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Abstract: Local energy markets (LEMs) use online platforms and smart grid technologies to in-
centivize and coordinate a local supply of spatially-distributed renewable energy resources, which
may not be directly controllable by power system operators. Socio-economic values are increas-
ingly noted as prominent motivations for expected LEM users, but socio-economic aspects of user
decision-making or market outcomes are not considered in current LEM mechanism design analy-
ses. Here, agent-based simulation is used to analyze expected socio-economic outcomes from LEM
operation under a double-sided auction with uniform pricing. The environment is modeled as a
virtual LEM platform, operating independently from the underlying power grid. Socio-economic
market inputs are produced by income-preference heterogeneous agents, and market outcomes are
evaluated by two key socio-economic metrics: energy affordability, and market access. When LEM
prices are not restricted to a common range considered by all agents (e.g., between external retail
market prices), access disparities may arise; LEM price restriction addresses consumer disparities,
but energy affordability gaps are expected to remain. The magnitude of affordability gaps is notably
reduced, and bill assistance programs may eliminate remaining gaps, but a mechanism that efficiently
realizes socio-economic standards for energy affordability may also reduce expected LEM operation
costs. Remaining research gaps are noted, and LEM support for equitable and sustainable energy
infrastructure is emphasized.

Keywords: local energy markets; mechanism design analysis; distributed energy systems; sustainable
energy infrastructure; agent-based simulation; energy equity

1. Introduction

Electrical power grids which rely on centralized, fossil fuel-based energy generation
currently face the challenge of safely and sustainably integrating renewable energy sources
at a sufficiently large scale to support climate change adaptation and mitigation efforts. At
the same time, centralized energy systems face challenges regarding operational resilience,
and the production of equitable environmental and socio-economic outcomes for local
communities. For example, even if we limit our scope to metropolitan areas just within
the United States, we still find tens of millions of households with severely unaffordable
energy costs [1].

Distributed energy systems (DES) have emerged through recent decades as a promis-
ing approach to energy infrastructure development centered around spatially and orga-
nizationally distributed renewable energy resources (RERs) for energy generation and
storage. Local-level “microgrid” energy systems are a common focus in DES engineering
research; these systems may integrate local-scale renewable energy supply into the “edges”
of a power grid and may be coordinated to provide grid services such as local-level load
balancing [2,3]. In DES, local energy markets (LEMs) have been proposed as mechanisms
of incentivization and coordination for an expected DES power supply base consisting
of a non-trivial amount of renewably-sourcedd energy supplied by spatially distributed
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local generators. In microgrid scenarios especially, these local generators are often called
“prosumers”—or energy consumers which utilize renewable energy resources (RERs, such
as solar PV panels) to offset their energy demand, and may produce surplus energy for
LEM sale. For organizational simplicity, we refer to prosumers strictly as energy sellers
in this study; however, in real-world systems, their role may change dynamically across
time between buyer and seller. A variety of LEM mechanism designs have been proposed,
largely consisting of direct optimization and game theoretic approaches [3–5].

In power grids which are equipped for bi-directional power transmission, and feature
greater path redundancy than traditional systems (e.g., microgrids with peer-to-peer power
networks), LEMs are expected to enable solutions to energy system carbon emissions,
and to grid stability issues posed by renewable energy transition, while also improving
local-level economic and “equity” outcomes produced by energy infrastructure operations.
On an LEM platform which is physically connected to an underlying power system, LEM
settlement may help set optimization constraints for power distribution locally. The “vir-
tual” LEM, on the other hand, is essentially a marketplace for the trade of “energy credits”,
which utility customers may purchase to offset their expenses from energy exchange in
the current, centralized utility grid. A virtual LEM may run in parallel to retail energy
markets, which often provide a wide range between retail sale prices for consumers, and
retail purchase prices for prosumers with net energy supply. Nearly all real-world DES are
currently structured around virtual LEMs; but while some LEMs restrict potential prices to
this range, many LEM designs do not.

The LEM represents a critical vector of engagement between DES and the surrounding
community, and a growing number of experimental works suggest that the socio-economic
impacts of LEM operation are a strong factor in participation motivations for expected
users [6–9]. Overall, the socio-economic impacts of LEM mechanisms on local households
can be well-expected to impact community and user engagement with the platform. How-
ever, socio-economic outcomes are largely unconsidered in LEM design analysis, and socio-
economic factors in user behavior are not currently modeled. Effective simulation-based
modeling and analysis of influential socioeconomic factors in “virtual” LEM outcomes is
emphasized as the primary research scope of the current work.

A key barrier to the assessment of expected socio-economic impacts lies in the model-
ing of software-based user agents which interact with the marketplace on behalf of users. In
system implementations, either agents’ behavior is fully determined by user input, or else
agents act autonomously on behalf of users while considering user preference inputs (e.g.,
price constraints, and level of preference for local, renewable energy) [10]. Users’ preference
for own-economic value maximization is well-represented in current agent modeling [11].
Additional user inputs regarding preferences and bidding limits, for example, are strongly
related to external individual and socio-economic conditions, but are not modeled.

