Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Analysis of the Current Situation
2.2.2. Impact Assessment
2.2.3. Challenges
3. Results
3.1. Analysis of the Current Situation
3.2. Impact Assessment
3.3. Challenges
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rozo, S.V. Unintended effects of illegal economic activities: Illegal gold mining and malaria. World Dev. 2020, 136, 105119. [Google Scholar] [CrossRef]
- Veiga, M.M.; Maxson, P.A.; Hylander, L.D. Origin and consumption of mercury in small-scale gold mining. J. Clean. Prod. 2006, 14, 436–447. [Google Scholar] [CrossRef]
- Katz-Lavigne, S. Artisanal copper mining and conflict at the intersection of property rights and corporate strategies in the Democratic Republic of Congo. Extr. Ind. Soc. 2019, 6, 399–406. [Google Scholar] [CrossRef]
- Katz, B.J.; Holmes, F.; Holmes, F. Gold Mining Opportunities and Threats. In The Goldwatcher; 2015; pp. 251–261. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119206996.ch13 (accessed on 10 February 2022).
- Cossa, H.; Scheidegger, R.; Leuenberger, A.; Ammann, P.; Munguambe, K.; Utzinger, J.; Macete, E.; Winkler, M.S. Health studies in the context of artisanal and small-scale mining: A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 1555. [Google Scholar] [CrossRef]
- Wilson, M.L.; Renne, E.; Roncoli, C.; Agyei-Baffour, P.; Tenkorang, E.Y. Integrated assessment of artisanal and small-scale gold mining in Ghana—Part 3: Social sciences and economics. Int. J. Environ. Res. Public Health 2015, 12, 8133–8156. [Google Scholar] [CrossRef] [Green Version]
- Hook, A. Mapping contention: Mining property expansion, Amerindian land titling, and livelihood hybridity in Guyana’s small-scale gold mining landscape. Geoforum 2019, 106, 48–67. [Google Scholar] [CrossRef]
- Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Orellana Navas, L.; Méndez Robles, P.; Mishquero Ullauri, D. Conflictos e impactos generados por minería: Una amenaza al territorio de la comunidad indígena Cofán de Sinangoe, Sucumbíos–Ecuador. Green World J. 2020, 3, 1. [Google Scholar]
- Veit, P.; Quijano Vallejos, P. COVID-19, Rising Gold Prices and Illegal Mining Threaten Indigenous Lands in the Amazon; World Resources Institute: Washington, DC, USA, 2020. [Google Scholar]
- Spiegel, S.J.; Agrawal, S.; Mikha, D.; Vitamerry, K.; Le Billon, P.; Veiga, M.; Konolius, K.; Paul, B. Phasing out mercury? Ecological economics and Indonesia’s small-scale gold mining sector. Ecol. Econ. 2017, 144, 1–11. [Google Scholar] [CrossRef]
- Lobo, F.; Costa, M.; Novo, E.; Telmer, K. Distribution of artisanal and small-scale gold mining in the Tapajós River Basin (Brazilian Amazon) over the past 40 years and relationship with water siltation. Remote Sens. 2016, 8, 579. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A.F.; Nielsen, J.Ø.; Friis, C.; Jønsson, J.B. Mineral exhaustion and its livelihood implications for artisanal and small-scale miners. Environ. Sci. Policy 2021, 119, 34–43. [Google Scholar] [CrossRef]
- Coppock, D.L.; Fernández-Giménez, M.; Hiernaux, P.; Huber-Sannwald, E.; Schloeder, C.; Valdivia, C.; Arredondo, J.T.; Jacobs, M.; Turin, C.; Turner, M. Rangeland Systems in Developing Nations: Conceptual Advances and Societal Implications BT-Rangeland Systems: Processes, Management and Challenges; Briske, D.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 569–641. ISBN 978-3-319-46709-2. [Google Scholar]
- Obiri, S.; Mattah, P.A.D.; Mattah, M.M.; Armah, F.A.; Osae, S.; Adu-Kumi, S.; Yeboah, P.O. Assessing the environmental and socio-economic impacts of artisanal gold mining on the livelihoods of communities in the Tarkwa Nsuaem municipality in Ghana. Int. J. Environ. Res. Public Health 2016, 13, 160. [Google Scholar] [CrossRef] [Green Version]
