Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions
Abstract
:1. Introduction
2. Overview of NSZD
2.1. NSZD Conceptual Model
- An aerobic, low LNAPL mass zone at the upper part of unsaturated (vadose) zone, extending to ground surface. This is where only soil respiration and modern carbon (modern-C) generation occurs (Region I in Figure 1);
- A moderate to high LNAPL mass zone in the middle of the vadose zone where low-oxygen environment transitions to an anaerobic condition (Region II in Figure 1);
- An anaerobic, high LNAPL mass zone, encompassing the lower part of the vadose zone including capillary fringe and smear zone and the upper portion of saturated zone (Region III in Figure 1);
- An anaerobic, low LNAPL mass zone below LNAPL plume (Region IV in Figure 1).
2.2. Definitin of NSZD Rate
2.3. Factors Affecting NSZD Rates
- Factors regulating actual NSZD rate;
- Factors regulating apparent NSZD rate;
- Factors regulating actual and apparent NSZD rates simultaneously.
2.4. Microbiology of NSZD Sites
2.4.1. Microbial Ecology in Recent and Aged Oil Spill Sites
2.4.2. NSZD Thermodynamics
2.4.3. Microbial Community Structure and Syntropy
3. NSZD Rate Quantification Techniques
4. Passive CO2 Trap: A Cost-Effective Technique
4.1. Components and Configurations
4.2. Accuracy and Precision
4.3. Field Deployment and Grid Design
4.3.1. Field Deployment
4.3.2. Deployment Grid Design: Number and Distribution Pattern
4.3.3. Preliminary Site Delineation
4.4. Downstream Laboratory Analyses and Result Interpretation
4.4.1. Recovery and Quantification of Absorbed CO2
4.4.2. Origin of Absorbed CO2
4.4.3. Conversion of CO2 Efflux to NSZD Rate
5. Thermal Monitoring: A Recent Technique
6. Conclusions and Outlook
- The role of predatory organisms on biotic processes at NSZD sites has not been studied and comprehended so far. Predation has been categorized as a less critical factor on biotic processes at NSZD sites [39]. This assumption can be due to difficulties in culturing strictly anaerobic protozoa, which may have caused lack of experimental proof for the speculations about protist roles in anaerobic ecosystems.
- Nutrient amendment as a site management strategy should be further investigated. These questions should be answered first: does nutrient supplementation increase NSZD rates in the subsurface? What are the most effective nutrient compositions to improve natural biogeochemical processes at NSZD sites? Does optimal nutrient composition vary from site to site and does it depend on LNAPL composition? Secondly, it should be deduced if nutrient addition will have any adverse effect on NSZD rate, either through inhibiting the microbial processes or interfering with measurements.
- Methanotrophs are seen to thrive in micro-aerobic environments (0.5–2% O2) rather than highly oxygenated environments. Oxygen inhibition at higher O2 concentration is suspected and is recommended to be quantified [152]. This should be validated through further investigation.
- Anaerobic methanotrophy occurs at considerable rates in anoxic coastal and wetland sediments, presumably via syntrophic relationship between methanotrophic archaea and sulfate-reducing bacteria with elemental sulfur transfer [153,154,155]. The question is whether anaerobic methane oxidation (AOM) can be happen at NSZD sites. Additionally, it should be further investigated whether it can be responsible for significant methane oxidation, given that the bottom layers of the unsaturated zone, confined between the aerobic vadose zone and the water table, constantly experience anaerobic condition.
- Systematic, comprehensive studies should be planned to investigate not only the main effect of influencing factors, but also the interactions between them. The existence and the degree of these interactions should be validated to improve the accuracy of NSZD rate quantification protocols (i.e., actual NSZD rate ≌ apparent NSZD rate).
- These systematic studies (explained in the previous numbered point) should attempt to study the influencing factors methodologically and analyze the main and interaction effects quantitively and qualitatively. The current literature requires more data to validate and make solid conclusions about the effect of each influencing factor.
- As described in the Introduction section, critical review of the underlying factors and providing thorough explanation of the underlying phenomena was out of the scope of this literature review article. There is a need in the current literature for critical review articles regarding different aspects of NSZD, which can explain the underlying phenomenon relevant to each factor.
- How significant is the contribution of “signal shredding” to high temporospatial variability of NSZD rates? This question merits further research given that no study has been dedicated to this phenomenon at NSZD sites to date.
- It is hypothesized that surface properties can influence actual NSZD rate. Tracy [47] argues that based on Le Chatelier’s principle, accumulation of reaction by-products (i.e., gas vapors) due to surface capping can establish an equilibrium at lower rates, resulting in decreased rates of all forward reactions (i.e., biodegradation, dissolution and volatilization) [47]. Although this hypothesis is theoretically valid, it requires further investigation to determine whether and how subsurface heterogeneity and complexity can determine the importance of this factor in regulating actual NSZD rates.
- What is the magnitude of the effect of precipitation on CO2 trap readings? It is anticipated that CO2 trap deployment during precipitation can form preferential gas transport pathways, resulting in NSZD rate overestimation. Deployment immediately after precipitation can cause underestimation, as soil saturation can prevent gas emission at grade.
- What is the relative accuracy of CO2 trap models, given that the two available models (i.e., the Keith and Wong model and the McCoy model) have some differences in scale (the former has a 10-time larger surface area than the latter) and configuration (closed top in the Keith and Wong model)?
- Based on what criteria, protocol or standard should CO2 traps be distributed at site to resolve the most accurate NSZD rate and also result in consistency in the use of trap and an improvement in comparability of the results of different studies? Do the density of CO2 traps (i.e., number of traps per unit LNAPL impacted area) and the grid pattern (relative distance and placement of the traps) alter the results (i.e., the obtained NSZD rates)? Does the required number of traps depend on distribution (i.e., the magnitude and shape of LNAPL area) and composition (e.g., light vs. heavy LNAPL) of the LNAPL body? An urgent need exists to develop a grid design protocol and standard for this technique if the method is to be used frequently and is to be expected to provide accurate representation of the field conditions.
- Accuracy of the downstream analyses of the retrieved CO2 trap from the field (e.g., dry weight change analysis and radiocarbon isotope analysis of the soda lime) merits further research. This is to establish a correct understanding of the error introduced into data during laboratory procedures.
- In thermal monitoring technique, a variety of devices can be used for monitoring the subsurface temperature, including thermocouples, thermistors, RTDs and bandgap-based digital temperature detectors. The thermocouples are used most frequently. A standard approach or protocol to select for a preferred device does not exist [22].
- Further research should be dedicated to eliminating or reducing the dependency of all methods on background correction. Background correction is the simplest and least expensive approach that resolves the origin of CO2 efflux or biogenic heat used as NSZD rate surrogates. Nonetheless, finding the most reliable background location can be challenging, due to a number of reasons: (1) uncertainty about the mobility and areal extent of LNAPL in many active and decommissioned industrial sites; (2) similarity between CO2 effluxes of background location and LNAPL impacted area. The latter can lead to ambiguity about the occurrence of NSZD at sites with relatively low LNAPL loss rates. It can result in negative background-corrected values making the impression that the LNAPL compounds are being produced.
- The NSZD is a bioremediation and reclamation technique at an embryonic stage. Therefore, enough information was not available in the current literature about capital cost, operating cost and revenue based on the technical and financial input parameters to feed into a techno-economic analysis of NSZD. It can be fit into the scope of the future literature review analysis of NSZD. In addition, it is recommended that the future critical literature review articles include a bibliographic analysis of the topic, to determine the new knowledge and the direction of the future research closer to the most recent updates that are being released to the public every day.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Factors Regulating NSZD Rates
Appendix A.1. Factors Regulating Actual NSZD Rate
Appendix A.1.1. Temperature
Appendix A.1.2. Microbial Structure and Acclimation
Appendix A.1.3. Predation
Appendix A.1.4. Nutrients (e.g., Nitrogen, Phosphorus, Potassium)
Appendix A.1.5. Substrate Bioavailability and Inhibition
Appendix A.1.6. Water Table Fluctuations
Appendix A.1.7. Electron Acceptors
Appendix A.1.8. pH and Alkalinity
Appendix A.2. Factors Regulating Apparent NSZD Rate
Appendix A.2.1. Gas and Heat Transport Mechanisms
Appendix A.2.2. Signal Shredding
Appendix A.2.3. Meteorological Conditions
Appendix A.3. Factors Regulating Actual and Apparent NSZD Rates Simultaneously
Appendix A.3.1. Soil Properties
Appendix A.3.2. Seasonality (Seasonal and Diurnal Changes)
Appendix A.3.3. Surface Properties and Anthropogenic Infrastructure
Appendix B. Advantages and Limitations of NSZD Rate Quantification Techniques: Literature Summary
Appendix B.1. Concentration Gradient (CG)
Appendix B.2. Dynamic Closed Chamber (DCC)
- (i)
- (ii)
- Background correction method [34,35]. Finding a background location which can be representative of the NSR of NSZD spot poses a great challenge. The background location should be far enough from the LNAPL impacted zone. Yet, it should have the same surface and subsurface characteristics to reflect soil heterogeneity at the impacted zone (read more in Section 4.4).