The impacts of socio-economic inputs to the LEM are explored in this work using
agent-based modeling. The described agent modeling includes household income dis-
tribution, economic rationality constraints, and value preferences as expected influential
socio-economic input factors. In the modeling, these factors play key roles in defining the
range of market strategies that an agent considers, and in producing behavioral reinforce-
ment from market outcomes. Single-parameter utility models are defined which represent
own-economic value (cost savings for consumers, and sales profits for prosumers), and
“additional” value preferences under which value is placed on LEM supply due to the
expected environmental and/or socio-economic benefits from its generation, sales, or use.
A “preference parameter” mediates the influence of value types on consumer utility. A
metric-based approach is taken to assessing socio-economic outcomes in the presented
work. Two key socio-economic metrics are described and evaluated: energy affordability,
and relative market access. Both are described in Section 2.6.

The Brooklyn Microgrid project is an increasingly well-known virtual LEM implemen-
tation [10]. It uses a uniform-price double-sided auction (UDA) mechanism to produce
market settlement at discrete time intervals. Auction-based approaches are predominant in
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LEM mechanism design [4,12–14], but the expected socio-economic impacts of operating
consumer-facing energy infrastructure via auction on local communities has not been well-
studied. On the other hand, current retail energy markets generally provide full and equal
access to the energy demand of connected utility customers, but often produce conditions
of energy poverty among low-income households. For example, well over a million house-
holds in New York City alone experience energy costs over 50% greater, by proportion of
household income, than the current energy affordability threshold of 6% adopted by the
City of New York [15]. Consistent with [16], simulation environment parameters and LEM
modeling in the current work represent the Brooklyn Microgrid and the surrounding area
in 2019 (see Section 2.1). The presented work considers a multi-part research question, with
each part answered via simulation experiment results analysis:

• How may socio-economic outcomes from LEM operation differ from current retail
energy market outcomes, under a UDA mechanism? Specifically, can uniform market
access be maintained under LEM operation? To what extent may local energy afford-
ability issues be addressed? How may the range of allowed bidding and asking prices
impact LEM outcomes?

2. Methodology

After simulation environment and agent parameters have been initialized, a simulation
follows the execution loop noted in Figure 1. Agents representing LEM platform user
households are modeled and initialized as shown in Sections 2.2–2.4 Households are
assumed to be physically connected to the underlying power grid, and may access a retail
energy market maintained by power grid operators. The LEM simulation has a “hub and
spoke” network topology, in which each agent solely interacts with retail and local markets,
solely via the modeled LEM platform.
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In the current work, NetLogo is used to implement an agent-based simulation of a
virtual LEM platform, which is modeled after the LEM utilized in the Brooklyn Microgrid.
The underlying power system is not modeled, and agents’ energy supply and demand
quantities are taken as a variable parameter in simulation experiments Experiments are
conducted using the BehaviorSpace package for NetLogo, and simulation results for each
experiment are analyzed via R scripts. Simulation environment modeling, including income



Sustainability 2022, 14, 7642 4 of 25

distribution and energy markets, is described in Section 2.1; experiments are detailed in
Section 3.

At each simulation step, agents select market strategies (bid or ask prices S′t) via rein-
forcement learning and submit market quantity and strategy data to the marketplace. At
each step, initial market quantities Q0,t = {Di + Gi : i ∈ I} indicate consumer demand
and prosumer supply, depending on agent “type” Ci ∈ {0, 1} for a given agent i ∈ I.
Market settlement is described in Section 2.1, and Section 2.4 describes agent-level parame-
ter initialization. All symbols and parameters are described in the following sections, as
they are presented. Parameter and symbol reference is provided in the Glossary, which
is located in Section 6. Key simulation parameters are presented in Table 6, while Table 7
summarizes the data used to compute and describe simulated market settlements. In
Table 1 below, general abbreviations are noted which are used throughout the text.

Table 1. Overview of key abbreviated terms used in the current and previous sections.

Other Abbreviated Terms

Acronym Name Description

DES Distributed energy
system

Energy system which is decentralized, but feature some level of inter-connection; a
number of localized microgrids connected to a main, regional energy grid is an

example of DES; often characterized by RER

RER Renewable energy
resource

Device used for renewable energy generation, storage, etc. These may include, e.g.,
solar PV panels, wind turbines, battery storage, or electric vehicles.

LEM Local energy market Virtual platform to coordinate local-scale energy distribution; often a peer-to-peer
network or a centralized auction platform for local utility customers

UDA Uniform double-sided
auction

A double-sided auction with a uniform market-clearing price, merit-order supply
allocation, and a closed order book. Double-sided auctions are a class of auction

commonly used to produce efficient allocations of private goods.

