Modelling Impacts of Nature-Based Solutions on Surface Water Quality: A Rapid Review
Abstract
:1. Introduction
2. Review Methods
2.1. Methodology and Search Parameters
2.2. Definition of Nature-Based Solutions
2.3. Definition of Modelling
3. Results and Discussion
3.1. Spatial Distribution
3.2. Case Study Location
3.3. Temporal Distribution
3.4. Spatial Scale of Analysis
3.5. NBS Assessed
3.6. Modelling Methods Used
3.7. Pollution Indicators Studied
3.8. Economic Aspects
3.9. Future Climate Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Paper Title | Authors | Year |
---|---|---|
Ecosystem services evaluation of Nature-Based Solutions with the help of citizen scientists | Di Grazia F., Gumiero B., Galgani L., Troiani E., Ferri M., Loiselle S.A. | 2021 |
Evaluation of pollutant removal efficiency by small-scale Nature-Based Solutions focusing on bio-retention cells, vegetative swale and porous pavement | Dutta A., Torres A.S., Vojinovic Z. | 2021 |
Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes | Seyedashraf O., Bottacin-Busolin A., Harou J.J. | 2021 |
On the management of Nature-Based Solutions in open-air laboratories: New insights and future perspectives | Gallotti G., Santo M.A., Apostolidou I., Alessandri J., Armigliato A., Basu B., Debele S., Domeneghetti A., Gonzalez-Ollauri A., Kumar P., Mentzafou A., Pilla F., Pulvirenti B., Ruggieri P., Sahani J., Salmivaara A., Basu A.S., Spyrou C., Pinardi N., Toth E., Unguendoli S., Pillai U.P.A., Valentini A., Varlas G., Zaniboni F., Di Sabatino S. | 2021 |
The impact of bioengineering techniques for riverbank protection on ecosystem services of riparian zones | Symmank L., Natho S., Scholz M., Schröder U., Raupach K., Schulz-Zunkel C. | 2020 |
Valuing the Multiple Benefits of Blue-Green Infrastructure for a Swedish Case Study: Contrasting the Economic Assessment Tools B£ST and TEEB | Hamann F., Blecken G.-T., Ashley R.M., Viklander M. | 2020 |
Environmental and Economic Approach to Assess a Horizontal Sub-Surface Flow Wetland in Developing Area | Castañer C.M., Bellver-Domingo Á., Hernández-Sancho F. | 2020 |
Engaging coastal community members about natural and Nature-Based Solutions to assess their ecosystem function | Baustian M.M., Jung H., Bienn H.C., Barra M., Hemmerling S.A., Wang Y., White E., Meselhe E. | 2020 |
Ecosystem services from combined natural and engineered water and wastewater treatment systems: Going beyond water quality enhancement | Zawadzka J., Gallagher E., Smith H., Corstanje R. | 2019 |
Optimizing wetland restoration to improve water quality at a regional scale | Singh N.K., Gourevitch J.D., Wemple B.C., Watson K.B., Rizzo D.M., Polasky S., Ricketts T.H. | 2019 |
Evaluating the reliability of stormwater treatment systems under various future climate conditions | Zhang K., Manuelpillai D., Raut B., Deletic A., Bach P.M. | 2019 |
Integrated modelling of stormwater treatment systems uptake | Castonguay A.C., Iftekhar M.S., Urich C., Bach P.M., Deletic A. | 2018 |
Spatial modelling of the regulating function of the Huangqihai Lake wetland ecosystem | Fu Y., Zhao J., Peng W., Zhu G., Quan Z., Li C. | 2018 |
Exploring the performances of a new integrated approach of grey, green and blue infrastructures for combined sewer overflows remediation in high-density Urban areas | Masseroni D., Ercolani G., Chiaradia E.A., Maglionico M., Toscano A., Gandolfi C., Bischetti G.B. | 2018 |
References
- United Nations Department of Economic and Social Affairs World Urbanization Prospects: The 2018 Revision. Working Paper No. ESA/P/WP.252. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Methodology.pdf (accessed on 11 November 2021).
