x-axis, year on the y-axis,
and carbon emissions on the z-axis was generated to evaluate the accuracies of the two
models based on the degree of fitting between the surface and the column. As shown in
Figure 4, the carbon emissions estimated by the STIRPAT model have a low degree of fit
with the real values, especially in areas with high urban carbon emissions, such as Wuhan
and Huanggang, and areas with low urban carbon emissions, such as Suizhou, Xiantao,
Qianjiang, and other regions, where the estimated values differ substantially from the
actual values. The improved STIRPAT model (ISTIRPAT) resolves the issue of low accuracy
after downscaling from the provincial level to the municipal level by the construction of
urban development factors from nighttime light data. As shown in Figure 4b, the ISTIRPAT
model has higher accuracy than that of the original model, including in areas with high or
low urban carbon emissions.

To further verify that the ISTIRPAT model has higher accuracy than the original model,
the goodness-of-fit R2 for the inversion (estimated) values of carbon emissions at the
provincial and municipal scales against the actual values was obtained. Figure 5 compares
the degree of fitting between the estimated values obtained by the two models and the
actual value at the provincial scale. The R2 value of the ISTIRPAT model at the provincial
scale was significantly higher than that of the STIRPAT model. Figure 6 compares the
estimation accuracy of the two models at the municipal scale, revealing that the estimation
accuracy of the ISTIRPAT model is higher than that of the STIRPAT model.

4.2. Analysis of Influencing Factors of Carbon Emissions in Hubei Province

Based on the carbon emissions of the cities and prefectures in Hubei Province from
2012 to 2018 as per the improved STIRAPT carbon emission inversion model, the overall
carbon emissions of Hubei Province (Figure 7) increased from 341.035 million tons in 2012
to 398.946 million tons in 2018, with an annual growth rate of 8.273 million tons (Table 3).
Cities with large carbon emissions were mainly concentrated in the central region of Hubei
Province. Wuhan, Xiangyang, and Yichang cities accounted for the majority of carbon
emissions in the province. The total emissions level for the three cities was 142.528 million
tons, accounting for 41.79% of the province’s total emissions. The population in the central
region is relatively concentrated, and the region has a diverse industrial structure with
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heavy and manufacturing industries as the main industries; secondary industries accounted
for 50% of the GDP. As the city with the highest carbon emissions in Hubei Province,
emissions from Wuhan increased from 75.039 million tons in 2012 to 87.153 million tons
in 2018. In 2018, Wuhan accounted for 22% of the total carbon emissions of the province,
with more rapid growth than other cities. This is mainly due to the large proportion of
the total value of secondary industries in the city, such as steel and ships, which mainly
consume coal, and the majority of industries consume oil and other fuels which cause more
carbon emissions. As the capital city of Hubei Province, Wuhan accounts for 17.5% of the
province’s total population, and carbon emissions per capita are expected to be relatively
high, resulting in high carbon emissions for Wuhan. The carbon emissions in Shennongjia
in western Hubei Province and Tianmen, Qianjiang, and Xiantao in the central region were
low in the entire province, ranging from 18.785 million tons in 2012 to 22.045 million tons
in 2018, accounting for 5.5% of the total carbon emissions in the province.
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Based on carbon emissions per unit of GDP, the process of social development and
economic improvement were explored for each city and prefecture in Hubei Province from
2012 to 2018 (Figure 8). The transformation of the industrial structure in various regions and
upgrading of technological innovation generally reduced carbon emissions per unit of GDP
and reduced energy consumption per unit of GDP. The results show that Wuhan, Xiangyang,
and Yichang ranked first in terms of carbon emissions in Hubei Province. However, their
carbon emissions per unit GDP were low for the entire Hubei Province. This phenomenon
was related to the diversified industrial structures of these cities. As the center of Hubei
Province, these cities had relatively complete structures, including primary, secondary,
and tertiary industries, and their economic development did not depend entirely on high-
carbon emission industries, such as heavy industries. Second, these cities vigorously
developed high-tech industries and upgraded steel, shipbuilding, and other industries,
effectively reducing energy consumption and promoting rapid economic development. In
the western region of Hubei Province, such as Shennongjia and Enshi, carbon emissions
and carbon emissions per unit of GDP were both low. This was because the western region
of Hubei Province has mountains and the terrain is not flat, making the development of
large-scale industrial industries difficult. Therefore, heavy industries and other highly
energy-intensive industries associated with high carbon emissions were less common;
the main focus was on the development of cultural tourism, catering, and aquaculture,
and the industrial structure was biased toward primary and tertiary industries. Based
on the dual-carbon target proposed by China, cities and prefectures in Hubei Province
need to strengthen the optimization and adjustment of industrial structure to promote the
development of service and strategic science and technology industries. Each industry
needs to improve energy conversion efficiency to achieve conservation and emission
reduction targets through technological upgrading and equipment transformation [45,46].
Regional energy use should focus on the development of low-carbon emissions, such as
wind energy, solar energy, and hydropower.
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Using the improved inversion model, the carbon emissions for each city and prefec-
ture were obtained, and the corresponding per capita carbon emissions were calculated
(Figure 9). From 2012 to 2018, the per capita carbon emissions of cities and prefectures in
Hubei Province increased gradually. Jingmen, Ezhou, Xiangyang, Wuhan City, Wuhan
City, and Yichang City in Hubei Province had the highest per capita carbon emissions.
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Shennongjia, Enshi, Huanggang, and other regions had low carbon emissions per capita.
This can be explained by the high per capita GDP of Wuhan, Yichang, Xiangyang, and
other regions, which led to greater consumption and greater demand by urban residents
in daily life. Therefore, carbon emissions based on terminal consumption were high. As a
developing country, increases in urban economic development, urban construction, and per
capita GDP in China are necessary to meet national needs and development requirements.
Hubei Province, as a development hub in central China, is in the process of urban develop-
ment; therefore, the consumption level of residents has increased gradually, resulting in
inevitable increases in carbon emissions [47,48]. Therefore, for Hubei Province to achieve
peak carbon emissions in 2030, cities need to complete the majority of infrastructure con-
struction within 10 years. To reduce carbon emissions from terminal consumption, cities
need to strengthen energy management, formulate carbon emission intensity standards
with legal requirements for the industry, strengthen low-carbon life propaganda for ur-
ban residents, encourage families to use low-carbon lifestyles to save energy, promote
low-carbon economic development, and achieve sustainable economic development in
the future.
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4.3. Spatial and Temporal Pattern of Carbon Emissions in Hubei Province