After local market settlement, allocation quantities Qloc,t and transaction prices Ploc,t
are collected for each agent, and the retail market is settled as described in Section 2.1. All
remaining consumer demand is purchased from the main grid at the retail price pret, and
all remaining prosumer supply is sold to the main grid at the feed-in tariff price p f it. Based
on study scope, static retail prices are assumed.

Retail and local market results data are then returned to agents, as shown in Figure 1.
Based on market outcomes and individualized value functions, agents update their learning
model states in preparation for the next simulation step. Agent behavior is described in
Section 2.5. Data on market transactions and agent states are collected at the end of each
step, which are used to calculate results analysis metrics (Section 2.6).

Sufficient power supply is assumed locally, and power grid stability is assumed regard-
less of prosumer behavior. At the same time, prosumers are modeled without consideration
for storage resources; the impact of battery capacity, charge state, and supply scheduling
efficiency, for example, may be considered in future work. Agents are also assumed to
have perfect prediction for their own supply and demand at each time step. Local energy
supply is assumed to be generated by prosumer households utilizing sustainably-sited
residential-scale solar PV systems without energy storage capacity.

2.1. Simulation Environment Modeling

Household income is modeled as a part of the simulation environment which impacts
simulated agents’ initialization conditions. Incorporating an income distribution into agent
modeling allows agent behavior to be constrained by economic rationality when market
price constraints are lifted. In the current work, household income affects the range of bid
prices considered by an agent, and lower-bounds the emphasis placed on own-economic
value in utility function calculation. The income distribution described in Table 2 was
observed in Brooklyn, NY, in 2019 [17]. Agents are uniform-randomly selected for each
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income bracket, and each agent’s income Ri is initialized by a separate uniform random
draw between the bracket minimum and maximum incomes. Population proportions
in each income bracket are rounded to support simulation implementation. Agents in
lowest and highest brackets are assigned the maximum and minimum incomes, rmax and
rmin respectively.

Table 2. Overview of agent income distribution modeling, defined using U.S. Census data on annual
household income in Kings County, New York, 2019, as presented in [17].

Agent-Level Income Distribution

Agent Income Ri
(in Thousands $USD) Population % Agents Selected (N = 100)

Ri ∈ [$0, $10] 8.8 9

Ri ∈ ($10, $15] 6.4 6

Ri ∈ ($15, $14] 9.6 10

Ri ∈ ($25, $35] 8.3 8

Ri ∈ ($35, $50] 10.5 11

Ri ∈ ($50, $75] 14.1 14

Ri ∈ ($75, $100] 11.2 11

Ri ∈ ($100, $150] 14.0 14

Ri ∈ ($150, $200] 7.4 7

Ri > $200 9.6 10

In the simulated LEM environment, the physical power grid is not modeled—however,
a basic model of the power grid owned and operated by Consolidated Edison in the
Brooklyn, New York area (NYISO region “J”) provides representation of the retail mar-
ket corresponding to the local power grid. This retail market is assumed to always
be available to all agents, always able to supply consumer demand, and always able
to safely accommodate excess prosumer generation. The modeled retail energy price
pret = $0.175 usd/kWh represents a typical retail purchase price in Brooklyn, New York,
in 2019. Prosumer generation may be purchased by the retail market at the feed-in tariff
price p f it = $0.053 usd/kWh. This retail market model essentially accounts for agents’
remaining demand or supply after local market settlement, due to its simplicity.

Under the current SDR-based simulation design, all agents are modeled with identical,
static values for daily energy demand quantity. Specifically, demand is set to Di = 19.64 kW
for all agents i ∈ I. To produce specific and distinct supply-demand ratios for market
outcome analysis, agents’ daily generation is varied according to the specified SDR for a
simulation scenario. Agent behavior in the current work is limited to market price strategy
selection; agent behavior with regard to demand response, supply scheduling, etc. are
not currently considered in the modeling, due to the current research scope. Agents’ daily
energy generation quantity Gi is initialized for agents i ∈ I as shown in Algorithm 1
below. Note that Ci ∈ {0, 1} is held by each agent to indicate their “type” as consumer
(Ci = 1) or prosumer (Ci = 0).

Algorithm 1: Daily initialization of agent generation quantities.

1. For each i ∈ I:
2. If (Ci = 0):
3. Gi = Di +

SDR ∗ ( ∑j∈Icon Dj )
|Ipro|

4. Else: Gi = 0
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Mengelkamp et al. [10] provides one of the most visible LEM design analyses in recent
work. Through quantitative evaluation of Brooklyn Microgrid design, the market platform
itself is well-described. Based on this previous work, a LEM environment is implemented
which is settled using a “uniform double auction” (UDA). In a number of previous works,
LEM prices are restricted to the range ploc ∈

[
p f it, pret

]
; for example, in directly-related

works such as [4,11,18–21]. However, in a number of real-world systems (e.g the Brooklyn
Microgrid, which is modeled here) do not appear to make this restriction. Both scenarios
are explored by the experiments described in Section 3.1.

