Breed and Season-Specific Methane Conversion Factors Influence Methane Emission Factor for Enteric Methane of Dairy Steers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Methane Conversion Factor (Ym)
2.2. Determination of Methane Emission Factor (EF)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergov-ernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 92-9169-143-7. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; De Haan, C.; Shadow, L.L. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Sommart, K. Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecol. Evol. 2016, 6, 7422–7432. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Inventories, 4. Agriculture, Forestry and Other Land Use; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Intergovernmental Panel on Climate Change. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Kanagawa, Japan, 2019. [Google Scholar]
- UNFCCC. Synthesis and Assessment Report on the Greenhouse Gas Inventories Submitted in 2014; United Nations: Geneva, Switzerland, 2014. [Google Scholar]
- NIAS. Additional Development of 3 Types of Unique Emission Factors for Greenhouse Gas in the Domestic Livestock Sector; National Institute of Livestock Science: Jeollabuk-do, Korea, 2021. [Google Scholar]
- Jo, N.; Kim, J.; Seo, S. Comparison of models for estimating methane emission factor for enteric fermentation of growing-finishing Hanwoo steers. SpringerPlus 2016, 5, 1212. [Google Scholar] [CrossRef] [Green Version]
- Ibidhi, R.; Kim, T.-H.; Bharanidharan, R.; Lee, H.-J.; Lee, Y.-K.; Kim, N.-Y.; Kim, K.-H. Developing Country-Specific Methane Emission Factors and Carbon Fluxes from Enteric Fermentation in South Korean Dairy Cattle Production. Sustainability 2021, 13, 9133. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, S.C. National Methane Inventory Relevant to Livestock Enteric Fermentation. J. Anim. Sci. Technol. 2003, 45, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Barton, R.A.; Donaldson, J.L.; Barnes, F.R.; Jones, C.F.; Clifford, H.J. Comparison of Friesian, Friesian-Jersey-cross, and Jersey steers in beef production. N. Z. J. Agric. Res. 1994, 37, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, D.M. Yield and Quality of Holstein Beef. In Managing & Marketing Quality Holstein Steers Proceedings; University of Minnesota Dairy Extension: Rochester, MN, USA, 2005. [Google Scholar]
- Islam, M.; Kim, S.-H.; Ramos, S.C.; Mamuad, L.L.; Son, A.-R.; Yu, Z.; Lee, S.-S.; Cho, Y.-I.; Lee, S.-S. Holstein and Jersey Steers Differ in Rumen Microbiota and Enteric Methane Emissions Even Fed the Same Total Mixed Ration. Front. Microbiol. 2021, 12, 601061. [Google Scholar] [CrossRef]
- Islam, M.; Kim, S.-H.; Son, A.-R.; Ramos, S.; Jeong, C.-D.; Yu, Z.; Kang, S.; Cho, Y.-I.; Lee, S.-S.; Cho, K.-K.; et al. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration. Animals 2021, 11, 1184. [Google Scholar] [CrossRef] [PubMed]
