Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Study Data
2.2. Research Framework
2.3. Ecosystem Services and Urbanization Measurements
2.3.1. Construction and Measurement of the Ecological Services Index System
2.3.2. Comprehensive ES Index
2.3.3. Selection of Factors to Reflect the Level of Urbanization
2.4. Analysis Method
2.4.1. Spatial Correlation Test
2.4.2. Geographically Weighted Regression (GWR)
3. Results
3.1. Spatiotemporal Evolution of ESs
3.2. Characteristics of the Spatiotemporal Evolution of Urbanization
3.3. Effect of Urbanization on ESs
3.3.1. Global Moran’s I Analysis
3.3.2. Local Bivariate Moran’s I Analysis
3.3.3. Spatially Nonstationary Effects of Urbanization on the ESs
4. Discussion
4.1. ES Spatiotemporal Evolution
4.2. Spatial Heterogeneity Analysis of the Impact of Urbanization on ESs in BTH Urban Agglomerations
4.3. Strategies for Optimizing Ecological Resources and Spatial Control
4.4. Research Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, X.L.; Xu, Z.N.; Niu, F.Q.; Long, Y. An evaluation of China’s urban agglomeration development from the spatial perspective. Spat. Stats. 2017, 21, 475–491. [Google Scholar] [CrossRef]
- Gu, Q.; Wang, H.; Zheng, Y.; Zhu, J.; Li, X. Ecological footprint analysis for urban agglomeration sustainability in the middle stream of the Yangtze River. Ecol. Model. 2015, 318, 86–99. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, S.; Lang, J.; Ren, Z.; Chao, S. Development of emissions inventory and identification of sources for priority control in the middle reaches of Yangtze River Urban Agglomerations. Sci. Total Enuiron. 2018, 625, 155–167. [Google Scholar] [CrossRef]
- Costanza, R.R.D.G. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- DAES. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Ge, F.; Tang, G.; Zhong, M.; Zhang, Y.; Xiao, J.; Li, J.; Ge, F. Assessment of Ecosystem Health and Its Key Determinants in the Middle Reaches of the Yangtze River Urban Agglomeration, China. Int. J. Environ. Res. Public Health 2022, 19, 771. [Google Scholar] [CrossRef]
- Chen, R.; Huang, C. Landscape Evolution and It’s Impact of Ecosystem Service Value of the Wuhan City, China. Int. J. Environ. Res. Public Health 2021, 18, 13015. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Liu, C.; Shan, L.; Lin, J.; Zhang, J.; Jiang, Y.; Zhang, G. Spatial-Temporal Responses of Ecosystem Services to Land Use Transformation Driven by Rapid Urbanization: A Case Study of Hubei Province, China. Int. J. Environ. Res. Public Health 2022, 19, 178. [Google Scholar] [CrossRef]
- Azari, M.; Billa, L.; Chan, A. Multi-temporal analysis of past and future land cover change in the highly urbanized state of Selangor. Ecol. Process. 2022, 11, 2. [Google Scholar] [CrossRef]
- Cividino, S.; Halbac-Cotoara-Zamfir, R.; Salvati, L. Revisiting the “City Life Cycle”: Global Urbanization and Implications for Regional Development. Sustainability 2020, 12, 1151. [Google Scholar] [CrossRef]
- Yang, W.; Gong, Q.; Zhang, X. Surplus or deficit? Quantifying the total ecological compensation of Beijing-Tianjin-Hebei Region. J. Geogr. Sci. 2020, 30, 621–641. [Google Scholar] [CrossRef]
- Cai, W.; Wu, T.; Jiang, W.; Peng, W.; Cai, Y. Integrating Ecosystem Services Supply–Demand and Spatial Relationships for Intercity Cooperation: A Case Study of the Yangtze River Delta. Sustainability 2020, 12, 4131. [Google Scholar] [CrossRef]
- Lan, X.; Tang, H.; Liang, H.C. A theoretical framework for researching cultural ecosystem service flows in urban agglomerations. Ecosyst. Serv. 2017, 28, 95–104. [Google Scholar]
- Song, W.; Deng, X. Effects of Urbanization-Induced Cultivated Land Loss on Ecosystem Services in the North China Plain. Energies 2015, 8, 5678–5693. [Google Scholar] [CrossRef]
- Wei, S. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar]