- Ros-Tonen, M.A.F.; Aggrey, J.J.; Somuah, D.P.; Derkyi, M. Human insecurities in gold mining: A systematic review of evidence from Ghana. Extr. Ind. Soc. 2021, 8, 100951. [Google Scholar] [CrossRef]
- Worlanyo, A.S.; Alhassan, S.I.; Jiangfeng, L. The impacts of gold mining on the welfare of local farmers in Asutifi-North District in Ghana: A quantitative and multi-dimensional approach. Resour. Policy 2022, 75, 102458. [Google Scholar] [CrossRef]
- Jain, R.K.; Cui, Z.; Domen, J.K. (Eds.) Chapter 4-Environmental Impacts of Mining. In Environmental Impact of Mining and Mineral Processing; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 53–157. ISBN 978-0-12-804040-9. [Google Scholar]
- Mora-Silva, D.; Coronel-Espinoza, B. Minería Aurífera Artesanal en la Amazonía norte del Ecuador: Gestión e impactos socio-ambientales en la Parroquia El Dorado de Cascales, Provincia de Sucumbíos. Green World J. 2021, 4, 3. [Google Scholar] [CrossRef]
- Ramírez Requelme, M.E.; Ramos, J.F.F.; Angélica, R.S.; Brabo, E.S. Assessment of Hg-contamination in soils and stream sediments in the mineral district of Nambija, Ecuadorian Amazon (example of an impacted area affected by artisanal gold mining). Appl. Geochem. 2003, 18, 371–381. [Google Scholar] [CrossRef]
- Mercado-Garcia, D.; Beeckman, E.; Van Butsel, J.; Arroyo, N.D.; Sanchez Peña, M.; Van Buggendhoudt, C.; De Saeyer, N.; Forio, M.A.; De Schamphelaere, K.A.C.; Wyseure, G.; et al. Assessing the Freshwater Quality of a Large-Scale Mining Watershed: The Need for Integrated Approaches. Water 2019, 11, 1797. [Google Scholar] [CrossRef] [Green Version]
- Jokonya, O. Towards a Big Data Framework for the Prevention and Control of HIV/AIDS, TB and Silicosis in the Mining Industry. Procedia Technol. 2014, 16, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Benshaul-Tolonen, A.; Chuhan-Pole, P.; Dabalen, A.; Kotsadam, A.; Sanoh, A. The local socioeconomic effects of gold mining: Evidence from Ghana. Extr. Ind. Soc. 2019, 6, 1234–1255. [Google Scholar] [CrossRef] [Green Version]
- Desmond, N.; Allen, C.F.; Clift, S.; Justine, B.; Mzugu, J.; Plummer, M.L.; Watson-Jones, D.; Ross, D.A. A typology of groups at risk of HIV/STI in a gold mining town in north-western Tanzania. Soc. Sci. Med. 2005, 60, 1739–1749. [Google Scholar] [CrossRef]
- Caamaño-Franco, I.; Suárez, M.A. The value assessment and planning of industrial mining heritage as a tourism attraction: The case of las médulas cultural space. Land 2020, 9, 404. [Google Scholar] [CrossRef]
- Jonkman, J.; de Theije, M. Amalgamation: Social, technological, and legal entanglements in small-scale gold-mining regions in Colombia and Suriname. Geoforum 2021, 128, 202–212. [Google Scholar] [CrossRef]
- Veiga, M.M. Introducing New Technologies for Abatement of Global Mercury Pollution in Latin America; UNIDO/UBC/CETEM/CNP: Rio de Janeiro, Brazil, 1997; ISBN 8572271007. [Google Scholar]
- Irwin, A.; Gallagher, K.P. Chinese mining in Latin America: A comparative perspective. J. Environ. Dev. 2013, 22, 207–234. [Google Scholar] [CrossRef] [Green Version]
- Brown, K. A History of Mining in Latin America: From the Colonial Era to the Present; UNM Press: Albuquerque, NM, USA, 2012; ISBN 0826351077. [Google Scholar]
- Gordon, T.; Webber, J.R. Imperialism and resistance: Canadian mining companies in Latin America. Third World Q. 2008, 29, 63–87. [Google Scholar] [CrossRef]