- MAFF (Ministry of Agriculture, Fisheries and Food). Energy Allowances and Feeding System for Ruminants; Technical Bulletin; Her Majesty’s Stationary Office: London, UK, 1975; p. 33. [Google Scholar]
- RDA. Korean Feeding Standards for Dairy Cattle, 3rd ed.; National Institute of Animal Science, Rural Development Administration (RDA): Suwon, Korea, 2017. [Google Scholar]
- Duplessis, M.; Cue, R.; Santschi, D.; Lefebvre, D.; Lacroix, R. Weight, height, and relative-reliability indicators as a management tool for reducing age at first breeding and calving of dairy heifers. J. Dairy Sci. 2015, 98, 2063–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NRC. Nutrient Requirements of Dairy Cattle: 2001; National Research Council of the National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- SAS. Statistical Analysis Systems for Windows, Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Lassey, K.R. Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agric. For. Meteorol. 2007, 142, 120–132. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, M.H.; Lee, J.S.; Chun, Y.Y.; Kim, K.H.; Kim, M.S.; Lee, K.M. Developing emission factors for dairy cow enteric fermentation in Korea. J. Clean. Prod. 2018, 198, 754–762. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; United Nations Environment Programme, Organization for Economic Cooperation and Development, International Energy Agency: Paris, France, 1997. [Google Scholar]
- Widiawati, Y.; Rofiq, M.; Tiesnamurti, B. Methane emission factors for enteric fermentation in beef cattle using IPCC Tier-2 method in Indonesia. J. Ilmu Ternak Dan Vet. 2016, 21, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Thakuri, S.; Baskota, P.; Khatri, S.B.; Dhakal, A.; Chaudhary, P.; Rijal, K.; Byanju, R.M. Methane emission factors and carbon fluxes from enteric fermentation in cattle of Nepal Himalaya. Sci. Total Environ. 2020, 746, 141184. [Google Scholar] [CrossRef]
Parameters | Winter | Spring | Summer | Autumn | Overall | References |
---|---|---|---|---|---|---|
DM % (g) | 66.30 (663.00) | 66.30 (663.00) | 66.30 (663.00) | 73.06 (730.60) | 69.68 (696.80) | [14,15] |
CP % (g) | 17.99 (119.27) | 17.99 (119.27) | 17.99 (119.27) | 19.86 (145.10) | 18.93 (132.19) | [14,15] |
CF % (g) | 12.55 (83.21) | 12.55 (83.21) | 12.55 (83.21) | 9.23 (67.43) | 10.89 (75.32) | [14,15] |
EE % (g) | 4.44 (29.44) | 4.44 (29.44) | 4.44 (29.44) | 4.60 (33.61) | 4.52 (31.52) | [14,15] |
Ash % (g) | 7.42 (49.19) | 7.42 (49.19) | 7.42 (49.19) | 7.56 (55.23) | 7.49 (52.21) | [14,15] |
ADF % | 16.91 | 16.91 | 16.91 | 14.29 | 15.60 | [14,15] |
Breed | Parameters | 1.5–2 Years | >2 Years | Overall | References | ||||
---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Mean | Summer | Autumn | Mean | ||||
Holstein | MP (g/d) | 162.42 | 165.74 | 164.31 | 129.55 | 165.46 | 144.94 | 154.63 | [14,15] |