- Wang, L.; Li, Q.; Bi, H.; Mao, X.Z. Human impacts and changes in the coastal waters of south China. Sci. Total Environ. 2016, 562, 108–114. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Z.; Lei, X.; He, B.; Jia, K.; Zhang, Y. Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: A case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration. Ecol. Eng. 2016, 88, 112–121. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Shi, J.; Lv, T.; Zhou, C.; Liu, W. Assessing Changes in Ecosystem Service Values in Response to Land Cover Dynamics in Jiangxi Province, China. Int. J. Environ. Res. Public Health 2020, 17, 3018. [Google Scholar] [CrossRef]
- Wang, W.; Wu, T.; Li, Y.; Xie, S.; Han, B.; Zheng, H.; Ouyang, Z. Urbanization Impacts on Natural Habitat and Ecosystem Services in the Guangdong-Hong Kong-Macao “Megacity”. Sustainability 2020, 12, 6675. [Google Scholar] [CrossRef]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A comparative analysis of megacity expansions in China and the U.S.: Patterns, rates and driving forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Han, W.; Geng, Y.; Lu, Y.; Wilson, J.; Sun, L.; Satoshi, O.; Geldron, A.; Qian, Y. Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways. Energy 2018, 155, 887–898. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, L.; Zheng, H.; Chen, J. Spatiotemporal Dynamics of Carbon Storage in Response to Urbanization: A Case Study in the Su-Xi-Chang Region, China. Processes 2019, 7, 836. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, S.; Bao, H.; Chen, D.; Wang, C.; Li, B.; Tong, G.; Yuan, Y.; Xu, B. Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. J. Hazard. Mater. 2019, 364, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Wu, S. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosyst. Serv. 2020, 43, 101–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Liu, B.; Wu, D. Impacts of Urbanization and Associated Factors on Ecosystem Services in the Beijing-Tianjin-Hebei Urban Agglomeration, China: Implications for Land Use Policy. Sustainability 2018, 10, 4334. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Liu, S.; Yang, M.; Mou, Y.; Meng, Y.; Zhou, X.; Peng, C. Effect of Urbanization on Ecosystem Service Values in the Beijing-Tianjin-Hebei Urban Agglomeration of China from 2000 to 2014. Sustainability 2020, 12, 10233. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Mchale, M.R.; Beck, S.M.; Pickett, S.T.A.; Childers, D.L.; Cadenasso, M.L.; Louie, R.; Swemmer, L.; Ebersohn, L.; Twine, W.; Bunn, D.N. Democratization of ecosystem services—A radical approach for assessing nature’s benefits in the face of urbanization. Ecosyst. Health Sustain. 2018, 4, 115–131. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Cheng, L.; Wang, J.; Wen, M. Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef] [PubMed]
- Fang, C. The basic law of the formation and expansion in urban agglomerations. J. Geogr. Sci. 2019, 29, 1699–1712. [Google Scholar] [CrossRef]
- Gu, C.; Hu, L.; Cook, I.G. China’s urbanization in 1949–2015: Processes and driving forces. Chin. Geogr. Sci. 2017, 27, 847–859. [Google Scholar] [CrossRef]
- Sining, C.; Jun, G. Climatic risks of Beijing–Tianjin–Hebei urban agglomeration and their changes. Geomat. Nat. Hazards Risk 2021, 12, 1298–1314. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Xu, Y.; Sun, S.; Li, T. Potential heterogeneity in the relationship between urbanization and air pollution, from the perspective of urban agglomeration. J. Clean. Prod. 2021, 298, 126822. [Google Scholar] [CrossRef]
- Zeng, X.T.; Hu, Z.J.; Zhang, J.; Fu, Y.C.; Zhang, F. Toward a sustainable water resources management in Beijing-Tianjin-Hebei urban agglomeration: A scenario analysis of combined strategy regulation with Green Z-score criterion. Urban Water J. 2019, 16, 1–17. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Liang, X.Z.; Huang, C. Increasing heat risk in China’s urban agglomerations. Environ. Reslett. 2021, 16, 64011–64073. [Google Scholar] [CrossRef]