Appendix B.3. CO2 Trap
Appendix B.4. Thermal Monitoring
References
- Government of Canada. Crude Oil Facts [WWW Document]. URL. 2020. Available online: https://www.nrcan.gc.ca/science-data/data-analysis/energy-data-analysis/energy-facts/crude-oil-facts/20064 (accessed on 7 January 2021).
- Cakir, E.; Sevgili, C.; Fiskin, R. An analysis of severity of oil spill caused by vessel accidents. Transp. Res. Part D 2021, 90, 102662. [Google Scholar] [CrossRef]
- Yang, Z.; Shah, K.; Laforest, S.; Hollebone, B.P.; Lambert, P.; Brown, C.E.; Yang, C.; Goldthorp, M. A study of the 46-year-old Arrow oil spill: Persistence of oil residues and variability in oil contamination along Chedabucto Bay, Nova Scotia, Canada. J. Clean. Prod. 2018, 198, 1459–1473. [Google Scholar] [CrossRef]
- Lee, K.; Wells, P.G.; Gordon, D.C. Reflecting on an anniversary. The 1970 SS arrow oil spill in Chedabucto Bay, Nova Scotia, Canada. Mar. Pollut. Bull. 2020, 157, 111332. [Google Scholar] [CrossRef]
- Our World in Data. Fossil Fuels. Available online: https://ourworldindata.org/fossil-fuels (accessed on 5 October 2020).
- Naz, S.; Iqbal, M.F.; Mahmood, I.; Allam, M. Marine oil spill detection using synthetic aperture radar over indian ocean. Mar. Pollut. Bull. 2020, 162, 111921. [Google Scholar] [CrossRef] [PubMed]
- DeBofsky, A.; Xie, Y.; Jardine, T.D.; Hill, J.E.; Jones, P.D.; Giesy, J.P. Effects of the husky oil spill on gut microbiota of native fishes in the North Saskatchewan River, Canada. Aquat. Toxicol. 2020, 229, 105658. [Google Scholar] [CrossRef]
- Hong, S.; Yoon, S.J.; Kim, T.; Ryu, J.; Kang, S.G.; Khim, J.S. Response to oiled wildlife in the management and evaluation of marine oil spills in South Korea: A review. Reg. Stud. Mar. Sci. 2020, 40, 101542. [Google Scholar] [CrossRef]
- Baedecker, M.J.; Eganhouse, R.P.; Bekins, B.A.; Delin, G.N. Loss of volatile hydrocarbons from an LNAPL oil source. J. Contam. Hydrol. 2011, 126, 140–152. [Google Scholar] [CrossRef]
- Atekwana, E.A.; Atekwana, E.A. Geophysical signatures of microbial activity at hydrocarbon contaminated sites: A review. Surv. Geophys. 2010, 31, 247–283. [Google Scholar] [CrossRef]
- Kulkarni, P.R.; Newell, C.J.; King, D.C.; Molofsky, L.J.; Garg, S. Application of Four Measurement Techniques to Understand Natural Source Zone Depletion Processes at an LNAPL Site. Ground Water Monit. Remediat. 2020, 40, 75–88. [Google Scholar] [CrossRef]
- Warren, E.; Bekins, B.A. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site. J. Contam. Hydrol. 2015, 182, 183–193. [Google Scholar] [CrossRef]
- Emerson, E.D. Biotic Control of LNAPL Longevity—Laboratory and Field-Scale Studies. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2017. [Google Scholar]
- Revesz, K.; Coplen, T.B.; Baedecker, M.J.; Glynn, P.D.; Hult, M. Methane production and consumption monitored by stable H and C isotope ratios at a crude oil spill site, Bemidji, Minnesota. Appl. Geochem. 1995, 10, 505–516. [Google Scholar] [CrossRef]
- Interstate Technology & Regulatory Council (ITRC). Chapter 6: LNAPL Remedial Technology Selection. In Light Non-Aqueous Phase Liquid (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remiedial Technologies. LNAPL-3; Interstate Technology & Regulatory Council (ITRC): Washington, DC, USA, 2018; p. 14. [Google Scholar]
- United States Environmental Protection Agency (USPEA). Superfund Remedy Report, 16th Edition—EPA-542-R-20-001; United States Environmental Protection Agency (USPEA): Washington, DC, USA, 2020. [Google Scholar]
- Interstate Technology & Regulatory Council (ITRC). Light Non-Aqueous Phase Liquids (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remedial Technologies (LNAPL-3) [WWW Document]. URL. 2018. Available online: https://lnapl-3.itrcweb.org/ (accessed on 7 January 2021).
- Sale, T. Answers to frequently asked questions about managing risk at LNAPL sites. API Soil Groundw. Res. Bull. 2003, 18, 1–20. [Google Scholar]
- Hou, D.; Al-Tabbaa, A. Sustainability: A new imperative in contaminated land remediation. Environ. Sci. Policy 2014, 39, 25–34. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Introduction to the 2019 TRI National Analysis. Toxics Release Inventory National Analysis Overview. 2019. Available online: https://www.epa.gov/newsreleases/epa-publishes-2019-annual-toxics-release-inventory (accessed on 5 October 2020).
- United Nations. Department of Economics and Social Affairs: Sustainabile Development Goal (SDG) #13 - Climate Change. Available online: https://sdgs.un.org/topics/climate-change (accessed on 3 May 2022).