The local market is settled according to the uniform-price, double-sided auction
settlement described in Algorithm 2. Supply and demand are matched using merit-
order supply allocation; prosumers are matched in order of increasing ask price, and
consumers are matched with prosumers in order of decreasing bid price. Transaction
quantities Qloc,t are defined by the minimum of matched agents’ demand and supply
quantities. A uniform market-clearing price ploc,t is used for all transactions in a given
market settlement, which is the bid price of the last-matched consumer in the current
LEM settlement. This auction restricts agents’ information to their own market inputs
{Q0,i,t, S′i,t} and outputs

{
Qloc,i,t , ploc,t

}
.

Algorithm 2: Overview of modeled double auction, which uses merit-order supply allocation and
a uniform, market-clearing price.

1. For each t ∈ T:
2. bidders ← sort

(
I, current_bidi,t, >

)
3. suppliers ← sort

(
I, current_askj,t, <

)
4. While (bidders ! = ∅ ∧ suppliers ! = ∅):
5. allocate_supply( bidders[0], suppliers[0] )
6. If (remaining_demandi,t of bidders[0] = 0):
7. If (length(bidders) = 1):
8. Ploc,t ← current_bidi,t of bidders[0]
9. Remove bidders[0] from bidders
10. Else if (remaining supplyi,t of suppliers[0] = 0):
11. If (length(suppliers) = 1):
12. Ploc,t ← current_bidi,t of bidders[0]
13. Remove suppliers[0] from suppliers
14. Calculate and assign transaction costs for time t

2.2. Consumer Agent Modeling

Consumer modeling is largely defined by market utility modeling Vcon
i,t (Qi,t, Pi,t, θi) ,

shown in Equation (1). Consumers’ utility modeling is described in Equations (1)–(3).
Equation (1) describes the total utility function, which represents a mutually exclusive
balance between a consumer’s own-economic (oe) and “alternative” (alt) sources of value
from the LEM settlement.

Consumer value preference parameter θi ∈ [0, 1] indicates the relative measure of
emphasis that a consumer agent places on own-economic utility maximization—that is,
on energy cost savings. It is a function of local market price and quantity outcomes and is
described by Equation (2). When θi = 1 ∀ i ∈ I and ploc ∈

[
p f it, pret

]
, consumer utility

modeling reflects [11,16]. In the current work, own-economic value is lower-bounded at
zero; removing this constraint may support the investigation of research questions related
to potentially-irrational user behavior. Qgrid,i,t gives retail market purchase quantity for
agent i at time t.

In contrast to own-economic utility, (1− θi) represents a consumer’s level of “alterna-
tive” utility preference; it represents a user’s “willingness to pay” for LEM-sourced energy
supply. Consistent with previous experimental works which evaluate the preferences and
motivations of potential LEM users [6,7,9,22], this “alternative” value preference repre-
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sents the value that a consumer derives from local energy purchase due to environmental,
socio-economic, or other motivations. Under the assumption that LEM energy is fully
carbon-neutral, and sourced directly from local households with ecologically sustainable
siting for RERs, LEM energy purchases are well-aligned with these value preferences.

Vcon
i,t (Qi,t, Pi,t, θi) = (θi ∗ uoe,i,t) + ((1− θi) ∗ ualt,i,t) (1)

uoe,i,t = θi ∗ min
[

0,
(
(pret,i,t ∗ Qgrid,i,t)− (Ploc,i,t ∗ Qloc,i,t)

) ]
(2)

ualt,i,t = (1− θi) ∗ (max[s ∈ Si] ∗ Qloc,i,t) (3)

Market strategies s ∈ Si considered by each consumer represent prices that (1) the
agent is rationally able and willing to pay on behalf of the LEM user household, and (2) are
allowed by the LEM platform. The initialization of bid range Si is specific to individual
agents and is described in Section 2.4. Here, a rational interpretation of bid range supports
modeling of “alternative” utility.

Equation (3) describes “alternative” (alt) utility as a user’s private “reserve price” for
energy smax,i = max[s ∈ Si]. This price captures all value sources for the agent, including
“alternative” value preference; it may also be referred to as the agent’s “reserve price”,
or true valuation of local energy. We note that the current formulation does not yet
clearly distinguish between the influences of individual preferences (or own-economic
preference specifically) on smax,i, but also note (from Section 1) that “alternative” value
factors generally represent the majority of influential value sources noted by potential LEM
users in cited studies.