- Layke, C.; Mapendembe, A.; Brown, C.; Walpole, M.; Winn, J. Indicators from the global and sub-global Millennium Ecosystem Assessments: An analysis and next steps. Ecol. Indic. 2012, 17, 77–87. [Google Scholar] [CrossRef]
- Feld, C.K.; Sousa, J.P.; Silva, P.; Dawson, T.P. Indicators for biodiversity and ecosystem services: Towards an improved framework for ecosystems assessment. Biodivers. Conserv. 2010, 19, 2895–2919. [Google Scholar] [CrossRef]
- Häyhä, T.; Franzese, P.P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecol. Model. 2014, 289, 124–132. [Google Scholar] [CrossRef]
- Martin-Lopez, B.; Gomez-Baggethun, E.; Garda-Llorente, M.; Montes, C. Trade-offs across value-domains in ecosystem services assessment. Ecol. Indic. 2014, 37, 220–228. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Y.; Alatalo, J.M.; Yang, Z.; Jiang, B. Scale effects on the relationships between land characteristics and ecosystem services- a case study in Taihu Lake Basin, China. Sci. Total Environ. 2020, 716, 137083.1–137083.10. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chi, G.; Li, J. Ecosystem services and their driving forces in the middle reaches of the Yangtze River urban agglomerations, China. Int. J. Environ. Res. Public Health 2020, 17, 3717. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, F.; Li, X.; Liu, H.; Hu, Y.; Hu, P. Integrating ecological assessments to target priority restoration areas: A case study in the Pearl River delta urban agglomeration, China. Remote Sens. 2021, 13, 2424. [Google Scholar] [CrossRef]
- Dou, H.; Li, X.; Li, S.; Dang, D.; Li, X.; Lyu, X.; Li, M.; Liu, S. Mapping ecosystem services bundles for analyzing spatial trade-offs in inner Mongolia, China. J. Clean. Prod. 2020, 256, 120444. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liu, L.; Liang, Z.; Wu, S. Uncovering the relationships between ecosystem services and social-ecological drivers at different spatial scales in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2020, 290, 125193. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China. J. Clean. Prod. 2020, 264, 121573. [Google Scholar] [CrossRef]
- Lara, B.; Gandini, M.; Gantes, P.; Matteucci, S.D. Regional patterns of ecosystem functional diversity in the argentina pampas using modis time-series. Ecol. Inform. 2018, 43, 65–72. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; Bawa, K.S.; Ganeshaiah, K.N.; Kiran, M.C. Quantifying and mapping biodiversity and ecosystem services: Utility of a multi-season NDVI based mahalanobis distance surrogate. Remote Sens. Environ. 2009, 113, 857–867. [Google Scholar] [CrossRef]
- Stürck, J.; Verburg, P.H. Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landsc. Ecol. 2017, 32, 481–500. [Google Scholar] [CrossRef]
- Banzhaf, H.S.; Boyd, J. The architecture and measurement of an ecosystem services Index. Sustainability 2012, 4, 430–461. [Google Scholar] [CrossRef]
- Bai, X.; Shi, P.; Liu, Y. Society: Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Jw, A.; Wza, B.; Stap, C.; Wy, A.; Wl, A. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar]
- Ma, T. Quantitative responses of satellite-derived nighttime lighting signals to anthropogenic land-use and land-cover changes across China. Remote Sens. 2018, 10, 1447. [Google Scholar] [CrossRef]
- Yu, Z.W.; Gao, J.; Wang, L.; Vejre, H. Suitability of regional development based on ecosystem service benefits and losses: A case study of the Yangtze River delta urban agglomeration, China. Ecol. Indic. 2019, 107, 105579. [Google Scholar]
- Chen, Y.; Li, Z.; Li, P.; Zhang, Y.; Liu, H.; Pan, J. Impacts and projections of land use and demographic changes on ecosystem services: A case study in the Guanzhong region, China. Sustainability 2022, 14, 3003. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, L.; Sang, W. Impact of fast urbanization on ecosystem health in mountainous regions of southwest China. Int. J. Environ. Res. Public Health 2020, 17, 826. [Google Scholar] [CrossRef]