- Davis, A. Field Performance of Bioretention: Hydrology Impacts. J. Hydrol. Eng. 2008, 13, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Khalifa, A.; Bouzouidja, R.; Marchetti, M.; Buès, M.; Bouilloud, L.; Martin, E.; Chancibaut, K. Individual contributions of anthropogenic physical processes associated to urban traffic in improving the road surface temperature forecast using TEB model. Urban Clim. 2018, 24, 778–795. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Egodawatta, P.; Thomas, E.; Goonetilleke, A. Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Res. 2007, 41, 3025–3031. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.V.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Maginnis, S.; Janzen, C. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities; European Commission: Brussels, Belgium; Luxembourg, 2015. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of Nature-Based Solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Fardel, A.; Peyneau, P.-E.; Béchet, B.; Lakel, A.; Rodriguez, F. Performance of two contrasting pilot swale designs for treating zinc, polycyclic aromatic hydrocarbons and glyphosate from stormwater runoff. Sci. Total Environ. 2020, 743, 140503. [Google Scholar] [CrossRef] [PubMed]
- Al Husseini, A.E.-M.; Béchet, B.; Gaudin, A.; Ruban, V. Trace metal fractionation as a mean to improve on the management of contaminated sediments from runoff water in infiltration basins. Environ. Technol. 2013, 34, 1255–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, T.C.; Henneberry, J.; Gill, L. Comprehending the multiple ‘values’ of green infrastructure–Valuing Nature-Based Solutions for urban water management from multiple perspectives. Environ. Res. 2017, 158, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.; Capobianco, V.; Oen, A.; McClain, M.; Lopez-Gunn, E. Nature-Based Solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 20, 243–270. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, K.P.; Chevalier, L.R. Managing urban stormwater for urban sustainability: Barriers and policy solutions for green infrastructure application. J. Environ. Manag. 2017, 203, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.-J.; Kristoffersson, A.; Randrup, T.B. Challenges to implementing urban sustainable stormwater management from a governance perspective: A literature review. J. Clean. Prod. 2018, 196, 943–952. [Google Scholar] [CrossRef]
- Brauman, K.A.; Bremer, L.L.; Hamel, P.; Ochoa-Tocachi, B.F.; Roman-Dañobeytia, F.; Bonnesoeur, V.; Arapa, E.; Gammie, G. Producing valuable information from hydrologic models of Nature-Based Solutions for water. Integr. Environ. Assess. Manag. 2021, 18, 135–147. [Google Scholar] [CrossRef]
- Dutta, A.; Torres, A.S.; Vojinovic, Z. Evaluation of Pollutant Removal Efficiency by Small-Scale Nature-Based Solutions Focusing on Bio-Retention Cells, Vegetative Swale and Porous Pavement. Water 2021, 13, 2361. [Google Scholar] [CrossRef]
- Hamel, P.; Riveros-Iregui, D.; Ballari, D.; Browning, T.; Célleri, R.; Chandler, D.; Chun, K.P.; Destouni, G.; Jacobs, S.; Jasechko, S.; et al. Watershed services in the humid tropics: Opportunities from recent advances in ecohydrology. Ecohydrology 2017, 11, e1921. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Petticrew, M.; Roberts, H. Systematic Reviews in the Social Sciences: A Practical Guide; Blackwell Pub: Malden, MA, USA, 2006. [Google Scholar] [CrossRef]
- Watt, A.; Cameron, A.; Sturm, L.; Lathlean, T.; Babidge, W.; Blamey, S.; Facey, K.; Hailey, D.; Norderhaug, I.; Maddern, G. Rapid Versus Full Systematic Reviews: Validity in Clinical Practice? ANZ J. Surg. 2008, 78, 1037–1040. [Google Scholar] [CrossRef]
- Watt, A.; Cameron, A.; Sturm, L.; Lathlean, T.; Babidge, W.; Blamey, S.; Facey, K.; Hailey, D.; Norderhaug, I.; Maddern, G. Rapid reviews versus full systematic reviews: An inventory of current methods and practice in health technology assessment. Int. J. Technol. Assess. Health Care 2008, 24, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; Konijnendijk van den Bosch, C. Nature-Based Solutions and Climate Change – Four Shades of Green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef] [Green Version]