2.3. Prosumer Agent Modeling

Prosumer utility Vpro
i,t (Qi,t, Pi,t, θi) is described by Equation (4) as the sum of utility

derived from sales to the retail grid market, and from the local market. In Equation
(5), prosumers’ valuation of retail grid profits is modeled identically for all agents, as
in previous work [11,16]. Local sale valuation, however, depends on prosumer value
preference parameter θi ∈ {1, 2, 3}. Prosumers’ θi indicates a specific preference “type”,
which determines their sensitivity to changes in local market price; the specific form of
Equation (6) used by a given prosumer to determine local market settlement utility is
determined by θi. For preference type θi = 1, local sales profits describe expected prosumer
utility in Equation (6), reflecting prosumer utility modeling presented in [11,21] and utilized
in [16]. Consistent with previous work, RER operation costs are approximated to zero,
reflecting the low marginal cost of PV panel operation.

Prosumers have been noted in a number of recent works to hold a wide range of
motivations for RER uptake and value preferences for LEM sales [6,8,9,23,24]. Consistent
among these works is the identification of own-economic value maximization as a motivat-
ing factor. However, value preferences are noted which do not necessarily depend on sale
price—examples include a prosumer’s derived value from supporting carbon emissions
reduction, realizing energy autarky, or supporting their local community. The maximum-
allowed prosumer asking price (pret) represents an upper-limit to the per-unit sales value
that a prosumer can expect from the LEM. Due to the price-inelastic nature of “alternative”
value sources, prosumers with preference type θi = 3 are modeled as retaining value from
market settlement independent of local price fluctuations.

Vpro
i,t (Qi,t, Pi,t, θi) = grid_vali,t + local_vali,t (4)

grid_vali,t = Qret,i,t ∗ p f it (5)

local_vali,t = y (6)

where if (θi = 1):
y = Qloc,i,t ∗ Ploc,i,t
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else if (θi = 2):
low = pret −

((
pret − p f it

)
∗ (1− 0.3714)

)
pct =

(
Ploc,i,t − p f it

)
/
(

pret − p f it

)
y = ((low + ((pret ∗ low) ∗ pct)) Qloc,i,t)

else:
y = Qloc,i,t ∗ pret

Prosumer utility for preference “type” θi = 2 represents a prosumer with “mixed”
value preference; in other words, a prosumer which may simultaneously hold both own-
economic and “alternative” valuations for energy sales. The value function in Equation
(6) for Type-2 prosumers is modeled based on sale preference data described in [24] for
prosumer cluster B. Since energy storage is not represented in the current work, the average
decrease in sale probability between maximum and minimum market prices (across all
battery charge states presented in the cited experiment) is compared to that of prosumer
cluster A, to describe the difference in relative utility decrease (as indicated by sale prob-
abilities) for cluster B prosumers compared to cluster A prosumers. The relative utility
decrease for cluster B prosumers is ~37% less, on average, than for cluster A; this relatively
reduced “elasticity” in sale utility is described by Vpro

i,t (Qi,t, Pi,t, θi = 2).

2.4. Agent-Level Parameter Initialization

The current study is interested in evaluating socio-economic impacts of LEM outcomes
which are generated by (1) input factors shaped by “external” socio-economic conditions,
and (2) market dynamics produced by a given mechanism design. As an initial step, agent
parameters and decision-making are shaped by random functions of household income Ri,
individual value preference θi, and the feedback loop between an agent’s selected market
strategies and their market settlement outcomes. Agent-level parameter initialization is
shown in Algorithm 3.

After agents’ incomes Ri are assigned as in Section 2.1, preference parameters θi are
set for each agent, and the bounds of each agent’s considered market strategy range are
set. As noted previously, consumer θi ∈ [0, 1] indicates emphasis on own-economic value,
while prosumer θi ∈ {1, 2, 3} indicates preference type, between “own-economic” (θi = 1),
“alternative” (θi = 3), and “mixed” (θi = 2). For consumers and prosumers both, smax,i
constrains agents’ range of potential market strategies Si,t.

Prosumer preference type θi is set on Line 15 using a multinomial distribution on a set
of relative probabilities Π = { π1, π2, π3 } of assigning a given type value. The relative
probabilities in Π are held constant in a given simulation but may be defined differently
between simulations. As a localized distribution has not yet been defined, a range of
distributions are tested in Experiment 2 (Section 3.1).

Prosumers’ maximum asking price smax,i is to pret on Line 14 (Algorithm 3). However,
the range of bidding prices considered by each consumer agent is set between p f it and an
individualized upper bid limit smax,i (set on Line 6). This is the maximum bid price that
a consumer will consider selecting as a market strategy; it is based on willingness to pay,
and ability to pay. “Ability to pay” is represented by δi on Line 8. Variable δi determines
if (and by how much) the consumer is rationally able to bid higher than the retail price.
A consumer agent’s willingness to pay above pret in the local market, then, is given by
δi ∗ (1− θi) in Line 6.
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Algorithm 3: Initialization of agent types and behavioral parameters

1. Randomly select |Icon| = 75 agents (no replacement):
2. Set Ci = true // initialize consumer
3. Set Ri as in Section 2.1
4. Set θi ∼ Uni f orm