- Interstate Technology & Regulatory Council (ITRC). Appendix B—Natural Source Zone Depletion (NSZD) Appendix, In Light Non-Aqueous Phase Liquid (LNAPL) Site Management: LCSM Evolution, Decision Process, and Remiedial Technologies. LNAPL-3; Interstate Technology & Regulatory Council (ITRC): Washington, DC, USA, 2018; pp. 1–35. [Google Scholar]
- DiMarzio, J.; Zimbron, J. Natural source zone depletion (NSZD)—A key part of the LNAPL conceptual site model. LUSTLine Bull. 2019, 85, 18–21. [Google Scholar]
- Reyenga, L. Monitored natural source zone depletion measurement frequency. Appl. NAPL Sci. Rev. 2020, 8, 1. [Google Scholar]
- Garg, S.; Newell, C.J.; Kulkarni, P.R.; King, D.C.; Adamson, D.T.; Renno, M.I.; Sale, T. Overview of natural source zone depletion: Processes, controlling factors, and composition change. Ground Water Monit. Remediat. 2017, 37, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Sihota, N.; Trost, J.; Bekins, B.; Berg, A.; Delin, G.; Mason, B.; Warren, E.; Mayer, K.U. Seasonal Variability in Vadose Zone Biodegradation at a Crude Oil Pipeline Rupture Site. Vadose Zone J. 2016, 1–14. [Google Scholar] [CrossRef]
- Amos, R.T.; Mayer, K.U.; Bekins, B.A.; Delin, G.N.; Williams, R.L. Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface. Water Resour. Res. 2005, 41, 1–15. [Google Scholar] [CrossRef]
- Bekins, B.A.; Hostettler, F.D.; Herkelrath, W.N.; Delin, G.N.; Warren, E.; Essaid, H.I. Progression of methanogenic degradation of crude oil in the subsurface. Environ. Geosci. 2005, 12, 139–152. [Google Scholar] [CrossRef]
- Johnson, P.; Lundegard, P.; Liu, Z. Source zone natural attenuation at petroleum hydrocarbon spill sites—I: Site-specific assessment approach. Ground Water Monit. Remediat. 2006, 26, 82–92. [Google Scholar] [CrossRef]
- Keith, H.; Wong, S. Measurement of soil CO2 efflux using soda lime absorption: Both quantitative and reliable. Soil Biol. Biochem. 2006, 38, 1121–1131. [Google Scholar] [CrossRef]
- Lundegard, P.; Johnson, P. Source Zone Natural Attenuation at Petroleum Hydrocarbon Spill Sites-II: Application to a former oil field. Ground Water Monit. Remediat. 2006, 26, 93–106. [Google Scholar] [CrossRef]
- Molins, S.; Mayer, K.U.; Amos, R.; Bekins, B. Vadose zone attenuation of organic compounds at a crude oil spill site—Interactions between biogeochemical reactions and multicomponent gas transport. J. Contam. Hydrol. 2010, 112, 15–29. [Google Scholar] [CrossRef]
- Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes. J. Contam. Hydrol. 2011, 125, 13–25. [Google Scholar] [CrossRef]
- Sihota, N.J.; Singurindy, O.; Mayer, K.U. CO2-Efflux Measurements for Evaluating Source Zone Natural Attenuation Rates in a Petroleum Hydrocarbon Contaminated Aquifer. Environ. Sci. Technol. 2010, 45, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Sihota, N.J.; Mayer, K.U. Characterizing Vadose Zone Hydrocarbon Biodegradation Using Carbon Dioxide Effluxes, Isotopes, and Reactive Transport Modeling. Vadose Zone J. 2012, 1–14. [Google Scholar] [CrossRef]
- Gieg, L.M.; Fowler, S.J.; Berdugo-Clavijo, C. Syntrophic biodegradation of hydrocarbon contaminants. Curr. Opin. Biotechnol. 2014, 27, 21–29. [Google Scholar] [CrossRef]
- McCoy, K.; Zimbron, J.; Sale, T.; Lyverse, M. Measurement of Natural Losses of LNAPL Using CO2 Traps. Groundwater 2014, 53, 658–667. [Google Scholar] [CrossRef]
- Sihota, N.J.J. Novel Approaches for Quantifying Source Zone Natural Attenuation of Fossil and Alternatuve Fuels. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2014. [Google Scholar]
- Lari, K.S.; Davis, G.B.; Rayner, J.L.; Bastow, T.P.; Puzon, G.J. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches. Water Res. 2019, 157, 630–646. [Google Scholar] [CrossRef]
- Hua, F.; Wang, H.Q. Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnol. Biotechnol. Equip. 2014, 28, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Irianni-Renno, M.; Akhbari, D.; Olson, M.R.; Byrne, A.P.; Lefèvre, E.; Zimbron, J.; Lyverse, M.; Sale, T.C.; De Long, S.K. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body. Appl. Microbiol. Biotechnol. 2015, 100, 3347–3360. [Google Scholar] [CrossRef] [PubMed]
- Amos, R.T.; Mayer, K.U. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling. Environ. Sci. Technol. 2006, 40, 5361–5367. [Google Scholar] [CrossRef]
- Meckenstock, R.U.; von Netzer, F.; Stumpp, C.; Lueders, T.; Himmelberg, A.M.; Hertkorn, N.; Schmitt-Kopplin, P.; Harir, M.; Hosein, R.; Haque, S.; et al. Water droplets in oil are microhabitats for microbial life. Science 2014, 345, 673–676. [Google Scholar] [CrossRef]
- Ng, G.-H.C.; Bekins, B.A.; Cozzarelli, I.M.; Baedecker, M.J.; Bennett, P.C.; Amos, R.T. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN. J. Contam. Hydrol. 2014, 164, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, G.-H.C.; Bekins, B.A.; Cozzarelli, I.M.; Baedecker, M.J.; Bennett, P.C.; Amos, R.T.; Herkelrath, W.N. Reactive transport modeling of geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN. Water Resour. Res. 2015, 51, 4156–4183. [Google Scholar] [CrossRef]
- Askarani, K.K.; Stockwell, E.B.; Piontek, K.R.; Sale, T.C. Thermal monitoring of natural source zone depletion. Ground Water Monit. Remediat. 2018, 38, 43–52. [Google Scholar] [CrossRef]
- Tracy, M.K. Method Comparison for Analysis of LNAPL Natural Sourse Zone Depletion Using CO2 Fluxes. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2015. [Google Scholar]
- Jones, D.M.; Head, I.M.; Gray, N.D.; Adams, J.J.; Rowan, A.K.; Aitken, C.M.; Bennett, B.; Huang, H.; Brown, A.; Bowler, B.F.J.; et al. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 2008, 451, 176–180. [Google Scholar] [CrossRef]
- Suarez, M.P.; Rifai, H.S. Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater. Bioremediation J. 1999, 3, 337–362. [Google Scholar] [CrossRef]
- Wiedemeier, T.H.; Rifai, H.S.; Newell, C.J.; Wilson, J.T. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Salminen, J.M.; Tuomi, P.M.; Suortti, A.-M.; Jørgensen, K.S. Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biogeochemistry 2004, 15, 29–39. [Google Scholar] [CrossRef]
- Atlas, R.M. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev. 1981, 45, 180–209. [Google Scholar] [CrossRef]
- Marchal, R.; Penet, S.; Solano-Serena, F.; Vandecasteele, J.P. Gasoline and Diesel Oil Biodegradation. Oil Gas Sci. Technol.—Rev. d’IFP Energies Nouv. 2003, 58, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Interstate Technology & Regulatory Council (ITRC). Evaluating LNAPL Remedial Technologies for Achieving Project Goals. ITRC.; Interstate Technology & Regulatory Council (ITRC): Washington, DC, USA, 2009. [Google Scholar]
- Interstate Technology & Regulatory Council (ITRC). Evaluating Natural Source Zone Depletion at Sites with LNAPL; Interstate Technology & Regulatory Council (ITRC): Washington, DC, USA, 2009. [Google Scholar]
- McCoy, K.M. Resolving Natural Losses of Lnapl Using CO2 Traps. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2012. [Google Scholar]
- Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 1997, 61. [Google Scholar] [CrossRef]
- Hirakata, Y.; Hatamoto, M.; Oshiki, M.; Watari, T.; Araki, N.; Yamaguchi, T. Food selectivity of anaerobic protists and direct evidence for methane production using carbon from prey bacteria by endosymbiotic methanogen. ISME J. 2020, 14, 1873–1885. [Google Scholar] [CrossRef]
- Rogers, J.R.; Bennett, P.C.; Choi, W.J. Feldspars as a source of nutrients for microorganisms. Am. Miner. 1998, 83, 1532–1540. [Google Scholar] [CrossRef]
- McAlexander, B.; Sihota, N. Influence of Ambient Temperature, Precipitation, and Groundwater Level on Natural Source Zone Depletion Rates at a Large Semiarid LNAPL Site. Ground Water Monit. Remediat. 2018, 39, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Mcleod, H.C. Investigating Gas Phase Processes in Natural and Hydrocarbon-Contaminated. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2015. [Google Scholar]
- Alexander, M. Biodegradation and Bioremediation; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Zysset, A.; Stauffer, F.; Dracos, T. Modeling of reactive groundwater transport governed by biodegradation. Water Resour. Res. 1994, 30, 2423–2434. [Google Scholar] [CrossRef]
- Zeman, N.R.; Renno, M.I.; Olson, M.R.; Wilson, L.P.; Sale, T.C.; De Long, S.K. Temperature impacts on anaerobic biotransformation of LNAPL and concurrent shifts in microbial community structure. Biogeochemistry 2014, 25, 569–585. [Google Scholar] [CrossRef]
- Davis, C.A.; Atekwana, E.A.; Atekwana, E.A.; Slater, L.D.; Rossbach, S.; Mormile, M.R. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- LaRue, A.; Swider, P.; Duru, P.; Daviaud, D.; Quintard, M.; Davit, Y. Quantitative 3D comparison of biofilm imaged by X-ray micro-tomography and two-photon laser scanning microscopy. J. Microsc. 2018, 271, 302–314. [Google Scholar] [CrossRef]
