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Abstract: Lightweight sand–EPS soil (LSES) is regarded as a kind of sustainable geomaterial for
providing a way to reutilize fast-growing waste expanded polystyrene (EPS) packages. It is usually
applied in marine geotechnical engineering to solve the excessive settling of soft ground or bumps
at bridge heads due to its merits such as low density, high strength, and adjustability. Aiming
to investigate the dynamic shear strength of LSES made from marine sand, a series of laboratory
dynamic triaxial experiments was conducted on LSES with different proportions and control sand
(CS). The influences of cement content, EPS bead content, and confining pressure on dynamic shear
strength were analyzed, as were comparisons with the material sand. It was found that the dynamic
strength of LSES increased with the increase in cement content and confining pressure. The bonding
function of cement hydration products contributed to the dynamic strength of LSES; however, the
work required a certain content of cement. The dynamic strength of LSES decreased with the
increase in EPS bead content due to the low particle strength and smooth surface of EPS beads. The
cyclic number of failure (Nf) of both LSES and CS decreased linearly with the increase in dynamic
shear stress in semilogarithmic coordinates. Both the slopes and the intercepts increased with the
increase in cement content and confining pressure. However, they decreased with the increase in EPS
bead content.

Keywords: lightweight soil; dynamic strength; sand; EPS beads; cohesion; friction angle

1. Introduction

In the marine area, deep soft sediments have always been a significant engineering
geology challenge, resulting in continuous excessive settling of public infrastructures,
especially undue settling causing the cracking of pavement and bumps at bridge heads [1].
Meanwhile, from clothing packaging to food packaging, expanded polystyrene (EPS) is
being used on an increasing scale, especially after COVID-19, which further dramatically
increased the use of disposable EPS [2]. The reutilization of waste EPS packing boxes to
produce lightweight sand–EPS soil (LSES) is a good way to protect the environment and to
solve the engineering geology challenge of marine deep soft sediments [3].

LSES is a kind of geotechnical material with many merits, such as lightness [4], ad-
justability of strength/density [5], and fluidity [6]. It has been widely applied in many
engineering applications, including slope fill [7,8], soft foundation treatment [9], backfill
of pipelines [10–13], highway broadening [1], etc., as shown in Figure 1, and are known
as “green construction”. The static engineering properties of LSES have been investigated
a lot. Its dry density is controlled by the EPS bead content. Its shear strength linearly
increases with cement content and hyperbolically decreases with EPS bead content. Its
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cohesion increases with cement content because it is contributed by cement hydration
products. Its friction angle decreases with EPS bead content due to their smooth surface.
Furthermore, quantitative relationships have been provided [4,5,14–17]. As for the ap-
plication in transportation infrastructure, as well as the response under earthquakes, the
dynamic properties must be referred to. For cyclic axial strain greater than 1.0%, LSES
exhibits a visco–elasto–plastic behavior associated with the occurrence of permanent plastic
strains. The backbone curve of LSES is nonlinear, with a strain-hardening characteris-
tic [18], include a vibration compaction stage, vibration shear stage, and vibration failure
stage [1]. In addition, the backbone curves of SLES tends to increase with the increase in
cement content and confining pressure, which indicates that increase in cement content
and confining pressure could improve its dynamic strength and dynamic stiffness [19]. A
modified Hardin–Drnevich model was established by [18] to effectively predict results of
the backbone curves of LSES. Moreover, the simulation study on the process of falling rock
found that LSES could reduce the impact of falling rocks [20].
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Figure 1. Particle size distribution of material marine sand.

Aiming to investigate the dynamic strength characteristics of LSES made of marine
sand, which represents its bearing capacity under reciprocating cyclic load/seismic ac-
tion [21], a series of laboratory cyclic triaxial tests on LSES with different proportions was
carried out. The dynamic strength characteristics of LSES were observed. The influences of
cement content, EPS bead content, and confining pressure on the dynamic strength of LSES
were analyzed. The results were also compared with those of control sand (CS). The work
is novel, and the results will introduce the applications of LSES in coastland.