- Sowińska-Świerkosz, B.; García, J. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nature-Based Solutions 2022, 2, 100009. [Google Scholar] [CrossRef]
- Ogden, F.L. Geohydrology: Hydrological Modeling, 2nd ed.; Alderton, D., Elias, S.A.B.T.-E.G., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 457–476. [Google Scholar] [CrossRef]
- Lin, Z.; Beck, M.B. On the identification of model structure in hydrological and environmental systems. Water Resour. Res. 2007, 43, W02402. [Google Scholar] [CrossRef]
- Allaby, A.; Allaby, M. A Dictionary of Earth Sciences. Edited by Ailsa Allaby and Michael Allaby, 2nd ed.; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Burges, S.J. Trends and directions in hydrology. Water Resour. Res. 1986, 22, 1S–5S. [Google Scholar] [CrossRef]
- Rossman, L.; Huber, W. Storm Water Management Model Reference Manual Volume I, Hydrology; U.S. EPA Office of Research and Development: Washington, DC, USA, 2015. [Google Scholar]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) Model: Current Developments and Applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Mtibaa, S.; Hotta, N.; Irie, M. Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine watershed, Tunisia. Sci. Total Environ. 2018, 616–617, 1–16. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Jia, P.; Qi, C.; Ding, F. A Review of Surface Water Quality Models. Sci. World J. 2013, 2013, 231768. [Google Scholar] [CrossRef] [Green Version]
- Seyedashraf, O.; Bottacin-Busolin, A.; Harou, J.J. Many-Objective Optimization of Sustainable Drainage Systems in Urban Areas with Different Surface Slopes. Water Resour. Manag. 2021, 35, 2449–2464. [Google Scholar] [CrossRef]
- Zawadzka, J.; Gallagher, E.; Smith, H.; Corstanje, R. Ecosystem services from combined natural and engineered water and wastewater treatment systems: Going beyond water quality enhancement. Ecol. Eng. 2019, 142. [Google Scholar] [CrossRef]
- Gallotti, G.; Santo, M.; Apostolidou, I.; Alessandri, J.; Armigliato, A.; Basu, B.; Debele, S.; Domeneghetti, A.; Gonzalez-Ollauri, A.; Kumar, P.; et al. On the Management of Nature-Based Solutions in Open-Air Laboratories: New Insights and Future Perspectives. Resources 2021, 10, 36. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.5.0 User’s Guide. The Natural Capital Project; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy and World Wildlife Fund: Arlington, VA, USA, 2018. [Google Scholar]
- Baustian, M.M.; Jung, H.; Bienn, H.C.; Barra, M.; Hemmerling, S.A.; Wang, Y.; White, E.; Meselhe, E. Engaging coastal community members about natural and Nature-Based Solutions to assess their ecosystem function. Ecol. Eng. 2020, 143, 5. [Google Scholar] [CrossRef]
- Di Grazia, F.; Gumiero, B.; Galgani, L.; Troiani, E.; Ferri, M.; Loiselle, S.A. Ecosystem Services Evaluation of Nature-Based Solutions with the Help of Citizen Scientists. Sustainability 2021, 13, 10629. [Google Scholar] [CrossRef]
- Zhang, K.; Manuelpillai, D.; Raut, B.; Deletic, A.; Bach, P.M. Evaluating the reliability of stormwater treatment systems under various future climate conditions. J. Hydrol. 2018, 568, 57–66. [Google Scholar] [CrossRef]
- Singh, N.K.; Gourevitch, J.D.; Wemple, B.C.; Watson, K.B.; Rizzo, D.M.; Polasky, S.; Ricketts, T.H. Optimizing wetland restoration to improve water quality at a regional scale. Environ. Res. Lett. 2019, 14, 064006b. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Zhao, J.; Peng, W.; Zhu, G.; Quan, Z.; Li, C. Spatial modelling of the regulating function of the Huangqihai Lake wetland ecosystem. J. Hydrol. 2018, 564, 283–293. [Google Scholar] [CrossRef]
- Castonguay, A.; Iftekhar, S.; Urich, C.; Bach, P.; Deletic, A. Integrated modelling of stormwater treatment systems uptake. Water Res. 2018, 142, 301–312. [Google Scholar] [CrossRef]