- Salem, J.; Amonkar, Y.; Maennling, N.; Lall, U.; Bonnafous, L.; Thakkar, K. An analysis of Peru: Is water driving mining conflicts? Resour. Policy 2018, 74, 101270. [Google Scholar] [CrossRef]
- Bax, V.; Francesconi, W.; Delgado, A. Land-use conflicts between biodiversity conservation and extractive industries in the Peruvian Andes. J. Environ. Manag. 2019, 232, 1028–1036. [Google Scholar] [CrossRef]
- Adler Miserendino, R.; Bergquist, B.A.; Adler, S.E.; Guimarães, J.R.D.; Lees, P.S.J.; Niquen, W.; Velasquez-López, P.C.; Veiga, M.M. Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador. Resour. Policy 2013, 38, 713–722. [Google Scholar] [CrossRef]
- Capparelli, M.V.; Moulatlet, G.M.; Abessa, D.M.d.S.; Lucas-Solis, O.; Rosero, B.; Galarza, E.; Tuba, D.; Carpintero, N.; Ochoa-Herrera, V.; Cipriani-Avila, I. An integrative approach to identify the impacts of multiple metal contamination sources on the Eastern Andean foothills of the Ecuadorian Amazonia. Sci. Total Environ. 2020, 709, 136088. [Google Scholar] [CrossRef]
- Gonçalves, A.O.; Marshall, B.G.; Kaplan, R.J.; Moreno-Chavez, J.; Veiga, M.M. Evidence of reduced mercury loss and increased use of cyanidation at gold processing centers in southern Ecuador. J. Clean. Prod. 2017, 165, 836–845. [Google Scholar] [CrossRef]
- Diaz-Cuellar, V. The political economy of mining in Bolivia during the government of the movement towards socialism (2006–2015). Extr. Ind. Soc. 2017, 4, 120–130. [Google Scholar] [CrossRef]
- Frækaland Vangsnes, G. The meanings of mining: A perspective on the regulation of artisanal and small-scale gold mining in southern Ecuador. Extr. Ind. Soc. 2018, 5, 317–326. [Google Scholar] [CrossRef]
- Bridge, G. Contested terrain: Mining and the environment. Annu. Rev. Environ. Resour. 2004, 29, 205–259. [Google Scholar] [CrossRef]
- Esdaile, L.J.; Chalker, J.M. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chem. Eur. J. 2018, 24, 6905–6916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosquera, C. Desafío de la formalización en la minería artesanal y de pequeña escala: Análisis de las experiencias en Bolivia, Colombia, Ecuador y Perú. 2006. Available online: https://n9.cl/zj4sq (accessed on 10 February 2022).
- Long, R.N.; Renne, E.P.; Basu, N. Understanding the social context of the ASGM sector in Ghana: A qualitative description of the demographic, health, and nutritional characteristics of a small-scale gold mining community in Ghana. Int. J. Environ. Res. Public Health 2015, 12, 12679–12696. [Google Scholar] [CrossRef] [Green Version]
- Mestanza-Ramón, C.; D’Orio, G.; Straface, S. Gold mining in Ecuador: Innovative recommendations for the management and remediation of mercury-contaminated waters. Green World J. 2021, 4, 11. [Google Scholar] [CrossRef]
- Wingfield, S.; Martínez-Moscoso, A.; Quiroga, D.; Ochoa-Herrera, V. Challenges to water management in Ecuador: Legal authorization, quality parameters, and socio-political responses. Water 2021, 13, 1017. [Google Scholar] [CrossRef]
- Basu, N.; Renne, E.P.; Long, R.N. An integrated assessment approach to address artisanal and small-scale gold mining in Ghana. Int. J. Environ. Res. Public Health 2015, 12, 11683–11698. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, A.; Suemasu, K.; Veiga, M.M. Estimation of mercury losses and gold production by artisanal and small-scale gold mining (ASGM). J. Sustain. Metall. 2021, 7, 1045–1059. [Google Scholar] [CrossRef]
- Schutzmeier, P.; Berger, U.; Bose-O’Reilly, S. Gold mining in Ecuador: A cross-sectional assessment of mercury in urine and medical symptoms in miners from Portovelo/Zaruma. Int. J. Environ. Res. Public Health 2017, 14, 34. [Google Scholar] [CrossRef] [Green Version]