2. Materials and Methods
2.1. Materials

The LSES was made from marine sand, EPS beads, cement, and water. Marine sand
also worked as control samples. The material sand used in this study was taken from the
estuary of the Yangtze River, Chongming, Shanghai, China. Its specific gravity was 2.71
and its particle size distribution is shown in Figure 1, which indicates that the particles
were mainly in the scope of 0.1–1 mm. It was classified as poorly graded sand according to
the Unified Soil Classification System [22]. As for chemical composition, more than 97% of
the sand was silica.

The binder used in the experiment was #32.5 Portland cement produced by Zhongshan
cement factory in Nanjing, China, with a water–cement ratio of 1.2. The properties of the
cement are listed in Table 1.
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Table 1. Fundamental properties of the cement.

Item Value

Density 1.3 g/cm3

Specific density 3.0 g/cm3

Fineness (residue on 0.08 mm sieve) 2.50%
Normal consistency 25.2%
Initial setting time 2:35
Final setting time 3:50

3d fracture resistance 3.8 MPa
28d fracture resistance 8.0 MPa

3d compression strength 16.0 MPa
28d compression strength 42.0 MPa

The EPS beads are a macromolecule polymer with prior lightweight properties. The
EPS beads used in this study are produced by Youbang Plastics Co. LTD, Nanjing, China, as
shown in Figure 2. They were 0.0132 g/cm3 in bulk density and 2 mm in average diameter.
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Figure 2. Photograph of EPS beads.

2.2. Material Proportions of LSES

Aiming to investigate the influences of cement content and EPS bead content on the
dynamic shear strength characteristics, a total of 8 LSESs were tested in this study. Their
detailed material proportions are listed in Table 2, in which Ceps indicates the volumetric
content of EPS beads, Cc indicates the cement content by weight of dry soil, meps indicates
the mass of the EPS beads, ms indicates the mass of the sand, and mc indicates the mass of
the cement.

Table 2. The volume content of EPS beads and the proportion of cement.

Marker
Material Proportions Mass of Materials

Cc (%) Ceps (%) meps (g) ms (g) mc (g)

Sand 0 0 0 700.0 0
3–10 3 10 1.134 630.0 18.9
3–20 3 20 2.268 560.0 16.8
3–30 3 30 3.402 490.1 14.7
3–40 3 40 4.536 420.1 12.6
6–40 6 40 4.536 420.1 25.2
9–40 9 40 4.536 420.1 37.8
12–40 12 40 4.536 420.1 50.4

2.3. Preparation of Specimens

The preparation of specimens is shown in Figure 3. All materials were measured and
put into a blender. They were stirred to be uniform at a speed of 50 rot/min for 5 min. The
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mixtures were then put into a mold, which was 61.8 mm in diameter and 140 mm in height.
The target void ratio was 0.62. Each specimen was compacted in 5 layers [5]. Four samples
were prepared for each dosage of LSES. The specimens were cured in an oven at 20 ◦C and
99% humidity for 28 days. After being cured, the specimens were put into an air extractor
and vacuumized for 20 min at a vacuum degree of −0.1 MPa. Finally, the specimens were
fully saturated by opening the water inlet valve, and then soaked in water for 24 h.
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Figure 3. Preparation of specimens.

2.4. Test Methods

The specimens were tested by a multi-functional automatic dynamic triaxial apparatus
developed by Hohai University, Nanjing, China and Round Well Co., Ltd, Tokoy, Japan.
The samples were placed in the cell that connected the vibration equipment. A cell pressure
of 20 kPa was applied to saturate the pipeline until no air bubbles remained in the drainage
pipe. A vacuum pressure of 100 kPa was then applied to saturate the samples. Certain
confining pressures (60, 90, and 120 kPa) were applied to consolidate each sample. The
consolidation processes were carried out until the volume change of the sample in 5 min
was less than 0.1 mL. After that, undrained dynamic shear tests were conducted under
sine dynamic load with a frequency of 0.1 Hz. The amplitude of dynamic shear stress was
controlled by the dynamic shear stress ratio, as shown in Equation (1), which was 0.5, 0.6,
0.7, and 0.8, respectively.