- Ostvar, S.; Iltis, G.; Davit, Y.; Schlüter, S.; Andersson, L.; Wood, B.D.; Wildenschild, D. Investigating the influence of flow rate on biofilm growth in three dimensions using microimaging. Adv. Water Resour. 2018, 117, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Davit, Y.; Iltis, G.; Debenest, G.; Veran-Tissoires, S.; Wildenschild, D.; Gerino, M.; Quintard, M. Imaging biofilm in porous media using X-ray computed microtomography. J. Microsc. 2011, 242, 15–25. [Google Scholar] [CrossRef]
- Bekins, B.A.; Godsy, E.M.; Warren, E. Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microb. Ecol. 1999, 37, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Duris, J.W. Microbial Community Structure in Hydrocarbon Impacted Sediment Associated with Anomalous Geophysical Signatures. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 2002. [Google Scholar]
- Abdel Aal, G.Z.A.; Slater, L.D.; Atekwana, E.A. Induced-polarization measurements on unconsolidated sediments from a site of active hydrocarbon biodegradation. Geophysics 2006, 71, 13–24. [Google Scholar] [CrossRef]
- Abdel Aal, G.Z.; Atekwana, E.A.; Slater, L.D.; Atekwana, E.A. Effects of microbial processes on electrolytic and interfacial electrical properties of unconsolidated sediments. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef]
- Rittmann, B.E. The significance of biofilms in porous media. Water Resour. Res. 1993, 29, 2195–2202. [Google Scholar] [CrossRef]
- Vieira, M.J.; Melo, L.F.; Pinheiro, M.M. Biofilm formation: Hydrodynamic effects on internal diffusion and structure. Biofouling 1993, 7, 67–80. [Google Scholar] [CrossRef]
- Telgmann, U.; Horn, H.; Morgenroth, E. Influence of growth history on sloughing and erosion from biofilms. Water Res. 2004, 38, 3671–3684. [Google Scholar] [CrossRef]
- Adamberg, S.; Tomson, K.; Vija, H.; Puurand, M.; Kabanova, N.; Visnapuu, T.; Jõgi, E.; Alamäe, T.; Adamberg, K. Degradation of fructans and production of propionic acid by bacteroides thetaiotaomicron are enhanced by the shortage of amino acids. Front. Nutr. 2014, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.H.; Bjerg, P.L.; Banwart, S.A.; Jakobsen, R.; Heron, G.; Albrechtsen, H.J. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 2000, 45, 165–241. [Google Scholar] [CrossRef]
- Stockwell, E.B. Continuous NAPL Loss Rates Using Subsurface Temperatures. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2015. [Google Scholar]
- Wiedemeier, T.H.; Swanson, M.A.; Moutoux, D.E.; Wilson, J.T.; Kampbell, D.H.; Hansen, J.E.; Haas, P. Technical Protocol for Natural Attenuation of Chlorinated Aliphatic Hydrocarbons in Ground Water under Development; The US Air Force Center for Environmental Excellence, Technology Transfer Division, Brooks Air Force Base: San Antonio, TX, USA, 1996. [Google Scholar]
- Newell, C.J.; Gonzales, J.R. BIOSCREEN: Groundwater Contamination Natural Attenuation Model (Verion 1.3) Natural Attentuation Decision Support System User’s Manual; Air Force Center for Environmental Excellence Technology Transfer Division: Brooks City-Base, TX, USA, 1996; EPA/600/R-96/087 (NTIS 97-190631). [Google Scholar]
- Askarani, K.K.; Sale, T.C. Thermal estimation of natural source zone depletion rates without background correction. Water Res. 2020, 169, 115245. [Google Scholar] [CrossRef]
- Mbadinga, S.M.; Wang, L.-Y.; Zhou, L.; Liu, J.-F.; Gu, J.-D.; Mu, B.-Z. Microbial communities involved in anaerobic degradation of alkanes. Int. Biodeterior. Biodegradation 2011, 65, 1–13. [Google Scholar] [CrossRef]
- Callaghan, A.V. Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr. Opin. Biotechnol. 2013, 24, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Foght, J. Anaerobic biodegradation of aromatic hydrocarbons: Pathways and prospects. J. Mol. Microbiol. Biotechnol. 2008, 15, 93–120. [Google Scholar] [CrossRef] [PubMed]
- Cozzarelli, I.M.; Bekins, B.A.; Baedecker, M.J.; Aiken, G.R.; Eganhouse, R.P.; Tuccillo, M.E. Progression of natural attenuation processes at a crude-oil spill site. J. Contam. Hydrol. 2001, 53, 369–385. [Google Scholar] [CrossRef]
- Kunapuli, U.; Lueders, T.; Meckenstock, R.U. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J. 2007, 1, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekins, B.A.; Cozzarelli, I.M.; Godsy, E.M.; Warren, E.; Essaid, H.I.; Tuccillo, M.E. Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations. J. Contam. Hydrol. 2001, 53, 387–406. [Google Scholar] [CrossRef]
- Lykidis, A.; Chen, C.-L.; Tringe, S.; McHardy, A.C.; Copeland, A.; Kyrpides, N.; Hugenholtz, P.; Macarie, H.; Olmos, A.; Monroy, O.; et al. Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. ISME J. 2010, 5, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-H.; Wu, F.-Y.; Chuang, H.-P.; Chen, W.-Y.; Huang, H.-J.; Chen, S.-H.; Liu, W.-T. Community and Proteomic Analysis of Methanogenic Consortia Degrading Terephthalate. Appl. Environ. Microbiol. 2013, 79, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu Laban, N.; Selesi, D.; Rattei, T.; Tischler, P.; Meckenstock, R.U. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ. Microbiol. 2010, 12, 2783–2796. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.; Kleinsteuber, S.; Chatzinotas, A.; Kuppardt, S.; Lueders, T.; Richnow, H.H.; Vogt, C. Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ. Microbiol. 2010, 12, 401–411. [Google Scholar] [CrossRef] [Green Version]
- van der Zaan, B.M.; Saia, F.T.; Stams, A.J.M.; Plugge, C.M.; de Vos, W.M.; Smidt, H.; Langenhoff, A.A.M.; Gerritse, J. Anaerobic benzene degradation under denitrifying conditions: Peptococcaceae as dominant benzene degraders and evidence for a syntrophic process. Environ. Microbiol. 2012, 14, 1171–1181. [Google Scholar] [CrossRef]
- Gray, N.D.; Sherry, A.; Grant, R.J.; Rowan, A.K.; Hubert, C.R.J.; Callbeck, C.M.; Aitken, C.M.; Jones, D.M.; Adams, J.J.; Larter, S.R.; et al. The quantitative significance of syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ. Microbiol. 2011, 13, 2957–2975. [Google Scholar] [CrossRef] [Green Version]
- Gray, N.D.; Sherry, A.; Hubert, C.; Dolfing, J.; Head, I.M. Methanogenic degradation of petroleum hydrocarbons in subsurface environments: Remediation, heavy oil formation, and energy recovery, 1st ed. Adv. Appl. Microbiol. 2010, 72, 137–161. [Google Scholar] [CrossRef]
- Allen, J.P.; Atekwana, E.A.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl. Environ. Microbiol. 2007, 73, 2860–2870. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, A.V.; Morris, B.E.L.; Pereira, I.A.C.; McInerney, M.J.; Austin, R.N.; Groves, J.T.; Kukor, J.J.; Suflita, J.M.; Young, L.Y.; Zylstra, G.J.; et al. The genome sequence of desulfatibacillum alkenivorans AK-01: A blueprint for anaerobic alkane oxidation. Environ. Microbiol. 2012, 14, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Mayumi, D.; Mochimaru, H.; Yoshioka, H.; Sakata, S.; Maeda, H.; Miyagawa, Y.; Ikarashi, M.; Takeuchi, M.; Kamagata, Y. Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ. Microbiol. 2010, 13, 1995–2006. [Google Scholar] [CrossRef]
- Morris, B.E.L.; Herbst, F.-A.; Bastida, F.; Seifert, J.; Von Bergen, M.; Richnow, H.; Suflita, J.M. Microbial interactions during residual oil and n-fatty acid metabolism by a methanogenic consortium. Environ. Microbiol. Rep. 2012, 4, 297–306. [Google Scholar] [CrossRef]
- Mayumi, D.; Dolfing, J.; Sakata, S.; Maeda, H.; Miyagawa, Y.; Ikarashi, M.; Tamaki, H.; Takeuchi, M.; Nakatsu, C.H.; Kamagata, Y. Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nat. Commun. 2013, 4, 1998. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, R.S.; Gerdes, R. Hydrogen production and transfer in the rumen. Recent Adv. Anim. Nutr. Aust. 1999, 12, 37–44. [Google Scholar]
- Galagan, J.E.; Nusbaum, C.; Roy, A.; Endrizzi, M.G.; Macdonald, P.; Fitzhugh, W.; Calvo, S.; Engels, R.; Smirnov, S.; Atnoor, D.; et al. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 2002, 12, 532–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.; Haider, N.S. A Study on Basics of a Gas Analyzer. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2013, 2, 6016–6025. [Google Scholar]
- Freijer, J.I.; Bouten, W. A comparison of field methods for measuring soil carbon dioxide evolution: Experiments and simulation. Plant Soil 1991, 135, 133–142. [Google Scholar] [CrossRef]
- Grogan, P. CO2 flux measurement using soda lime: Correction for water formed during CO2 adsorption. Ecology 1998, 79, 1467–1468. [Google Scholar] [CrossRef]
- Edwards, N.T. The use of soda-lime for measuring respiration rates in terrestrial systems. Pedobiologia 1982, 23, 321–330. [Google Scholar]
- Monteith, J.L.; Szeicz, G.; Yabuki, K. Crop Photosynthesis and the Flux of Carbon Dioxide below the Canopy. J. Appl. Ecol. 1964, 1, 321. [Google Scholar] [CrossRef]
- Pongracic, S.; Kirschbaum, M.; Raison, R.J. Comparison of soda lime and infrared gas analysis techniques for in situ measurement of forest soil respiration. Can. J. For. Res. 1997, 27, 1890–1895. [Google Scholar] [CrossRef]
- Zimbron, J.; Sales, T.C.; Lyverse, M. Gas Flux Measurement Using Traps. U.S. Patent 8,714,034 B2, 6 May 2014. [Google Scholar]
- E-Flux, nd. Cutting-Edge Monitoring Products for NSZD Assessment and Rate Quantification [WWW Document]. URL. Available online: https://www.soilgasflux.com/ (accessed on 7 January 2021).