MY (g/Kg DMI) | 12.93 | 10.95 | 11.80 | 10.49 | 9.69 | 10.15 | 10.97 | [14,15] | |
BW (Kg) | 529.72 | 593.01 | 565.89 | 673.65 | 718.34 | 692.80 | 629.34 | [14,15] | |
MBW (Kg) | 680.00 | 680.00 | 680.00 | 680.00 | 680.00 | 680.00 | 680.00 | [17] | |
WG (Kg/d) | 0.86 | 1.72 | 1.35 | 0.81 | 1.35 | 1.04 | 1.20 | [14,15] | |
Jersey | MP (g/d) | 154.92 | 180.56 | 167.74 | 187.30 | 226.49 | 204.10 | 184.71 | [14,15] |
MY (g/Kg DMI) | 18.32 | 16.40 | 17.36 | 15.60 | 16.89 | 16.16 | 16.80 | [14,15] | |
BW (Kg) | 389.74 | 439.03 | 414.39 | 515.73 | 567.47 | 537.91 | 472.03 | [14,15] | |
MBW (Kg) | 470.00 | 470.00 | 470.00 | 470.00 | 470.00 | 470.00 | 470.00 | [18] | |
WG (Kg/d) | 0.32 | 1.38 | 0.85 | 1.15 | 1.01 | 1.09 | 0.96 | [14,15] | |
Both | Cfi | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | [6] |
C | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | [6] |
Breed | Parameters | 1.5–2 Years | >2 Years | Overall | ||||
---|---|---|---|---|---|---|---|---|
Winter | Spring | Mean | Summer | Autumn | Mean | |||
Holstein | DMI (Kg/d) | 12.64 | 15.07 | 14.03 | 12.41 | 17.11 | 14.42 | 14.22 |
GEIi (MJ/d) | 154.81 | 184.57 | 171.82 | 151.98 | 231.65 | 186.12 | 178.97 | |
MEE (MJ/d) | 9.04 | 9.22 | 9.14 | 7.21 | 9.21 | 8.07 | 8.61 | |
Ym | 5.87 | 4.97 | 5.36 | 4.77 | 3.98 | 4.43 | 4.90 | |
NEm (MJ/d) | 35.55 | 38.69 | 37.35 | 42.58 | 44.68 | 43.48 | 40.41 | |
NEg (MJ/d) | 15.46 | 35.97 | 27.18 | 17.27 | 32.02 | 23.59 | 25.38 | |
REM% | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | |
REG% | 0.36 | 0.36 | 0.36 | 0.36 | 0.37 | 0.36 | 0.36 | |
GEIii (MJ/d) | 138.49 | 218.75 | 184.35 | 161.41 | 211.97 | 183.08 | 183.72 | |
Jersey | DMI (Kg/d) | 8.49 | 11.15 | 9.82 | 12.01 | 13.48 | 12.64 | 11.13 |
GEIi (MJ/d) | 103.96 | 136.58 | 120.27 | 147.11 | 182.51 | 162.28 | 139.88 | |
MEE (MJ/d) | 8.62 | 10.05 | 9.33 | 10.42 | 12.60 | 11.36 | 10.28 | |
Ym | 8.32 | 7.45 | 7.89 | 7.09 | 6.94 | 7.03 | 7.49 | |
NEm (MJ/d) | 28.23 | 30.87 | 29.55 | 34.83 | 37.43 | 35.94 | 32.54 | |
NEg (MJ/d) | 5.41 | 29.76 | 17.58 | 27.59 | 25.66 | 26.76 | 21.87 | |
REM% | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | |
REG% | 0.36 | 0.36 | 0.36 | 0.36 | 0.37 | 0.36 | 0.36 | |
GEIii (MJ/d) | 85.58 | 178.29 | 131.93 | 179.89 | 173.59 | 177.19 | 153.05 | |
Both | GEi (MJ/Kg) | 12.25 | 12.25 | 12.25 | 12.25 | 13.54 | 12.89 | 12.89 |
TDN % | 77.89 | 77.89 | 77.89 | 77.89 | 79.60 | 78.75 | 78.75 | |
DE (MJ/kg) | 14.37 | 14.37 | 14.37 | 14.37 | 14.68 | 14.53 | 12.89 | |
DE (as %) | 77.88 | 77.88 | 77.88 | 77.88 | 79.59 | 78.74 | 78.74 |
Breed | Season or Age | EFA | EFB | EFC | EFD | EFE | SEM | p Value |
---|---|---|---|---|---|---|---|---|
Holstein | Overall | 56.44 b | 56.44 b | 58.15 b | 75.91 a | 48.20 b | 3.296 | <0.0001 |
Jersey | Overall | 67.42 a | 67.42 a | 73.28 a | 63.24 a | 40.15 b | 3.996 | <0.0001 |
Holstein | Winter | 59.28 a | 59.28 a | 53.39 a | 57.23 az | 36.33 bz | 1.811 | <0.0001 |