- Yao, L.; Li, X.; Li, Q.; Wang, J. Temporal and spatial changes in coupling and coordinating degree of new urbanization and ecological-environmental stress in China. Sustainability 2019, 11, 1171. [Google Scholar] [CrossRef]
- Lu, S.; Tang, X.; Guan, X.; Qin, F.; Zhang, D. The assessment of forest ecological security and its determining indicators: A case study of the Yangtze River Economic Belt in China. J. Environ. Manag. 2020, 258, 110048. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, T.; Feng, R.; Zhang, Z.; Liu, K. Coupling coordination relationship and driving mechanism between urbanization and ecosystem service value in large regions: A case study of urban agglomeration in Yellow River Basin, China. Int. J. Environ. Res. Public Health 2021, 18, 7836. [Google Scholar] [CrossRef]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Pan, J.; Zhang, Y.; Liu, D.; Chen, H.; Wei, J.; Zhang, Z.; Liu, Y. Exploring spatially non-stationary and scale-dependent responses of ecosystem services to urbanization in Wuhan, China. Int. J. Environ. Res. Public Health 2020, 17, 2989. [Google Scholar] [CrossRef]
- Anselin, L.; Rey, S. Properties of Tests for Spatial Dependence in Linear Regression Models. Geogr. Anal. 1991, 23, 112–131. [Google Scholar] [CrossRef]
- Boots, B. Geographically weighted regression: The analysis of spatially varying relationships. Int. J. Geogr. Inf. Sci. 2003, 17, 717–719. [Google Scholar]
- Pan, Z.; Wang, J. Spatially heterogeneity response of ecosystem services supply and demand to urbanization in China. Ecol. Eng. 2021, 169, 106303. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.-G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model. design and evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.B.; Jiang, Y.; Anker, Y. Contribution analysis on spatial tradeoff/synergy of Karst soil conservation and water retention for various geomorphological types: Geographical detector application. Ecol. Indic. 2021, 125, 107470. [Google Scholar] [CrossRef]
- Wu, F.; Wang, X.; Ren, Y. Urbanization’s Impacts on Ecosystem Health Dynamics in the Beijing-Tianjin-Hebei Region, China. Int. J. Environ. Res. Public Health 2021, 18, 918. [Google Scholar] [CrossRef]
- Zhiliang, W.; Zongming, W.; Bai, Z.; Chunyan, L.; Chunying, R. Impact of land use/land cover changes on ecosystem services in the Nenjiang River Basin, Northeast China. Ecol. Process. 2015, 4, 12. [Google Scholar]
- Han, X.; Fang, W.; Li, H.; Wang, Y.; Shi, J. Heterogeneity of influential factors across the entire air quality spectrum in Chinese cities: A spatial quantile regression analysis. Environ. Pollut. 2020, 262, 114259. [Google Scholar] [CrossRef]
- Wen, Z.Z.; Hong, L.X.; Zhi, M.L.; Jin, L. Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China. Catena 2005, 59, 173–186. [Google Scholar]
- Xi, C.A.; Jz, A.; Chao, W.A.; Sh, A.; Xw, B. Households’ willingness to accept improved ecosystem services and influencing factors: Application of contingent valuation method in Bashang Plateau, Hebei province, China. J. Environ. Manag. 2020, 255, 109925. [Google Scholar]
- Cao, T.; Yi, Y.; Liu, H.; Xu, Q.; Yang, Z. The relationship between ecosystem service supply and demand in plain areas undergoing urbanization: A case study of China’s Baiyangdian Basin. J. Environ. Manag. 2021, 289, 112492. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, R.; Shi, Y.; Su, C.; Yuan, J.; Johnson, A.C.; Jenkins, A.; Ferrier, R.C.; Chen, D.; Tian, H.; et al. Interaction between pollution and climate change augments ecological risk to a coastal ecosystem. Ecosyst. Health 2018, 4, 8. [Google Scholar] [CrossRef]