s =
τd
σc

=
σd
2σc

(1)

where

s is the dynamic shear stress ratio;
τd is the maximum dynamic shear stress;
σc is confining pressure for consolidation;
σd is deviatoric stress.
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3. Results and Discussion
3.1. Identification and Presentaion of the Dynamic Shear Strength of LSES

Figure 4 shows a typical dynamic deformation curve of LSES. The specimen was 6–40,
the confining pressure was 90 kPa, and s was 0.8. At the beginning, the maximum dynamic
strain of LSES developed with the increase in loading cycles gradually, which can be called
the deformation developing stage. After that, the maximum dynamic strain of LSES kept
at a level with the increase in the number of cycles, which can be called the deformation
maintaining stage. Last, the maximum dynamic strain of LSES started to decline. As
is known, there are four common criteria for dynamic shear failure, including the pore
water pressure criterion, ultimate equilibrium criterion, maximum strain criterion, and
yield failure criterion [21]. Since the EPS beads contained bubbles, the pore water pressure
criterion and the ultimate equilibrium criterion were not applicable for LSES. The failure
strain of LSES was generally less than 2%, which is much less than the maximum strain
criterion of 5% or 10%; thus, the maximum strain criterion was not applicable for LSES.
Based on the yield failure criterion, the decline in maximum dynamic strain of LSES can
be regarded as the failure of LSES. Therefore, the last stage can be called the failure stage.
Taking this typical dynamic deformation curve, for example, the failure number of loading
cycles (Nf) was 30 [18]. That is to say, an LSES of 6–40 will fail after 30 loading cycles when
the dynamic shear stress (σd/2) is 72 kPa, which is obtained by Equation (2).

τd = sσc= 0.8 × 90 = 72 kPa (2)
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s = 0.8).

3.2. Effect of EPS Bead Content on Dynamic Shear Strength

The relationships between the dynamic shear strength (σd/2) and failure number of
loading cycles (Nf) of the LSES and sand are shown in Figure 5. It is clear that the Nf
of both the LSES and sand decreased with the increase in dynamic shear stress. For the
relationships to fit the linear relationship well, they can be expressed with Equations (3)
and (4). Moreover, the dynamic shear strength of the LSES decreased with the increase
in EPS bead content. When the EPS bead content was 10%, 20%, or 30%, the relationship
curve between the dynamic shear strength and Nf was higher than that of sand. When the
EPS bead content was 40%, the relationship curve between the dynamic shear strength and
Nf was lower than that of sand. The possible reason is that the soil skeleton was too small
in the specimen cross-section when the EPS bead content was exorbitant, and then little
dynamic shear stress occurred when the effective stress increased. It was revealed that the
increasing EPS bead content obviously reduced the dynamic strength of EPS composite soil,
which is the same as the results in this study [23]. It was reported that the shear strength of
clay/EPS particulate mixtures was relatively unaffected by the EPS content [24], which is
different from the results in this study. The reason is probably due to the different grade
of EPS.
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σd/2 = a − b lgNf (3)

b = −[∆(σd/2)/∆lgNf] (kPa) (4)

where

σd/2 is the dynamic shear strength (kPa);
Nf is the failure number of loading cycles;
a is the intercept of the line, which represents the dynamic shear strength when Nf is 1;
b is curve’s slope, which represents the decrease in dynamic shear strength with Nf in logarithmic.
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3.3. Effect of Cement Content on Dynamic Shear Strength of LSES

The σd/2~Nf curves of the LSES with 40% EPS bead content and sand are shown
in Figure 6. It can be found that the dynamic shear strength of LSES increased with the
increase in cement content. Ref. [23] reported that the increasing cement content effectively
improved the dynamic strength of EPS composite soil, which is in agreement with this
result. When cement content was 3%, the relationship between the dynamic shear strength
and Nf of LSES was similar to that of sand. When the cement content was 6%, 9%, or 12%,
the decrease in dynamic shear strength of LSES with Nf in logarithmic was larger than that
of sand, indicating that the dynamic shear strength decreased more sharply than the sand.
This may have resulted from the increase in brittleness of the LSES due to the addition of
cement, which weakened the ability to resist cyclic loading.
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3.4. Effect of Confining Pressure on Dynamic Shear Strength of LSES