Spring | 60.49 b | 60.49 b | 71.56 b | 90.39 ax | 57.39 bx | 3.948 | 0.001 | |
Summer | 47.29 | 47.29 | 50.40 | 66.70 y | 42.35 y | 4.424 | 0.058 | |
Autumn | 60.40 b | 60.40 b | 55.38 b | 87.59 ax | 55.61 bx | 5.121 | 0.026 | |
SEM | 6.154 | 6.154 | 6.082 | 1.830 | 1.162 | |||
p value | 0.383 | 0.383 | 0.153 | <0.0001 | <0.0001 | |||
Jersey | Winter | 56.55 a | 56.55 a | 46.36 by | 35.36 by | 22.45 cy | 2.769 | <0.0001 |
Spring | 65.90 ab | 65.90 ab | 86.37 ax | 73.67 ax | 46.78 bx | 5.518 | 0.009 | |
Summer | 68.37 a | 68.37 a | 83.12 ax | 74.33 abx | 47.20 cx | 3.610 | <0.0001 | |
Autumn | 82.67 a | 82.67 a | 78.59 ax | 71.73 ax | 45.54 bx | 5.209 | 0.007 | |
SEM | 5.754 | 5.754 | 6.418 | 0.737 | 0.468 | |||
p value | 0.088 | 0.088 | 0.004 | <0.0001 | <0.0001 | |||
SEM | 5.954 | 5.954 | 6.250 | 1.283 | 0.815 | |||
Breed | 0.017 | 0.017 | 0.003 | <0.0001 | <0.0001 | |||
Season | 0.155 | 0.155 | 0.003 | <0.0001 | <0.0001 | |||
Breed × Season | 0.167 | 0.167 | 0.045 | <0.0001 | <0.0001 | |||
Holstein | 1.5–2 years | 59.97 bc | 59.97 bc | 63.77 ab | 76.18 a | 48.37 c | 4.494 | 0.006 |
>2 years | 52.91 b | 52.91 b | 52.54 b | 75.65 a | 48.03 b | 4.618 | 0.002 | |
SEM | 4.335 | 4.335 | 5.131 | 5.492 | 3.488 | |||
p value | 0.287 | 0.287 | 0.148 | 0.949 | 0.948 | |||
Jersey | 1.5–2 years | 61.22 a | 61.22 a | 66.36 a | 54.52 ay | 34.61 by | 5.911 | 0.009 |
>2 years | 74.50 a | 74.50 a | 81.18 a | 73.22 ax | 46.49 bx | 3.211 | <0.0001 | |
SEM | 4.625 | 4.625 | 6.291 | 4.442 | 2.821 | |||
p value | 0.063 | 0.063 | 0.170 | 0.036 | 0.036 | |||
SEM | 4.480 | 4.480 | 5.711 | 4.967 | 3.154 | |||
Breed | 0.019 | 0.019 | 0.021 | 0.043 | 0.043 | |||
Age | 0.503 | 0.503 | 0.780 | 0.120 | 0.120 | |||
Breed × Age | 0.035 | 0.035 | 0.051 | 0.101 | 0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.; Kim, S.-H.; Son, A.-R.; Lee, S.-S.; Lee, S.-S. Breed and Season-Specific Methane Conversion Factors Influence Methane Emission Factor for Enteric Methane of Dairy Steers. Sustainability 2022, 14, 7030. https://doi.org/10.3390/su14127030
Islam M, Kim S-H, Son A-R, Lee S-S, Lee S-S. Breed and Season-Specific Methane Conversion Factors Influence Methane Emission Factor for Enteric Methane of Dairy Steers. Sustainability. 2022; 14(12):7030. https://doi.org/10.3390/su14127030
Chicago/Turabian StyleIslam, Mahfuzul, Seon-Ho Kim, A-Rang Son, Sung-Sill Lee, and Sang-Suk Lee. 2022. "Breed and Season-Specific Methane Conversion Factors Influence Methane Emission Factor for Enteric Methane of Dairy Steers" Sustainability 14, no. 12: 7030. https://doi.org/10.3390/su14127030
APA StyleIslam, M., Kim, S. -H., Son, A. -R., Lee, S. -S., & Lee, S. -S. (2022). Breed and Season-Specific Methane Conversion Factors Influence Methane Emission Factor for Enteric Methane of Dairy Steers. Sustainability, 14(12), 7030. https://doi.org/10.3390/su14127030