- González-Merizalde, M.V.; Menezes-Filho, J.A.; Cruz-Erazo, C.T.; Bermeo-Flores, S.A.; Sánchez-Castillo, M.O.; Hernández-Bonilla, D.; Mora, A. Manganese and Mercury Levels in Water, Sediments, and Children Living Near Gold-Mining Areas of the Nangaritza River Basin, Ecuadorian Amazon. Arch. Environ. Contam. Toxicol. 2016, 71, 171–182. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Henkanaththegedara, S.M.; Vásconez Duchicela, P.; Vargas Tierras, Y.; Sánchez Capa, M.; Constante Mejía, D.; Jimenez Gutierrez, M.; Charco Guamán, M.; Mestanza Ramón, P. In-Situ and Ex-Situ biodiversity conservation in Ecuador: A review of policies, actions and challenges. Diversity 2020, 12, 315. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Falquez-Torres, D.A.; Romero-Crespo, P.L.; Valverde-Armas, P.E.; Guzmán-Martínez, F.; Jiménez-Oyola, S. Risk assessment of mining environmental liabilities for their categorization and prioritization in gold-mining areas of Ecuador. Sustainability 2022, 14, 6089. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; Escobar Segovia, K.; García-Martínez, M.-J.; Ortega, M.; Bolonio, D.; García-Garizabal, I.; Salgado, B. Human health risk assessment for exposure to potentially toxic elements in polluted rivers in the Ecuadorian Amazon. Water 2021, 13, 613. [Google Scholar] [CrossRef]
- Vimal, R.; Navarro, L.M.; Jones, Y.; Wolf, F.; Le Moguédec, G.; Réjou-Méchain, M. The global distribution of protected areas management strategies and their complementarity for biodiversity conservation. Biol. Conserv. 2021, 256, 109014. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Silva-Zambrano, C.A.; Ruano, M.A. The economic value of natural protected areas in Ecuador: A case of Villamil Beach National Recreation Area. Ocean Coast. Manag. 2018, 157, 193–202. [Google Scholar] [CrossRef]
- Capparelli, V.M.; Cabrera, M.; Rico, A.; Lucas-Solis, O.; Alvear, S.D.; Vasco, S.; Galarza, E.; Shiguango, L.; Pinos-Velez, V.; Pérez-González, A.; et al. An integrative approach to assess the environmental impacts of gold mining contamination in the Amazon. Toxics 2021, 9, 149. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; García-Martínez, M.-J.; Ortega, M.F.; Bolonio, D.; Rodríguez, C.; Esbrí, J.-M.; Llamas, J.F.; Higueras, P. Multi-pathway human exposure risk assessment using Bayesian modeling at the historically largest mercury mining district. Ecotoxicol. Environ. Saf. 2020, 201, 110833. [Google Scholar] [CrossRef]
- Canteiro, M.; Córdova-Tapia, F.; Brazeiro, A. Tourism impact assessment: A tool to evaluate the environmental impacts of touristic activities in Natural Protected Areas. Tour. Manag. Perspect. 2018, 28, 220–227. [Google Scholar] [CrossRef]
- Mestanza, C.; Saavedra, H.F.; Gaibor, I.D.; Zaquinaula, M.A.; Váscones, R.L.; Pacheco, O.M. Conflict and Impacts Generated by the Filming of Discovery Channel’s Reality Series “Naked and Afraid” in the Amazon: A Special Case in the Cuyabeno Wildlife Reserve, Ecuador. Sustainability 2019, 11, 50. [Google Scholar] [CrossRef] [Green Version]
- Gobierno Autónomo Descentralizado del Cantón Cascales. Plan de Desarrollo y ordenamiento Territorial del Cantón El Dorado de Cascales; Gobierno Autónomo Descentralizado del Cantón Cascales: El Dorado de Cascales, Ecuador, 2019; Available online: https://n9.cl/qb396 (accessed on 12 February 2022).
- Villacreses Espinosa, X.G. Propuesta de un modelo de gestión institucional para el plan de desarrollo y ordenamiento territorial del cantón Cascales, provincia de Sucumbíos, 2011–2030. 2012. Available online: https://n9.cl/7z0u9 (accessed on 15 February 2022).