The σd/2~Nf curve of the LSES of 9–40 and sand at different confining pressures are
shown in Figure 7. The dynamic strength of the LSES and pure sand increased with the
increase in confining pressure. It can be seen that the change law of dynamic strength and
static strength of the LSES with confining pressure was the same. In the same confining
pressure, the dynamic shear strength of the LSES of 9–40 was higher than that of pure sand.
This indicates that the dynamic load required to break the LSES was significantly greater
than that required for pure sand. However, the differences decreased with the increase in
Nf. This could be due to the special strength mechanism and failure process of LSES. LSES
is formed by wrapping sand particles and EPS beads with cement hydrate. Therefore, the
strength of the LSES samples mainly depended on the strength of the cement hydration
products. At the initial stage of dynamic load, the LSES samples were intact, and the sand
particles and EPS beads were effectively covered by cement hydration products. Therefore,
the dynamic load required to damage the LSES in fewer loading cycles was large. When
LSES is subjected to dynamic loading continually, the cement hydration products suffer
from concentrated stress. When the concentrated stress reaches the strength of the cement
hydrate, microcracks occur, and then the cracks expand and connect with each other. After
that, the sand particles and EPS beads disperse and separate from each other to fill the
cracks. Therefore, the positive strain decrease forms the typical failure performance of
LSES. All these results are in complete agreement with the results of other soils [18,25,26].
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Figure 7. σd/2~Nf curve of sand and LSES sample with different confining pressure.

3.5. Dynamic Mohr Circle and Dynamic Strength Parameters of LSES

The dynamic Mohr circle and failure envelope of the LSES of 9–40 and sand at con-
fining pressures of 60, 90, and 120 kPa are shown in Figures 8 and 9, respectively. The
dynamic Mohr stress circle was divided into a compression stress semi-circle and tensile
stress semi-circle. The consolidation stress was considered the starting point of the stress
circle, and the dynamic stress was taken as the radius to draw a semicircle in both the
positive and negative directions of the horizontal axis. For example, point A indicates the
consolidation stress in Figure 7, and semi-circles 1 and 2 are tensile and compression stress,
respectively. It can be seen that the tensile stress semi-circle failed first, and the failure
envelope of the stress circle was drawn based on the tensile stress semi-circle. The intercept
of the failure envelope indicates cohesion (cd) and the incline angle indicates friction angle
(ϕd). The dynamic cohesion cd of the LSES of 9–40 and sand were 28.5 kPa and 0 kPa,
respectively. The cohesion of the LSES was enhanced due to the binding of the cement
hydrate. The dynamic friction angle ϕd of the LSES of 9–40 and sand were 21.8◦ and 31.4◦,
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respectively. This means that dynamic friction angle of the LSES was smaller than that of
sand. This could be due to the smooth surface of the EPS beads. This is in agreement with
what [22] reported, in that the addition of EPS beads led to an increase in the cohesion, as
well as to a reduction in the friction angle.
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Figure 8. Dynamic Mohr circle and failure envelope of LSES of 9–40 under different confining pressures.
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4. Conclusions

Based on the indoor dynamic shear strength tests of LSES and material sand, the
dynamic strength of LSES increased with the increase in cement content and confining
pressure. The bonding function of cement hydration products contributed the dynamic
strength of LSES; however, the work required a certain content of cement. The dynamic
strength of LSES decreased with the increase in EPS bead content due to the low particle
strength and smooth surface of the EPS beads. The logarithms of the Nfs of both LSES
and the material sand decreased with the increase in τd in linear. Both the slopes and
the intercepts of the τd~lnNf curves increased with the increase in cement content and
confining pressure. The intercept of the τd~lnNf curves decreased with EPS bead content.
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