- Castañer, C.M.; Bellver-Domingo, Á.; Hernández-Sancho, F. Environmental and Economic Approach to Assess a Horizontal Sub-Surface Flow Wetland in Developing Area. Water Resour. Manag. 2020, 34, 3761–3778. [Google Scholar] [CrossRef]
- Hamann, F.; Blecken, G.-T.; Ashley, R.M.; Viklander, M. Valuing the Multiple Benefits of Blue-Green Infrastructure for a Swedish Case Study: Contrasting the Economic Assessment Tools B£ST and TEEB. J. Sustain. Water Built Environ. 2020, 6, 05020003. [Google Scholar] [CrossRef]
- Masseroni, D.; Ercolani, G.; Chiaradia, E.A.; Maglionico, M.; Toscano, A.; Gandolfi, C.; Bischetti, G.B. Exploring the performances of a new integrated approach of grey, green and blue infrastructures for combined sewer overflows remediation in high-density urban areas. J. Agric. Eng. 2018, 49, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Symmank, L.; Natho, S.; Scholz, M.; Schröder, U.; Raupach, K.; Schulz-Zunkel, C. The impact of bioengineering techniques for riverbank protection on ecosystem services of riparian zones. Ecol. Eng. 2020, 158, 106040. [Google Scholar] [CrossRef]
- TEEB. The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations; Kumar, P., Ed.; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- CIRIA. Benefits of SuDS Tool: Guidance to Assess the Benefits of Blue and Green Infrastructure Using B£ST; CIRIA: London, UK, 2019; p. W047b. ISBN 978-0-86017-934-74. [Google Scholar]
- Wong, T.; Fletcher, T.; Duncan, H.; Coleman, J.; Jenkins, G. Model for Urban Stormwater Improvement Conceptualization (MUSIC) Version 3. Glob. Solut. Urban Drain. 2002. [Google Scholar] [CrossRef] [Green Version]
- Romero, E.; Le Gendre, R.; Garnier, J.; Billen, G.; Fisson, C.; Silvestre, M.; Riou, P. Long-term water quality in the lower Seine: Lessons learned over 4 decades of monitoring. Environ. Sci. Policy 2016, 58, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Baustian, M.M.; Meselhe, E.; Jung, H.; Sadid, K.; Duke-Sylvester, S.M.; Visser, J.M.; Allison, M.A.; Moss, L.C.; Ramatchandirane, C.; van Maren, D.S.; et al. Development of an Integrated Biophysical Model to represent morphological and ecological processes in a changing deltaic and coastal ecosystem. Environ. Model. Softw. 2018, 109, 402–419. [Google Scholar] [CrossRef]
- Lauren, A.; Guan, M.; Salmivaara, A.; Leinonen, A.; Palviainen, M.; Launiainen, S. NutSpaFHy—A Distributed Nutrient Balance Model to Predict Nutrient Export from Managed Boreal Headwater Catchments. Forests 2021, 12, 808. [Google Scholar] [CrossRef]
- Huttunen, I.; Huttunen, M.; Piirainen, V.; Korppoo, M.; Lepistö, A.; Räike, A.; Tattari, S.; Vehviläinen, B. A National-Scale Nutrient Loading Model for Finnish Watersheds—VEMALA. Environ. Model. Assess. 2015, 21, 83–109. [Google Scholar] [CrossRef]
- Trang, N.T.D.; Konnerup, D.; Schierup, H.-H.; Chiem, N.H.; Tuan, L.A.; Brix, H. Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: Effects of hydraulic loading rate. Ecol. Eng. 2010, 36, 527–535. [Google Scholar] [CrossRef]
- Schueler, T.R. Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs; Metropolitan Washington Council of Governments: Washington, DC, USA, 1987.
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development––A review. Sci. Total Environ. 2017, 607–608, 413–432. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, F.A.; Roebeling, P. Modelling Impacts of Nature-Based Solutions on Surface Water Quality: A Rapid Review. Sustainability 2022, 14, 7381. https://doi.org/10.3390/su14127381
Matos FA, Roebeling P. Modelling Impacts of Nature-Based Solutions on Surface Water Quality: A Rapid Review. Sustainability. 2022; 14(12):7381. https://doi.org/10.3390/su14127381
Chicago/Turabian StyleMatos, Fábio André, and Peter Roebeling. 2022. "Modelling Impacts of Nature-Based Solutions on Surface Water Quality: A Rapid Review" Sustainability 14, no. 12: 7381. https://doi.org/10.3390/su14127381
APA StyleMatos, F. A., & Roebeling, P. (2022). Modelling Impacts of Nature-Based Solutions on Surface Water Quality: A Rapid Review. Sustainability, 14(12), 7381. https://doi.org/10.3390/su14127381