We applied the improved STIRPAT carbon emission inversion model (Figure 10) and
obtained the standard deviation ellipse of carbon emissions from 2012 to 2018 (Figure 11).
According to its location, the overall carbon emissions in Hubei Province are generated
from the northwest to the southeast, forming the main carbon emission ring in Hubei
Province involving Wuhan, Xiangyang, Yichang, and Jingzhou. Among them, the carbon
emissions in Tianmen, Xiantao, and Qianjiang were relatively low in the province. Cities
around the ring and adjacent to other provinces account for approximately 28% of the total
carbon emissions in Hubei Province.
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From a geographical point of view, most cities and prefectures in western Hubei
Province are in mountainous areas, and the population distribution is relatively scattered.
Carbon emissions in the region account for 29% of the carbon emissions of the whole
province. The cities and prefectures in eastern Hubei rely on the Yangtze River and its
tributaries, and the population is concentrated. This region accounts for 41% of the total
carbon emissions in the province. Central Hubei is located in the plains; however, its carbon
emissions account for only 30% of the total in the province. Hubei Province, as an important
center of the Yangtze River Economic Belt, relies on Wuhan, Yichang, Huanggang, and
Jingzhou in the Yangtze River Basin. These cities have diversified industrial structures and
high levels of urbanization, which have been at a high level of carbon emissions in Hubei
Province [49]. From a horizontal perspective, eastern Hubei Province has high carbon
emissions, while western Hubei Province has low carbon emissions. Enshi Autonomous
Prefecture and Shennongjia are the main cities in western Hubei Province. Their urban
functions are mainly tourism and agriculture. The overall vegetation coverage in the city is
high, and the industrial sector is small, resulting in less overall carbon emissions in the city.