- Yuan, Q.A.; Xla, B.; Hw, A.; Jz, A.; Rui, Y. Dynamic mechanism between human activities and ecosystem services: A case study of Qinghai lake watershed, China. Ecol. Indic. 2020, 117, 106528. [Google Scholar]
- Ji, S.; Ma, S. The effects of industrial pollution on ecosystem service value: A case study in a heavy industrial area, China. Environ. Dev. Sustain. 2021, 24, 6804–6833. [Google Scholar]
- Wei, L.; Ming, Y. Urbanization, economic growth and environmental pollution: Evidence from China. Sustain. Comput.-Infor. 2019, 21, 1–9. [Google Scholar]
- Wu, H.; Gai, Z.; Guo, Y.; Li, Y.; Hao, Y.; Lu, Z. Does environmental pollution inhibit urbanization in China? A new perspective through residents medical and health costs. Environ. Res. 2020, 182, 109128. [Google Scholar]
- Hou, J.; Qin, T.; Liu, S.; Wang, J.; Dong, B.; Yan, S.; Nie, H. Analysis and Prediction of Ecosystem Service Values Based on Land Use/Cover Change in the Yiluo River Basin. Sustainability 2021, 13, 6432. [Google Scholar] [CrossRef]
- Mao, Q.; Huang, G.; Buyantuev, A.; Wu, J.; Luo, S.; Ma, K. Spatial heterogeneity of urban soils: The case of the Beijing metropolitan region, China. Ecol. Process. 2014, 3, 23. [Google Scholar] [CrossRef]
- Anhwange, B.A.; Agbaji, E.B.; Gimba, E.C. Impact assessment of human activities and seasonal variation on river Benue, within Makurdi Metropolis. Maejo Int. J. Sci. Tech. 2012, 2, 248–254. [Google Scholar]
- Yuan, J.; Lu, Y.; Wang, C.; Cao, X.; Chen, C.; Cui, H.; Zhang, M.; Wang, C.; Li, X.; Johnson, A.C.; et al. Ecology of industrial pollution in China. Ecosyst. Health Sust. 2020, 6, 1779010. [Google Scholar] [CrossRef]
- Xu, G.; Wu, J. Social-ecological transformations of inner mongolia: A sustainability perspective. Ecol. Process. 2016, 5, 11. [Google Scholar] [CrossRef]
- Guo, A.; Zhang, Y.; Zhong, F.; Jiang, D. Spatiotemporal patterns of ecosystem service value changes and their coordination with economic development: A case study of the Yellow River Basin, China. Int. J. Environ. Res. Public Health 2020, 17, 8474. [Google Scholar] [CrossRef]
- Bojie, W.; Haiping, T.; Qin, Z.; Fengqi, C. Exploring connections among ecosystem services supply, demand and uman well-Being in a mountain-basin system, China. Int. J. Environ. Res. Public Health 2020, 17, 5309. [Google Scholar]
- Dessalegn, B.; Kiktenko, L.; Zhumagazina, B.; Zhakenova, S.; Nangia, V. Explaining farmers’ reluctance to adopt recommendations for sustainable ecosystem management. Ecol. Process. 2018, 7, 24. [Google Scholar] [CrossRef]
- Robert, H.; Simon, B.; Harald, B.; Ché, E.; Christian, H.; Roman, S.; Snell, R.; Rigling, A. Inter- and transdisciplinary perspective on the integration of ecological processes into ecosystem services analysis in a mountain region. Ecol. Process. 2014, 3, 9. [Google Scholar]
- Va, K.D.; Báldi, A. Ecosystem management in transition in central and eastern europe: The need for a vision. Ecosyst. Health Sust. 2016, 2, e01231. [Google Scholar]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. A global view of regulatory ecosystem services: Existed knowledge, trends, and research gaps. Ecol. Process. 2020, 9, 40. [Google Scholar] [CrossRef]
Ecosystem Services Classification | Ecosystem Services Types | The Significance of Metrics | Formula | The Descriptions of Metrics | |
---|---|---|---|---|---|
Provisioning service | Net primary productivity (NPP) | It is the fixed energy or organic matter produced per unit area and unit time remaining after green plant respiration | NPP = GPP − Ra | (1) | where Ra denotes the consumption of autotrophic respiration and GPP denotes the total primary productivity. |
Regulating services | Soil and water conservation | It is the ecosystem function preventing soil erosion caused by water erosion through corresponding structures and processes. | Spro = NPPmean × (1 − K) × (1 − Fslo) | (2) | where Spro is the soil and water conservation serviceability index, Fslo is the slope factor, and K is the soil erodibility factor. |