- Cuenca, P.; Arriagada, R.; Echeverría, C. How much deforestation do protected areas avoid in tropical Andean landscapes? Environ. Sci. Policy 2016, 56, 56–66. [Google Scholar] [CrossRef]
- Betancourt, O.; Narváez, A.; Roulet, M. Small-scale gold mining in the Puyango River Basin, Southern Ecuador: A study of environmental impacts and human exposures. Ecohealth 2005, 2, 323–332. [Google Scholar] [CrossRef]
- Schudel, G.; Kaplan, R.; Adler Miserendino, R.; Veiga, M.M.; Velasquez-López, P.C.; Guimarães, J.R.D.; Bergquist, B.A. Mercury isotopic signatures of tailings from artisanal and small-scale gold mining (ASGM) in southwestern Ecuador. Sci. Total Environ. 2019, 686, 301–310. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Paz-Mena, S.; López-Paredes, C.; Jimenez-Gutierrez, M.; Herrera-Morales, G.; D’Orio, G.; Straface, S. History, current situation and challenges of gold mining in Ecuador’s Litoral Region. Land 2021, 10, 1220. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Ordoñez-Alcivar, R.; Arguello-Guadalupe, C.; Carrera-Silva, K.; D’Orio, G.; Straface, S. History, socioeconomic problems and environmental impacts of gold mining in the Andean Region of Ecuador. Int. J. Environ. Res. Public Health 2022, 19, 1190. [Google Scholar] [CrossRef]
- Velásquez-López, P.C.; Veiga, M.M.; Klein, B.; Shandro, J.A.; Hall, K. Cyanidation of mercury-rich tailings in artisanal and small-scale gold mining: Identifying strategies to manage environmental risks in Southern Ecuador. J. Clean. Prod. 2011, 19, 1125–1133. [Google Scholar] [CrossRef]
- Langeland, A.L.; Hardin, R.D.; Neitzel, R.L. Mercury levels in human hair and farmed fish near artisanal and small-scale gold mining communities in the Madre de Dios River Basin, Peru. Int. J. Environ. Res. Public Health 2017, 14, 302. [Google Scholar] [CrossRef] [Green Version]
- Martín, A.; Arias, J.; López, J.; Santos, L.; Venegas, C.; Duarte, M.; Ortiz-Ardila, A.; de Parra, N.; Campos, C.; Celis Zambrano, C. Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia). Water 2020, 12, 2523. [Google Scholar] [CrossRef]
- Abrahan, M.; Diana, J.F.; Jürgen, M. Levels of MN, ZN, PB and HG in sediments of the zamora river, Ecuador. Rev. Int. Contam. Ambient. 2018, 34, 245–249. [Google Scholar]
- Webb, J.; Mainville, N.; Mergler, D.; Lucotte, M.; Betancourt, O.; Davidson, R.; Cueva, E.; Quizhpe, E. Mercury in fish-eating communities of the Andean Amazon, Napo river valley, Ecuador. Ecohealth 2004, 1, SU59–SU71. [Google Scholar] [CrossRef]
- García, O.; Veiga, M.M.; Cordy, P.; Suescún, O.E.; Molina, J.M.; Roeser, M. Artisanal gold mining in Antioquia, Colombia: A successful case of mercury reduction. J. Clean. Prod. 2015, 90, 244–252. [Google Scholar] [CrossRef]
- Feingold, B.J.; Berky, A.; Hsu-Kim, H.; Rojas Jurado, E.; Pan, W.K. Population-based dietary exposure to mercury through fish consumption in the Southern Peruvian Amazon. Environ. Res. 2020, 183, 108720. [Google Scholar] [CrossRef] [PubMed]
- Tarras-Wahlberg, N.; Flachier, A.; Lane, S.N.; Sangfors, O. Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: The Puyango River basin, southern Ecuador. Sci. Total Environ. 2001, 278, 239–261. [Google Scholar] [CrossRef]
- Mestanza-Ramón, C.; Cuenca-Cumbicus, J.; D’Orio, G.; Flores-Toala, J.; Segovia-Cáceres, S.; Bonilla-Bonilla, A.; Straface, S. Gold mining in the Amazon Region of ecuador: History and a review of its socio-environmental impacts. Land 2022, 11, 221. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Oliyide, J.A.; Yaya, O.S.; Al-Faryan, M.A.S. Does oil connect differently with prominent assets during war? Analysis of intra-day data during the Russia-Ukraine saga. Resour. Policy 2022, 77, 102728. [Google Scholar] [CrossRef]
- Liadze, I.; Macchiarelli, C.; Mortimer-Lee, P.; Juanino, P.S. The Economic Costs of the Russia-Ukraine Conflict; NIESR Policy Paper 32; National Institute of Economic and Social Research: London, UK, 2022. [Google Scholar]
- Doering, S.; Bose-O’Reilly, S.; Berger, U. Essential indicators identifying chronic inorganic mercury intoxication: Pooled analysis across multiple cross-sectional studies. PLoS ONE 2016, 11, e0160323. [Google Scholar] [CrossRef] [Green Version]