- Rochette, P.; Gregorich, E.G.; Desjardins, R.L. Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions. Can. J. Soil Sci. 1992, 72, 605–609. [Google Scholar] [CrossRef]
- Rochette, P.; Ellert, B.; Gregorich, E.G.; Desjardins, R.L.; Pattey, E.; Lessard, R.; Johnson, B.G. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can. J. Soil Sci. 1997, 77, 195–203. [Google Scholar] [CrossRef]
- Haney, R.L.; Brinton, W.F.; Evans, E. Soil CO2 respiration: Comparison of chemical titration, CO2 IRGA analysis and the Solvita gel system. Renew. Agric. food Syst. 2008, 32, 171–176. [Google Scholar] [CrossRef] [Green Version]
- McHugh, T.; Newell, C.; Strasert, B.; Stanley, C.; Johnson, J.; Henderson, T.; Roff, D.; Narusawa, J. Direct aerobic NSZD of a basalt vadose zone LNAPL source in Hawaii. J. Contam. Hydrol. 2020, 235, 103729. [Google Scholar] [CrossRef]
- Eichert, J.; McAlexander, B.; Lyverse, M.; Michalski, P.; Sihota, N. Spatial and Temporal Variation in Natural Source Zone Depletion Rates at a Former Oil Refinery. Vadose Zone J. 2017, 16, 1–16. [Google Scholar] [CrossRef]
- Mines, R.O.; Lackey, L.W. Introduction to Environmental Engineering Calculations: Dimensions, Units, and Conversions, in: Introduction to Environmental Engineering; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2009; pp. 15–31. [Google Scholar]
- Dietrich, P.; Leven, C. Direct Push-Technologies; Kirsch, R., Ed.; Groundwater Geophysics; Springer: Berlin, Germany, 2006. [Google Scholar]
- Teramoto, E.H.; Isler, E.; Polese, L.; Baessa, M.P.M.; Chang, H.K. LNAPL saturation derived from laser induced fluorescence method. Sci. Total Environ. 2019, 683, 762–772. [Google Scholar] [CrossRef]
- García-Rincón, J.; Gatsios, E.; Rayner, J.L.; McLaughlan, R.G.; Davis, G.B. Laser-induced fluorescence logging as a high-resolution characterisation tool to assess LNAPL mobility. Sci. Total Environ. 2020, 725, 138480. [Google Scholar] [CrossRef] [PubMed]
- Kram, M.; Keller, A.A.; Everett, L. Comments in response to “DyeLIF™: A new direct-push laser-induced fluorescence sensor system for chlorinated solvent DNAPL and other non-naturally fluorescing NAPLs”. Ground Water Monit. Remediat. 2019, 39, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Horst, J.; Welty, N.; Stuetzle, R.; Wenzel, R.; St Germain, R. Fluorescent dyes: A new weapon for conquering DNAPL characterization. Ground Water Monit. Remediat. 2018, 38, 19–25. [Google Scholar] [CrossRef]
- Bujewski, G.; Rutherford, B. The Rapid Optical Screening Tool (ROST TM) Laser-Induced Fluorecence (LIF) System for Screeing of Petroleum Hydrocarbons in Subsurface Soils—Innovative Technology Verification Report—EPA/600/R-97/020; United States Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Kram, M.L.; Lieberman, S.H.; Fee, J.; Keller, A.A. Use of LIF for real-time in-situ mixed NAPL source zone detection. Ground Water Monit. Remediat. 2001, 21, 67–76. [Google Scholar] [CrossRef]
- Halihan, T.; Paxton, S.; Graham, I.; Fenstemaker, T.; Riley, M. Post-remediation evaluation of a LNAPL site using electrical resistivity imaging. J. Environ. Monit. 2005, 7, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.M. (Ed.) Practical Handbook of Environmental Site Characterization and Ground—Water Monitoring, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Bockelmann, A.; Zamfirescu, D.; Ptak, T.; Grathwohl, P.; Teutsch, G. Quantification of mass fluxes and natural attenuation rates at an industrial site with a limited monitoring network: A case study. J. Contam. Hydrol. 2003, 60, 97–121. [Google Scholar] [CrossRef]
- Kram, M.L.; Keller, A.A.; Rossabi, J.; Everett, L.G. DNAPL Characterization methods and approaches, part 2: Cost comparisons. Ground Water Monit. Remediat. 2002, 22, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Einarson, M.; Fure, A.; St Germain, R.; Chapman, S.; Parker, B. DyeLIFTM: A new direct-push laser-induced fluorescence sensor system for chlorinated solvent DNAPL and other non-naturally fluorescing NAPLs. Ground Water Monit. Remediat. 2018, 38, 28–42. [Google Scholar] [CrossRef]
- Bauer, H.P.; Beckett, P.H.T.; Bie, S.W. A rapid gravimetric method for estimating calcium carbonate in soils. Plant Soil 1972, 37, 689–690. [Google Scholar] [CrossRef]
- Bouten, W.; de Vre, F.M.; Verstraten, J.M.; Duysings, J.J.H.M. Carbon dioxide in the soil atmosphere: Simulation model parameter estimation from field measurements. In Hydrochemical Balances of Freshwater Systems; E. Eriksson, P.P., Ed.; IAHS Press: Wallingford, Oxfordshire, UK, 1984; pp. 23–30. [Google Scholar]
- Witkamp, M.; van der Drift, J. Breakdown of forest litter in relation to environmental factors. Plant Soil 1961, 15, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Witkamp, M. Rates of Carbon Dioxide Evolution from the Forest Floor. Ecology 1966, 47, 492–494. [Google Scholar] [CrossRef]
- Edwards, N.T.; Ross-Todd, B.M. Soil carbon dynamics in a mixed deciduous forest following clear-cutting with and without residue removal. Soil Sci. Soc. Am. J. 1983, 47, 1014–1021. [Google Scholar] [CrossRef]
- Suchomel, K.H.; Kreamer, D.K.; Long, A. Production and transport of carbon dioxide in a contaminated vadose zone: A stable and radioactive carbon isotope study. Environ. Sci. Technol. 1990, 24, 1824–1831. [Google Scholar] [CrossRef]
- Coffin, R.B.; Pohlman, J.W.; Grabowski, K.S.; Knies, D.L.; Plummer, R.E.; Magee, R.W.; Boyd, T.J. Radiocarbon and stable carbon isotope analysis to confirm petroleum natural attenuation in the vadose zone. Environ. Forensics 2008, 9, 75–84. [Google Scholar] [CrossRef]
- Conrad, M.E.; Daley, P.F.; Fischer, M.L.; Buchanan, B.B.; Leighton, T.; Kashgarian, M. Combined 14C and δ13C monitoring of in situ biodegradation of petroleum hydrocarbons. Environ. Sci. Technol. 1997, 31, 1463–1469. [Google Scholar] [CrossRef]
- Stahl, W. Compositional changes and fractionations during the degradation of hydrocarbons by bacteria. Geochim. Cosmochim. Acta 1980, 44, 1903–1907. [Google Scholar] [CrossRef]
- Levin, I.; Graul, R.; Trivett, N.B.A. Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus B: Chem. Phys. Meteorol. 1995, 47, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Klouda, G.A.; Connolly, M.V. Radiocarbon (14C) measurements to quantify sources of atmospheric carbon monoxide in urban air. Atmospheric Environ. 1995, 29, 3309–3318. [Google Scholar] [CrossRef]
- Avery, G.B.; Willey, J.D.; Kieber, R.J. Carbon isotopic characterization of dissolved organic carbon in rainwater: Terrestrial and marine influences. Atmos. Environ. 2006, 40, 7539–7545. [Google Scholar] [CrossRef]
- Conrad, M.E.; Templeton, A.S.; Daley, P.F.; Alvarez-Cohen, L. Isotopic evidence for biological controls on migration of petroleum hydrocarbons. Org. Geochem. 1999, 30, 843–859. [Google Scholar] [CrossRef]