Carbon sequestration and oxygen release | It represents material exchange processes involving oxygen and carbon dioxide through photosynthesis by green plants. | Gv = 1.63Rc × A × NPP; G0 = 1.19A × NPP | (3) | where Gv is the annual carbon sequestration by vegetation, G0 is the annual oxygen release, Rc is the carbon content in CO2. | |
Water conservation | It suggests that an ecosystem interacts with water through its unique structure to intercept, infiltrate, store, regulate water flow, the water cycle through evapotranspiration. | WR = NPPmean × Fsic × Fpre × (1 − Fslo) | (4) | where WR is the ecological spatial water holding capacity services index, Fsic is the soil infiltration factor, Fpre is the average precipitation factor, and Fslo is the slope factor. | |
Heat island mitigation | It is a phenomenon of urban microclimate change in the local temperature, humidity, and air contamination across the urban surface caused by anthropogenic changes. | Ts = Ti + A(Ti − Tj) × B | (5) | where Ts is the surface temperature, Ti and Tj are the brightness temperatures in thermal channels i and j, respectively, and A and B are coefficients determined by factors. | |
Supporting service | Biodiversity maintenance | It which aims to preserve the roles of various species and the corresponding genetic diversity. | Sblo = NPPmean × Fpre × Ftem × (1 − Falt) | (6) | Where Sblo is the biodiversity maintenance services capacity index, Fpre is the mean rainfall, Ftem is the mean air temperature, and Falt is the elevation factor. |
Cultural service | Recreation suitability | It was assessed through including evaluation of recreation resources, recreation facilities, and recreation areas three aspects to determine whether the use of recreation resources is reasonable. | (7) | where S is the comprehensive evaluation index of recreation use, Wi is the rank value of recreation factor i, Xi is the weight value of the different recreation factors, and n is the number of evaluation factors. |
Variables | 2000 | 2005 | 2015 | 2018 | |
---|---|---|---|---|---|
Moran’s I | CLP | −0.537 | −0.557 | −0.568 | −0.576 |
GDPD | −0.519 | −0.479 | −0.291 | −0.407 | |
POPD | −0.488 | −0.384 | −0.549 | −0.520 | |
p value | CLP | 0.001 | 0.001 | 0.001 | 0.001 |
GDPD | 0.001 | 0.001 | 0.001 | 0.001 | |
POPD | 0.001 | 0.001 | 0.001 | 0.001 | |
Z value | CLP | −10.985 | −11.414 | −11.483 | −11.667 |
GDPD | −10.730 | −10.23 | −7.019 | −9.070 | |
POPD | −10.210 | −8.606 | −11.449 | −10.953 |
Years | 2000 | 2005 | 2015 | 2018 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | CLP | GDPD | POPD | CLP | GDPD | POPD | CLP | GDPD | POPD | CLP | GDPD | POPD |
R square | 0.79 | 0.83 | 0.71 | 0.85 | 0.84 | 0.81 | 0.83 | 0.55 | 0.71 | 0.84 | 0.63 | 0.71 |
Adjusted R square | 0.76 | 0.81 | 0.67 | 0.83 | 0.82 | 0.78 | 0.81 | 0.49 | 0.67 | 0.81 | 0.58 | 0.67 |
DIFF of Criterion | −17.10 | −60.22 | −27.54 | −15.64 | −43.72 | −29.48 | −12.86 | −17.11 | −14.61 | −17.70 | −4.76 | −14.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wang, W.; Zha, N.; Feng, Y.; Qiu, C.; Zhang, Y.; Ma, J.; Zhang, R. Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China. Sustainability 2022, 14, 7198. https://doi.org/10.3390/su14127198
Wang K, Wang W, Zha N, Feng Y, Qiu C, Zhang Y, Ma J, Zhang R. Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China. Sustainability. 2022; 14(12):7198. https://doi.org/10.3390/su14127198
Chicago/Turabian StyleWang, Kaiping, Weiqi Wang, Niyi Zha, Yue Feng, Chenlan Qiu, Yunlu Zhang, Jia Ma, and Rui Zhang. 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China" Sustainability 14, no. 12: 7198. https://doi.org/10.3390/su14127198
APA StyleWang, K., Wang, W., Zha, N., Feng, Y., Qiu, C., Zhang, Y., Ma, J., & Zhang, R. (2022). Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China. Sustainability, 14(12), 7198. https://doi.org/10.3390/su14127198