( (
1 − Ri − rmin

rmax − rmin

)
, 1
)

5. Set P∗i = [ (Ri / T) ∗ e′ ] / EST
6. Set smax,i = pret + (δ ∗ (1 − θi) )
7. where:
8. δi = max

[
0,
(

Pmax,i − pret
) ]

9. Pmax,i =
[
(Ri / T) ∗ upper_lim

]
/ Di

10 upper_limi = eobs ∗
(

1− Ri−rmin
rmax−rmin

)
11. Randomly select

∣∣Ipro| = 25 agents (no replacement):
12. Set Ci = f alse // initialize prosumer
13. Set Ri as in Section 2.1
14. Set smax,i = pret
15. Set θi ∼ Multinomial( 1, Π )
16. where:
17. Π = { π1, π2, π3 } such that:
18. πj ∈ {1,2,3} = Prob (θi = j)
19. and

(
∑j∈{1,2,3} πj

)
= 1

20. For all agents i ∈ I:
21. Set Si,t = { p f it, . . . , smax,i }

Rationality in considered bid price (upper_limi, Line 10) scales inversely with income,
from a conservative estimate eobs = 13% of local low-income energy cost burden, as a
percentage of household income. Consistent with static, uniform energy demand Di ∀ i ∈ I,
the variable upper_limi constrains all agents’ maximum energy costs to be at or below an
upper-end observed cost for real-world energy consumers locally (eobs ∗ pret), noting that
this cost constitutes an increasingly-small proportion of household income Ri, as income
increases from rmin to rmax.

Consumer price target P∗i is described (on Line 5) as an energy purchase price which
makes an equitable supply threshold (EST) quantity of energy affordable to agent i with just
e′ = 6% of household income Ri. Consistent with [25–27], we consider an EST quantity of
energy consumption to allow for a full, equitable level of participation in modern life locally.
Specific EST quantities may vary spatially and temporally, and may be defined differently
across demographic groups in a local area. In the current study, EST = µ[ Di ∈ I ], denoting
the unweighted mean individual energy demand across all agents.

2.5. Agent Learning & Behavior

In the current work, user-agent behavior is limited to price strategy selection, in order
to isolate the combined impacts of user value preferences θ on market settlement. As
noted previously, “strategies” in the current work refer to consumers’ bidding prices and
prosumers’ asking prices, for energy offered by local prosumers in the LEM. Agents behave
according to the Modified Roth-Erev (MRE) reinforcement learning algorithm presented
in [21], which describes a stochastic approach to individual utility maximization. The MRE
algorithm has more recently been demonstrated in [11] and self to support simulation-
based LEM mechanism design evaluation, consistent with the original empirical context of
learning algorithm development [28].

The MRE algorithm takes two parameters λ and ε, representing learning rate and
memory, respectively. Consistent with [16], parameter values of λ = 0.083 and ε = 0.01 are
set for all agents, to support efficient and rational behavior which may, theoretically, be
taken to represent expected user behavior in the modeled LEM setting. The learning
parameters mediate the influence of the agent’s utility perception on the update of strategy
propensities ui,s,t+1 in Equation (7), for each considered strategy s ∈ Si of a given agent i.
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Strategy propensities are used in Equation (8) to derive the relative probability xi,s,t+1 of
each considered strategy s ∈ Si; Equation (9) then collects relative probabilities xi,s,t+1 into
the set Xi,t+1, used in strategy selection. Overall, the MRE algorithm takes individual
market settlement results {Qi,t, Pi,t} at each time step and produces a market strategy
selection S′i,t+1 as a function of individual utility, according to Algorithm 4.

ui,s,t+1 = (1− λ) ∗ ui,s,t +

{
Vi,t(Qi,t, Pi,t, θi) ∗ (1− ε)(if s = S′i,t)

ui,s,t ∗
(

ε
|Si |−1

)
(otherwise)

(7)

xi,s,t+1 =
ui,s,t+1

(∑ ui,s,t+1)
(8)

Xi,t+1 = { xi,1,t+1, xi,2,t+1, . . . , xi,|Si |,t+1} (9)

At the agent level, simulations follow the execution loop described by Algorithm 4,
which implements the MRE algorithm. Agents choose strategies at random from a
Multinomial(|Si|, Xi,t ) distribution, where the vector Xi,t contains the relative probabilities
of each strategy in an agent’s considered strategy set Si. When market settlement results
{ Qt, Pt } are received by agents, updated strategy probabilities Xi,t+1 are calculated for
the following time-step according to market results, preference parameter θi, and utility
function Vcon

i,t or Vpro
i,t (Equations (1) and (4), respectively), depending on agent type Ci,

which is set using Algorithm 3.

Algorithm 4: Overview of Modified Roth-Erev learning algorithm for double-sided auction
behavior representation in energy market.