- Conrad, R. Quantification of methanogenic pathways using stable carbon isotopic signatures: A review and a proposal. Org. Geochem. 2005, 36, 739–752. [Google Scholar] [CrossRef]
- Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M. Carbon isotope effects associated with autotrophic acetogenesis. Org. Geochem. 1989, 14, 441–446. [Google Scholar] [CrossRef]
- Reynolds, L. Soil 14CO2 Source Apportionment for Biodegradation in Contaminated Soils in Permafrost Climates: A Novel Technique for Rapid Sample Collection by Barium Carbonate Precipitation. Master’s Thesis, University of Ottawa, Ottawa, ON, Canada, 2019. [Google Scholar]
- Piontek, K.; Sale, T.; Askarani, K.K.; Emerson, E.D. Insights from continuous monitoring of LNAPL natural source zone depletion rates. In Proceedings of the Bioremediation and Sustainable Environmental Technologies—The Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies, Miami, FL, USA, 22–25 May 2017. [Google Scholar]
- Sale, T.C.; Stockwell, E.B.; Newell, C.J.; Kulkarni, P.R. Device and Methods for Measuring Thermal Flux and Estimated Rate of Change of Reactive Material within a Subsurface Formation. U.S. Patent No. 2015/0233773A1, 20 August 2015. [Google Scholar]
- Sweeney, R.E.; Ririe, G.T. Temperature as a Tool to Evaluate Aerobic Biodegradation in Hydrocarbon Contaminated Soil. Ground Water Monit. Remediat. 2014, 34, 41–50. [Google Scholar] [CrossRef]
- Atekwana, E.A.; Atekwana, E.; Legall, F.D.; Krishnamurthy, R.V. Biodegradation and mineral weathering controls on bulk electrical conductivity in a shallow hydrocarbon contaminated aquifer. J. Contam. Hydrol. 2005, 80, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Che-Alota, V.; Atekwana, E.A.; Atekwana, E.A.; Sauck, W.A.; Werkema, D.D. Temporal geophysical signatures from contaminant-mass remediation. Geophysics 2009, 74, B113–B123. [Google Scholar] [CrossRef]
- Mokhatab, S.; Poe, W.A.; Mak, J.Y. Chapter 20—Gas processing plant automation. In Handbook of Natural Gas Transmission and Processing: Principles and Practices; Elsevier Science: Amsterdam, The Netherlands, 2018; pp. 615–642. [Google Scholar]
- Hendee, M.K. Comparison of Thermistor Sensors to Bandgap-Based Digital Sensors for Ground Temperature Measurements. 1996. Available online: https://www.bing.com/ck/a?!&&p=a517bdd259eef0fa5ce1f3011abb3b3818d863f2e8a6127230929720e69f94acJmltdHM9MTY1Mzg3NDM2MCZpZ3VpZD0wZDVhYTI5Zi1jN2I0LTQ3ODYtOTY2OC1kZjY1YmRkOGMzZDEmaW5zaWQ9NTE1Nw&ptn=3&fclid=6518c691-dfb8-11ec-8c7f-b99f26bee8af&u=a1aHR0cHM6Ly93d3cubXlnZW93b3JsZC5jb20vZmlsZS8xMDc0OTkvbXVsdGktcG9pbnQtdGhlcm1pc3Rvci10by1iYW5kLWdhcC1kaWdpdGFsLXNlbnNvci1jb21wYXJpc29uLWluLWFyY3RpYy1nZW90ZWNoLWFwcGxpY2F0aW9uL2Rvd25sb2Fk&ntb=1 (accessed on 7 January 2021).
- Zumbahlen, H. Chapter 3: Sensors. In Linear Circuits Design Handbook; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–243. [Google Scholar] [CrossRef]
- Stein, V.B. Methane Oxidation in Soils as a Tool for Reducing Greenhouse Gas Emissions. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2000. [Google Scholar] [CrossRef]
- Hoehler, T.M.; Alperin, M.J.; Albert, D.B.; Martens, C.S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 1994, 8, 451–463. [Google Scholar] [CrossRef]
- Milucka, J.; Ferdelman, T.; Polerecky, L.; Franzke, D.; Wegener, G.; Schmid, M.; Lieberwirth, I.; Wagner, M.; Widdel, F.; Kuypers, M.M.M. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 2012, 491, 541–546. [Google Scholar] [CrossRef]
- Segarra, K.E.; Comerford, C.; Slaughter, J.; Joye, S.B. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim. Cosmochim. Acta 2013, 115, 15–30. [Google Scholar] [CrossRef]
- Kulkarni, P.R.; King, D.C.; McHugh, T.E.; Adamson, D.T.; Newell, C.J. Impact of Temperature on Groundwater Source Attenuation Rates at Hydrocarbon Sites. Ground Water Monit. Remediat. 2017, 37, 82–93. [Google Scholar] [CrossRef]
- Chang, W. The Influence of Cold Climate Seasonal Temperature Regimes on Bioremediation of Petroleum Hydrocarbon-Contaminated Soils. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 2010. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.L.; Kampbell, D.H.; Cook, M.L.; Wilson, J.T. Protozoa in Subsurface Sediments from Sites Contaminated with Aviation Gasoline or Jet Fuel. Appl. Environ. Microbiol. 1993, 59, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Zarda, B.; Mattison, G.; Hess, A.; Hahn, D.; Höhener, P.; Zeyer, J. Analysis of bacterial and protozoan communities in an aquifer contaminated with monoaromatic hydrocarbons. FEMS Microbiol. Ecol. 1998, 27, 141–152. [Google Scholar] [CrossRef]
- Deleo, P.C.; Baveye, P. Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms. Geomicrobiol. J. 1997, 14, 127–149. [Google Scholar] [CrossRef]
- Darsa, K.V.; Thatheyus, A.J.; Ramya, D. Biodegradation of petroleum compound using the bacterium bacillus subtilis. Sci. Int. 2014, 2, 20–25. [Google Scholar] [CrossRef] [Green Version]
- van Bruggen, J.; Stumm, C.; Zwart, K.; Vogels, G. Endosymbiotic methanogenic bacteria of the sapropelic amoeba Mastigella. FEMS Microbiol. Lett. 1985, 31, 187–192. [Google Scholar] [CrossRef]
- van Bruggen, J.J.A.; Stumm, C.K.; Vogels, G.D. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch. Microbiol. 1983, 136, 89–95. [Google Scholar] [CrossRef]
- Cross, K.M.; Biggar, K.W.; Semple, K.; Foght, J.; Guigard, S.E.; Armstrong, J.E. Intrinsic bioremediation of diesel-contaminated cold groundwater in bedrock. J. Environ. Eng. Sci. 2006, 5, 13–27. [Google Scholar] [CrossRef]
- Swindoll, C.M.; Aelion, C.M.; Pfaender, F.K. Influence of inorganic and organic nutrients on aerobic biodegradation and on the adaptation response of subsurface microbial communities. Appl. Environ. Microbiol. 1988, 54, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.M.; Brock, T.D. Environmental factors influencing the rate of hydrocarbon oxidation in temperate lakes. Appl. Environ. Microbiol. 1976, 31, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Juang, R.-S.; Tsai, S.-Y. Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochem. Eng. J. 2006, 31, 133–140. [Google Scholar] [CrossRef]
- Pishgar, R.; Najafpour, G.D.; Mousavi, N.; Bakhshi, Z.; Khorrami, M. Phenol biodegradation kinetics in the presence of supplementary substrate. Int. J. Eng.—Trans. B Appl. 2012, 25, 181–191. [Google Scholar] [CrossRef]
- Yoon, H.; Klinzing, G.; Blanch, H.W. Competition for mixed substrates by microbial populations. Biotechnol. Bioeng. 1977, 19, 1193–1210. [Google Scholar] [CrossRef] [PubMed]
- Yemendzhiev, H.; Gerginova, M. Phenol and cresol mixture degradation by Aspergillus awamori strain: Biochemical and kinetic substrate interactions. Proceeding ECOpole 2008, 2, 154–159. [Google Scholar]