- Tarras-Wahlber, N.H.; Flachier, A.; Fredriksson, G.; Lane, S.; Lundberg, B.; Sangfors, O. Environmental impact of small-scale and artisanal gold mining in southern Ecuador. AMBIO J. Hum. Environ. 2000, 29, 484–491. [Google Scholar] [CrossRef]
- Basri; Sakakibara, M.; Sera, K. Current mercury exposure from artisanal and small-scale gold mining in Bombana, southeast Sulawesi, Indonesia—Future significant health risks. Toxics 2017, 5, 7. [Google Scholar] [CrossRef]
- Rettberg, A.; Ortiz-Riomalo, J.F. Golden opportunity, or a new twist on the resource–conflict relationship: Links between the drug trade and illegal gold mining in Colombia. World Dev. 2016, 84, 82–96. [Google Scholar] [CrossRef]
- Veiga, M.M.; Angeloci-Santos, G.; Meech, J.A. Review of barriers to reduce mercury use in artisanal gold mining. Extr. Ind. Soc. 2014, 1, 351–361. [Google Scholar] [CrossRef]
- Riehl, C. Operation Mercury and Illegal Mining in Latin America. 2020. Available online: https://n9.cl/fz8q1 (accessed on 17 February 2022).
- Saim, A.K. Mercury (Hg) use and pollution assessment of ASGM in Ghana: Challenges and strategies towards Hg reduction. Environ. Sci. Pollut. Res. 2021, 28, 61919–61928. [Google Scholar] [CrossRef]
- Veiga, K.H.; Telmer, M.M. World emissions of mercury from artisanal and small scale gold mining. In Mercury Fate and Transport in the Global Atmosphere; Pirrone, N., Mason, R., Eds.; Springer: Boston, MA, USA, 2009; pp. 131–172. ISBN 978-0-387-93958-2. [Google Scholar]
- Kristensen, A.K.B.; Thomsen, J.F.; Mikkelsen, S. A review of mercury exposure among artisanal small-scale gold miners in developing countries. Int. Arch. Occup. Environ. Health 2013, 87, 579–590. [Google Scholar] [CrossRef]
Name | Age | Gender | Educational Background | Years of Experience | Relationship with the Area |
---|---|---|---|---|---|
Hinerth Velázquez | 33 | Male | Environmental Engineer | 8 | Environmental Controller in the Cascales Canton |
Álvaro Borja | 64 | Male | Environmental Technician | 32 | Environmental Technician in Canton Cascales |
Juan Carlos López | 56 | Male | Primary education | 25 | Local Artisanal Miner |
Luis Rivera | 45 | Male | Secondary education | 21 | Local Artisanal Miner |
María Cango | 45 | Female | Primary education | 16 | Local Artisanal Miner |
Andrea Chango | 34 | Female | Environmental Engineer | 11 | Environmental Technology in Canton Cascales |
Name | Age | Gender | Educational Background | Years of Experience | Relationship with the Area |
---|---|---|---|---|---|
Billy Coronel | 41 | Male | Master in Management Systems | 17 | Research Professor in the study area |
Carlos Mestanza-Ramón | 34 | Male | Doctor in Conservation and Management of the Natural Environment | 15 | Researcher in the study area |
Demmy Mora | 24 | Female | Environmental Engineer | 5 | Researcher in the study area |
Álvaro Borja | 64 | Male | Environmental Technician | 23 | Environmental Technician in Canton Cascales |
Yader Moreno | 35 | Male | Environmental Engineer | 11 | Former Environmental Analyst of the Ministry of Environment and Water of Ecuador in the Province of Sucumbíos |
Magnitude | Description |
---|---|
High | Those that are incompatible with conservation. Their presence would raise the prohibition of use or substantially modify the activities. |
Medium | Those that can be compatible with conservation, after implementation of management measures. |
Low | Compatible with conservation and susceptible to natural regeneration in the absence of activities. |
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
What are the advantages? What is done well? | What is affecting it? What opportunities can arise from the problems? | What is being done wrong? What should not happen? | What do other artisanal ASGM areas do better? What obstacles does artisanal mining have? |
Activities | Description |
---|---|
Initial exploration | This stage refers to the initial process in which artisanal miners travel long distances in search of an area with indications of gold-bearing materials. In the process, the miners invade so far untouched areas, build paths and roads, clear trees, build houses and camps, use (and spill) fuel, hunt animals, etc. |