1. For market settlements t ∈ T:
2. For agents i ∈ I:
3. Draw S′i,t ∼ Multinomial

(
|Si
∣∣, Xi,t

)
4. Submit strategy S′i,t to LEM
5. Receive LEM settlement results: { Qt, Pt }
6. Calculate Xi,t+1 via Equations (7)–(9), such that:
7. If (Ci > 0): // if agent is “consumer” type
8. Vi,t

(
Qi,t, Pi,t, θi

)
← Vcon

i,t
(
Qi,t, Pi,t, θi

)
9. Else: // if agent is “prosumer” type
10. Vi,t

(
Qi,t, Pi,t, θi

)
← Vpro

i,t
(
Qi,t, Pi,t, θi

)
2.6. Results Analysis Metrics

Standard techno-economic requirements for mechanism design include individual
rationality, incentive compatibility, technical market efficiency, stability of outcomes, and
supply-demand pricing (that is, local market supply increase is not expected to produce
local price increase) [29]. First-price auctions, including UDA-based mechanisms, do not
produce truthful bidding relative to true valuations, as a dominant strategy. They have
been shown to converge rapidly to one of potentially many Nash equilibria, and may
potentially converge to a cycle between a set of equilibrium points (illustrated in [16]).
Here, techno-economic metrics are taken as validation and analysis metrics, but the focus
of analysis is placed on socio-economic outcomes which have been noted to impact the
participation intentions of potential LEM users: energy affordability and market access.
Along with being relevant to potential LEM users, market access and affordability outcomes
have been identified empirically as key shortcomings in current retail markets [30]. Both
sets of metrics are presented together in Table 3.
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Table 3. Socio-economic metrics for analysis of LEM mechanism simulation results.

Results Analysis Metrics (Per Simulation)

Metric Name Metric Calculation

Agent Rationality Measurement ARMt =
∑i∈I Ind[ Vi,t(Qi,t ,Pi,t ,θi) ≥ 0 ]

|I| (10)

Technical Market Efficiency

If (SDRt > 1 ):
TMEt =

(
∑i∈Icon

Qloc,i,t
)

/
(
∑i∈Icon

Q0,i,t
)

(11)
Else:

TMEt =
(

∑j∈Ipro
Qloc,j,t

)
/
(

∑j∈Ipro
Q0,j,t

)
(12)

Consumer Relative Market Access RMAci,t =
min[ 1, (Qloc,i,t / EST) ]

min[ 1, (max[ Qloc,con,t ] / EST) ]
(13)

Prosumer Relative Market Access RMApi,t =
Qloc,i / (∑j∈I Qloc,j)

max[ Qloc,pro / (∑j∈I Qloc,j) ]
(14)

Consumer Energy Cost Burden

If Qloc,i,t < EST:
ECBi,t =

(Ploc,i,t ∗Qloc,i,t)+((EST−Qloc,i,t) ∗ pret)
EST / P∗i (15)

Else:
ECBi,t =

Ploc,i,t
P∗i

(16)

Mean Market Price MMP = ∑t∈T [ (∑i∈I Ploc,i,t) /|I| ]
|T|

(17)

Market efficiency and individually rational participation are theoretically expected
properties of the UDA mechanism [3,9,13,18,20,21,29]. In the current results, these met-
rics are presented numerically as means of further validating simulation implementa-
tion. Individual rationality is measured in Equation (10) as the percentage of agents
with non-negative utility from LEM participation. Note that the function Ind[x] evalu-
ates some input x as a Boolean expression; when x = true, Ind[x] = 1; when x = f alse,
Ind[x] = 0. Technical market efficiency is measured by Equations (11) or (12), depending
on the local-level supply-demand ratio. When supply is less than demand (i.e., SDR < 1), a
technically efficient market allocates all supply locally; when supply at least equals demand
(i.e., SDR ≥ 1), all local demand should be satisfied by local supply.

Grid level technical performance metrics may be integrated as well; for example, [19,20]
use a “power flatness index” for assessing the level of temporal matching between the
aggregate of agents’ market supply and demand profiles. Power flatness is a desirable
goal which may support transmission grid stability e.g., in terms of line voltage and local
self-sufficiency. As the current work utilizes an SDR-based simulation approach, power
flatness is described by a combination of technical market efficiency (TME) and the supply-
demand ratio itself; power flatness is maximized when TME = 1 and SDR = 1. Based on
Section 4.2, power flatness may be approximately satisfied by IP agents (or platform users,
modeled by IP agents) under LEM operation in a target SDR range where SDR is close to 1.