- Saravanan, P.; Pakshirajan, K.; Saha, P. Biodegradation of phenol and m-cresol in a batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly Pseudomonas sp. Bioresour. Technol. 2008, 99, 8553–8558. [Google Scholar] [CrossRef] [PubMed]
- Siddique, T.; Penner, T.; Klassen, J.; Nesbø, C.; Foght, J.M. Microbial Communities Involved in Methane Production from Hydrocarbons in Oil Sands Tailings. Environ. Sci. Technol. 2012, 46, 9802–9810. [Google Scholar] [CrossRef]
- Ma, J.; Rixey, W.G.; Alvarez, P.J. Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release. Water Res. 2015, 68, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Stasik, S.; Wick, L.Y.; Wendt-Potthoff, K. Anaerobic BTEX degradation in oil sands tailings ponds: Impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere 2015, 138, 133–139. [Google Scholar] [CrossRef]
- Sherry, A.; Grant, R.J.; Aitken, C.M.; Jones, D.M.; Head, I.M.; Gray, N.D. Volatile hydrocarbons inhibit methanogenic crude oil degradation. Front. Microbiol. 2014, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Bekins, B.A.; Cozzarelli, I.M.; Erickson, M.L.; Steenson, R.A.; Thorn, K.A. Crude oil metabolites in groundwater at two spill sites. Groundwater 2016, 54, 681–691. [Google Scholar] [CrossRef]
- Warren, E.; Bekins, B.A.; Godsy, E.M. Inhibition of acetoclastic methanogenesis by crude oil from Bemidji, Minnesota. Bioremediat. J. 2004, 8, 1–11. [Google Scholar] [CrossRef]
- Atlas, R.M.; Bartha, R. Inhibition by fatty acids of the biodegradation of petroleum. Antonie Leeuwenhoek 1973, 39, 257–271. [Google Scholar] [CrossRef]
- Wilson, J.T.; Adair, C.; White, H.; Howard, R.L. Effect of biofuels on biodegradation of benzene and toluene at gasoline spill sites. Ground Water Monit. Remediat. 2016, 36, 50–61. [Google Scholar] [CrossRef]
- Suthersan, S.; Koons, B.; Schnobrich, M. Contemporary Management of Sites with Petroleum LNAPL Presence. Ground Water Monit. Remediat. 2015, 35, 23–29. [Google Scholar] [CrossRef]
- DeLaune, R.D.; Hambrick, G.A.I.; Patrick, W.H. Degradation of hydrocarbons in oxidized and reduced sediments. Mar. Pollut. Bull. 1980, 11, 103–106. [Google Scholar] [CrossRef]
- Hambrick, G.A.I.; Delaune, R.D.; Patrick, W.H.J. Effect of sediment pH and oxidation-reduction potential on PCB mineralization. Water Air Soil Pollut. 1988, 40, 365–369. [Google Scholar] [CrossRef]
- Zobell, C.E.; Prokop, J.F. Microbial oxidation of mineral oils in Barataria Bay bottom deposits. Z. Allg. Mikrobiol. 1966, 6, 143–162. [Google Scholar] [CrossRef]
- Pierce, R.H.; Cundell, A.M.; Traxler, R.W. Persistence and Biodegradation of Spilled Residual Fuel on an Estuarine Beach. Appl. Microbiol. 1975, 29, 646–652. [Google Scholar] [CrossRef]
- Bailey, N.J.L.; Jobson, A.M.; Rogers, M.A. Bacterial degradation of crude oil: Comparison of field and experimental data. Chem. Geol. 1973, 11, 203–221. [Google Scholar] [CrossRef]
- Ward, D.M.; Atlas, R.M.; Boehm, P.D.; Calder, J.A. Microbial biodegradation and chemical evolution of oil from the Amoco Spill. Ambio 1980, 9, 277–283. [Google Scholar]
- Ward, D.M.; Brock, T.D. Anaerobic metabolism of hexadecane in sediments. Geomicrobiol. J. 1978, 1, 1–9. [Google Scholar] [CrossRef]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill Higher Education: New York, NY, USA, 2001. [Google Scholar]
- Metcalf & Eddy. Wastewater Engineering: Treatment and Recourse Recovery; Metcalf & Eddy, Inc.: New York, NY, USA, 2014. [Google Scholar]
- Oh, S.T.; Martin, A.D. Thermodynamic equilibrium model in anaerobic digestion process. Biochem. Eng. J. 2007, 34, 256–266. [Google Scholar] [CrossRef]
- Kreamer, D.K.; Weeks, E.P.; Thompson, G.M. A field technique to measure the tortuosity and sorption-affected porosity for gaseous diffusion of materials in the unsaturated zone with experimental results from near Barnwell, South Carolina. Water Resour. Res. 1988, 24, 331–341. [Google Scholar] [CrossRef]
- Johnson, P.C.; Bruce, C.; Johnson, R.L.; Kemblowski, M.W. In situ measurement of effective vapor-phase porous media diffusion coefficients. Environ. Sci. Technol. 1998, 32, 3405–3409. [Google Scholar] [CrossRef]
- Millington, R.J. Gas diffusion in porous media. Science 1959, 130, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Blasch, B.K.W.; Constantz, J.; Stonestrom, D.A. Thermal Methods for Investigating Ground-water Recharge. USGS Prof. Pap. 2007, 1703, 353–375. [Google Scholar]
- Rosenberry, D.O.H.; Glaser, P.; Siegel, D.I. Advanced Bash-Scripting Guide An in-depth exploration of the art of shell scripting Table of Contents. Hydrol. Process. 2006, 20, 3601–3610. [Google Scholar] [CrossRef]
- Ramirez, J.A.; Baird, A.J.; Coulthard, T.J.; Waddington, J.M. Ebullition of methane from peatlands: Does peat act as a signal shredder? Geophys. Res. Lett. 2015, 42, 3371–3379. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.A.; Baird, A.J.; Coulthard, T.J.; Waddington, J.M. Testing a simple model of gas bubble dynamics in porous media. Water Resour. Res. 2015, 5, 1036–1049. [Google Scholar] [CrossRef]
- Ramirez, J.A. A Novel Reduced-Complexity Approach for Modelling Ebullition in Peatlands. Ph.D. Thesis, University of Leeds, Leeds, UK, 2013. [Google Scholar]
- Barber, C.; Davis, G.B.; Briegel, D.; Ward, J.K. Factors controlling the concentration of methane and other volatiles in groundwater and soil-gas around a waste site. J. Contam. Hydrol. 1990, 5, 155–169. [Google Scholar] [CrossRef]
- McLeod, H.C.; Roy, J.W.; Smith, J.E. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Gas phase dynamics. J. Contam. Hydrol. 2018, 215, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Forde, O.N.; Cahill, A.G.; Beckie, R.D.; Mayer, K.U. Barometric-pumping controls fugitive gas emissions from a vadose zone natural gas release. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Takle, E.S.; Massman, W.J.; Brandle, J.R.; Schmidt, R.; Zhou, X.; Litvina, I.V.; Garcia, R.; Doyle, G.; Rice, C.W. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agric. For. Meteorol. 2004, 124, 193–206. [Google Scholar] [CrossRef]
- Xu, L.; Lin, X.; Amen, J.; Welding, K.; McDermitt, D. Impact of changes in barometric pressure on landfill methane emission. Glob. Biogeochem. Cycles 2014, 28, 679–695. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, T.G.; Møldrup, P. Evaluating effects of wind-induced pressure fluctuations on soil-atmosphere gas exchange at a landfill using stochastic modelling. Waste Manag. Res. J. A Sustain. Circ. Econ. 2006, 24, 473–481. [Google Scholar] [CrossRef]
- Hanson, J.L.; Yeşiller, N.; Oettle, N.K. Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 2010, 136, 804–814. [Google Scholar] [CrossRef] [Green Version]