Gravel classification | This is the first step of exploitation is the mining or excavation of the gold-bearing gravel. This can be done by hand (shovel) or small suction dredges. Classification means the separation of coarse stones from small sand and gravel. This is usually done by sieving. |
Preconcentration | This means the separation of light material (sand and gravel) from a mixed heavy minerals concentrate. This is done by “sluicing” in a wooden or metal chute with usually a rough carpet on the bottom, where heavy minerals and gold are held back and light material overflows with the water. The carpet is washed from time to time and the preconcentrate is collected. |
Amalgamation | The preconcentrate (also called black sand due to its high content of black iron minerals) is then amalgamated in a pan, where mercury and water are added and the pan is shaken. Fine gold and mercury combine to coarse amalgam flakes, which then are separated from the heavy minerals by panning. The amalgam is collected for further burning. |
Burning of the amalgam | Finally, the collected amalgam is then burned. This means that mercury is evaporated by heat (e.g., using a charcoal fire) and enters the atmosphere. It can be inhaled by the operators and leads to their intoxification by metallic mercury. Usually, the largest part of mercury vapor, due to its high weight, settles down around the burning place and contaminates the soil. Some of it may travel a bit further by wind. By rain and erosion, this metallic mercury enters the waterways. |
Activities | Components | ||||||
---|---|---|---|---|---|---|---|
Biotic | Abiotic | Socioeconomic | |||||
Fauna | Flora | Soil | Water | Atmosphere | Economic | Social | |
Initial exploration | Disturbance Alteration | Disturbance Alteration Lost | Compaction Contamination | Disturbance Alteration | --- | --- | --- |
Gravel classification | Disturbance Alteration Lost | Disturbance Alteration Lost | Alteration | Disturbance Alteration | --- | --- | --- |
Preconcentration | Contamination | Disturbance | Compaction | Contamination | --- | --- | --- |
Amalgamation | Alteration | Alteration | Contamination | Contamination | Contamination | --- | Diseases |
Burning of the amalgam | Contamination | Disturbance | Contamination | Contamination | Contamination | Income | Diseases |
Component | Impact | Magnitude |
---|---|---|
Fauna | Initial scanning disturbance | Medium |
Habitat alteration | High | |
Loss of species | Medium | |
Contamination by waste | Medium | |
Flora | Disturbance to vegetation | High |
Alteration to vegetation | High | |
Loss due to damage or removal | Medium | |
Soil | Compaction | Medium |
Contamination by chemicals | High | |
Alteration to soil quality | Medium | |
Water | Disturbance | Medium |
Alteration | High | |
Contamination | High | |
Atmosphere | Contamination by suspended particulate matter | High |
Economic | Employment | Low |
Social | Health | Medium |
Results | Low impact | 6.25% |
Medium impact | 50% | |
High impact | 43.75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mestanza-Ramón, C.; Mora-Silva, D.; D’Orio, G.; Tapia-Segarra, E.; Gaibor, I.D.; Esparza Parra, J.F.; Chávez Velásquez, C.R.; Straface, S. Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability 2022, 14, 6854. https://doi.org/10.3390/su14116854
Mestanza-Ramón C, Mora-Silva D, D’Orio G, Tapia-Segarra E, Gaibor ID, Esparza Parra JF, Chávez Velásquez CR, Straface S. Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability. 2022; 14(11):6854. https://doi.org/10.3390/su14116854
Chicago/Turabian StyleMestanza-Ramón, Carlos, Demmy Mora-Silva, Giovanni D’Orio, Enrique Tapia-Segarra, Isabel Dominguez Gaibor, José Fernando Esparza Parra, Carlos Renato Chávez Velásquez, and Salvatore Straface. 2022. "Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador" Sustainability 14, no. 11: 6854. https://doi.org/10.3390/su14116854
APA StyleMestanza-Ramón, C., Mora-Silva, D., D’Orio, G., Tapia-Segarra, E., Gaibor, I. D., Esparza Parra, J. F., Chávez Velásquez, C. R., & Straface, S. (2022). Artisanal and Small-Scale Gold Mining (ASGM): Management and Socioenvironmental Impacts in the Northern Amazon of Ecuador. Sustainability, 14(11), 6854. https://doi.org/10.3390/su14116854