Hubei Province proposed to build the ‘8 + 1’ urban circle by utilizing the geographical
position of Wuhan in the Yangtze River Economic Belt and surrounding cities. The city circle
covers Huangshi, Ezhou, Huanggang, Xiaogan, Xianning, Xiantao, Tianmen, Qianjiang,
and eight cities, including industry, transportation, and other fields, and its economic
development is the highest among areas in Hubei Province. Yichang City and Xiangyang
City form the Yijing Jing Urban Agglomeration and Xiangshi Sui Urban Agglomeration.
Based on the Yangtze River Basin, Xiangyang, Shiyan, and Suizhou are the three main
cities in the urban agglomeration of Xiangyang, Shiyan, and Suizhou. They are adjacent
to each other and are located in the northern Hubei automobile industry corridor. The
automobile industry is also the main economic pillar of the urban agglomeration. In the
process of development, the automobile industry contributes substantially to the high
carbon emissions of Xiangyang City, the core city of the urban agglomeration, ranking
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second in Hubei Province. However, the Yijing-Jingjing urban agglomeration is mainly
located in the central and southwest areas of Hubei Province and is composed of three
prefecture-level cities, Yichang, Jingzhou, and Jingmen. It has abundant products and is
located in the chemical industry corridor of Hubei Province. The chemical industry plays a
leading role in the urban economy. These industries have an important impact on the city’s
carbon emissions, accounting for 24.7% of the carbon emissions in the province.

5. Conclusions

In this paper, the urban development factor (CDE) based on nighttime light remote-
sensing data as well as the improved STIRPAT model (ISTIRPAT) was proposed. Incor-
porating nighttime light data, the improved STIRPAT carbon emission inversion model
(ISTIRAPT) accurately estimates the carbon emissions from provincial-level downscaling to
the municipal level. Taking Hubei Province as an example, the carbon emissions of 17 cities
and prefectures in Hubei Province from 2012 to 2018 were calculated, and the spatial and
temporal patterns of carbon emissions in Hubei Province were analyzed. The following
conclusions were drawn.

(1) The improved STIRPAT carbon emission inversion model has a carbon emission
inversion accuracy of 0.96 at the municipal level, accurately reflecting the carbon
emissions of 17 cities and prefectures in Hubei Province from 2012 to 2018. This
verifies that the carbon emission inversion model proposed in this paper has high
inversion accuracy and a high degree of model fitting.

(2) Since 2012, the carbon emissions in Hubei Province have increased steadily, forming
a circular pattern radiating from Wuhan, Xiangyang, Yichang, and Jingzhou as the
main carbon-emitting cities, with low carbon emissions in the central region of Hubei
Province and high carbon emissions in the marginal cities. The formation of this
pattern was related to the distribution of the residential population and regional
industrial structure in Hubei Province.

(3) From 2012 to 2018, carbon emissions increased in cities and prefectures in Hubei
Province, and the annual growth rate in the province was highest in Wuhan. Despite
the increase in overall carbon emissions, the carbon emissions per unit of GDP for
17 cities in Hubei Province show a downward trend. This trend reflects the positive
effects of the adjustment of industrial structure and technological upgrades in the
whole province. As a result, many carbon emission enterprises are gradually im-
proving their energy efficiency, resulting in improved economic gains while reducing
environmental pollution.

The improved STIRPAT carbon emission inversion model proposed in this paper
can be applied to calculate carbon emissions in other provinces and regions. It showed a
high inversion accuracy at the municipal level. With the spread of COVID-19 worldwide,
human activities have been significantly reduced, and the impact of the epidemic needs
to be considered in future carbon emission estimations and predictions [50,51]. In future
research, we will apply system dynamics, GM gray prediction models, and multi-source
remote-sensing data [52–54] to simulate and predict future social development scenarios.
This will provide a basis for more effective decision making and recommendations to
balance the relationship between economic restructuring and dual carbon goals.
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