- Yeşiller, N.; Hanson, J.L.; Liu, W.-L. Heat Generation in Municipal Solid Waste Landfills. J. Geotech. Geoenvironmental Eng. 2005, 131, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.L.; Liu, W.-L.; Yesiller, N. Analytical and Numerical Methodology for Modeling Temperatures in Landfills; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 24–31. [Google Scholar] [CrossRef] [Green Version]
- del Grosso, S.J.; Parton, W.J.; Mosier, A.R.; Ojima, D.S.; Potter, C.S.; Brumme, R.; Dobbie, P.M.C.K.; Smith, K.A. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochem. Cycles 2000, 14, 999–1019. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Czepiel, P.M.; Mosher, B.; Crill, P.M.; Harriss, R.C. Quantifying the effect of oxidation on landfill methane emissions. J. Geophys. Res. Atmos. 1996, 101, 16721–16729. [Google Scholar] [CrossRef]
- Whalen, S.C.; Reeburgh, W.S. International variations in tundra methane emission: A 4-year time series at fixed sites. Global Biogeochem. Cycles 1992, 6, 139–159. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.; Bogner, J.; Chanton, J.; Morcet, M.; Aran, C.; Graff, C.; Golvan, Y.M.-L.; Hebe, I. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems? Waste Manag. 2006, 26, 516–525. [Google Scholar] [CrossRef]
- Das, S.; Adhya, T.K. Dynamics of methanogenesis and methanotrophy in tropical paddy soils as influenced by elevated CO2 and temperature interaction. Soil Biol. Biochem. 2012, 47, 36–45. [Google Scholar] [CrossRef]
- Castro, M.S.; Steudler, P.A.; Melillo, J.M.; Aber, J.D.; Bowden, R.D. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem. Cycles 1995, 9, 1–10. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.G.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Hawley, D.M.; Altizer, S.M. Disease ecology meets ecological immunology: Understanding the links between organismal immunity and infection dynamics in natural populations. Funct. Ecol. 2011, 25, 48–60. [Google Scholar] [CrossRef]
- Segarra, K.E.A.; Samarkin, V.; King, E.; Meile, C.; Joye, S.B. Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA). Biogeochemistry 2013, 115, 349–361. [Google Scholar] [CrossRef]
- Suseela, V.; Conant, R.T.; Wallenstein, M.D.; Dukes, J.S. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob. Chang. Biol. 2011, 18, 336–348. [Google Scholar] [CrossRef]
- Baldrian, P.; Šnajdr, J.; Merhautová, V.; Dobiášová, P.; Cajthaml, T.; Valášková, V. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 2013, 56, 60–68. [Google Scholar] [CrossRef]
- Baedecker, M.J.; Eganhouse, R.P.; Qi, H.; Cozzarelli, I.M.; Trost, J.J.; Bekins, B.A. Weathering of Oil in a Surficial Aquifer. Groundwater 2017, 56, 797–809. [Google Scholar] [CrossRef]
- Mahler, N.; Sale, T.; Lyverse, M. A Mass Balance Approach to Resolving LNAPL Stability. Ground Water 2012, 50, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Fetter, C.W. Chapter 2: Mass Transport in Saturated Media; McConnin, R.A., Ed.; Contaminant Hydrology; Macmillan Inc.: New York, NY, USA; Toronto, ON, Canada; Oxford, UK; Singapore; Sydney, Australia, 1993; pp. 43–115. [Google Scholar]
- Gunasekera, S. A Temperature-Based Methane Oxidation Performance Model for Field High-Rate Methane Biofilters. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2019. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H. Using the gradient method to determine soil gas flux: A review. Agric. For. Meteorol. 2014, 192-193, 78–95. [Google Scholar] [CrossRef]
- LI-COR, n.d. Soil Gas Flux Solutions [WWW Document]. URL. Available online: https://www.licor.com/env/products/soil_flux/?gclid=EAIaIQobChMIvITAwae86wIVk6yWCh3NgQW5EAAYASAAEgK4G_D_BwE (accessed on 16 September 2020).
- Xu, L.; Furtaw, M.D.; Madsen, R.A.; Garcia, R.L.; Anderson, D.J.; McDermitt, D.K. On maintaining pressure equilibrium between a soil CO2flux chamber and the ambient air. J. Geophys. Res. Earth Surf. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Penner, T.J.; Foght, J.M. Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Can. J. Microbiol. 2010, 56, 459–470. [Google Scholar] [CrossRef]
- Chaplin, B.P.; Delin, G.N.; Baker, R.J.; Lahvis, M.A. Long-term evolution of biodegradation and volatilization rates in a crude oil-contaminated aquifer. Bioremediat. J. 2002, 6, 237–255. [Google Scholar] [CrossRef]
- Wyatt, D.E.; Richers, D.M.; Pirkle, R.J. Barometric pumping effects on soil gas studies for geological and environmental characterization. Environ. Earth Sci. 1995, 25, 243–250. [Google Scholar] [CrossRef]
- Gillis, A.; Miller, D.R. Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber. Sci. Total Environ. 2000, 260, 181–189. [Google Scholar] [CrossRef]
- Lundegard, P.D.; Johnson, P.C.; Dahlen, P. Oxygen Transport from the Atmosphere to Soil Gas Beneath a Slab-on-Grade Foundation Overlying Petroleum-Impacted Soil. Environ. Sci. Technol. 2008, 42, 5534–5540. [Google Scholar] [CrossRef]
- Johnson, A.N.; Boer, B.R.; Woessner, W.W.; Stanford, J.A.; Poole, G.; Thomas, S.A.; O’Daniel, S.J. Evaluation of an inexpensive small-diameter temperature logger for documenting ground water-river interactions. Ground Water Monit. Remediat. 2005, 25, 68–74. [Google Scholar] [CrossRef]
Rank a | Redox Reactions | Equation # | Free Energy b ΔGro (kJ/mol-C10H22) c | Heat Exchange b ΔHro (kJ/mol-C10H22) c |
---|---|---|---|---|
1 | Aerobic methane oxidation: | Equation (1) | −6696 d | −7444 d |
2 | Aerobic respiration: | Equation (2) | −6505 | −6978 |
3 | Denitrification: | Equation (3) | −6369 | −6314 |
4 | Manganese reduction: | Equation (4) | −6556 | −6559 |
5 | Iron reduction: | Equation (5) | −4441 | −5160 |
6 | Sulfate reduction: | Equation (6) | −951 | −230 |
7 | Methanogenesis: | Equation (7) | −203 | −23 |
Technique | Advantages | Limitations | Niche Applications |
---|---|---|---|
Concentration gradient (CG) |
|
|
|
Dynamic closed chamber (DCC) |
|
|
|
CO2 trap |
|
|
|
Thermal monitoring |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pishgar, R.; Hettiaratchi, J.P.; Chu, A. Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. Sustainability 2022, 14, 7027. https://doi.org/10.3390/su14127027
Pishgar R, Hettiaratchi JP, Chu A. Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. Sustainability. 2022; 14(12):7027. https://doi.org/10.3390/su14127027
Chicago/Turabian StylePishgar, Roya, Joseph Patrick Hettiaratchi, and Angus Chu. 2022. "Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions" Sustainability 14, no. 12: 7027. https://doi.org/10.3390/su14127027
APA StylePishgar, R., Hettiaratchi, J. P., & Chu, A. (2022). Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. Sustainability, 14(12), 7027. https://doi.org/10.3390/su14127027