While technical market access is provided for all LEM users, the actual sale or purchase
quantities seen by individual agents may be highly varied depending on mechanism design
characteristics. In previous work [16], “identical” agents experienced a range of outcomes
under the UDA mechanism, in an otherwise-similar simulation environment to this present
work. Consumers’ Relative Market Access metric (RMAc) aims to more fully represent
“access equality” in the current work, rather than “outcome equality” as measured by
the Equality Index presented in [19,20]. Energy equity objectives are taken as theoretical
grounding for socio-economic metrics, consistent with [25–27]. In energy distribution,
equity does not necessarily require uniform market outcomes, but a uniform ability of all
agents to secure comparable energy demands may be expected from LEM settlements. To
check satisfaction of this requirement, RMAc compares the proportion of EST satisfied by
the current market settlement, to the highest satisfaction proportion observed across all
consumers in that settlement. In this way, a relative measure of market access is described;
RMAci,t = 1 implies that agents are able to obtain similar percentages of their EST quantity
satisfied locally. RMAci,t = 0.5 indicates that agent i has secured a 50% lower proportion
of EST, relative to the highest proportion satisfied at time t.
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Supply units are effectively interchangeable from a consumer’s perspective, under
assumption of uniform quality. Scenarios in which transmission costs are passed on to
consumers, or which may produce unique prices in each transaction (e.g., double auction
with discriminatory pricing), may require an updated formulation. With no distinguishing
factor in a given unit of supply, it is unclear how differentiated market access claims would
be made by prosumers; this suggests that a goal of equal market access may also be applied
to prosumers. A goal of equal prosumer market access also has the desirable property of
measuring whether or not a new local prosumer in the LEM may reasonably expect to
find value in participation, under a given set of pre-existing market supply conditions. For
prosumers’ Relative Market Access (RMAp), each prosumer’s sale quantity is compared in
Equation (14) to the maximum-observed sale quantity at a given settlement time, in order
to evaluate consistency in market share across prosumers.

The Energy Cost Burden metric (ECB) calculates consumers’ energy “affordability
gap”, defined as the percent difference between the household’s realized energy costs, and
the cost of securing an EST quantity of energy at an individually affordable price. We
claim that this interpretation is consistent with current approaches to energy affordability
calculation [1,15,31,32]. The use of Equations (15) or (16) to calculate ECBi,t depends
on Qloc,i,t. If agent i was not able to secure an EST quantity locally, additional retail market
costs are considered in Equation (15); otherwise, Equation (16) is used, which simply
compares realized energy price Ploc,i,t to an individually affordable energy price P∗i . For
example, at ECBi,t = 1, an agent’s energy cost is precisely at the 6% affordability threshold
e′; when ECBi,t = 2, energy costs require 2 ∗ e′ = 12% of household income.

In the current work, Mean Market Price (MMP) is used to evaluate LEM price expecta-
tions. The mean LEM price in a simulation run is calculated according to the MMP metric
(Equation (17)). As it is a simulation-level metric, a subscript is not used. The mean LEM
price is taken for each simulation step (which is trivial when Ploc,t is a uniform price), and
then the mean price across all t ∈ T is calculated.

3. Experiments

In the current study, expected LEM outcomes are analyzed under the simulated
uniform double auction (UDA) mechanism described in Section 2.1, using the evaluation
metrics presented in Section 2.6. In six tests, local-level SDR is taken as a variable parameter;
agents’ demand D is held constant at an estimated 2019 daily average for a household in
Brooklyn, New York City [33], while prosumer generation G is varied by SDR. For each SDR
within a simulation test, 100 simulation runs (with 365 observations each) are recorded. In
each simulation, 100 agents are randomly assigned to be “consumer” or “prosumer” type;
75 consumers and 25 prosumers are chosen at random as in Algorithm 3, approximating
the type-proportion reported in a trial of the Brooklyn Microgrid platform [34]. Results
metrics are calculated from each simulation run, collected, and grouped by SDR, for each
parameter combination considered in each test. Step-wise results metrics (i.e., all metrics
except for MMP) are averaged across T simulation steps; mean values are computed for
each metric, across all runs, for each SDR in a given test. Market price convergence is
observed within 60 simulation steps in preliminary testing, using the parameter tuning in
Section 2.5; based on this observation, all simulations run for 90 steps before results data
were collected for analysis.

Simulated agents in the current work are referred to as “IP agents”, for the income-
preference heterogeneous agents described in Sections 2.2–2.4. This is in contrast to the
“identical” agents modeled in previous works [11,16]. Agents in these previous works
are identically modeled and initialized, holding θi = 1 and Si = {p f it, . . . , pret} across
all agents.

3.1. Experiment Parameters

Table 4 provides a summary of parameters used in the current study. Consistent
with [16], generalizing LEM analysis results to improve analysis robustness, and avoid
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un-controlled influence of system-specific operation conditions on mechanism analysis, is
emphasized. To this end, an SDR-based simulation approach is again used. To describe
a “baseline” for results analysis, Test 1 (Experiment 0) simulates the retail energy market
mechanism in Section 2.1. The parameter M notes the mechanism used in corresponding
market settlements.

Table 4. Summary of variable parameters included in each simulation experiment.

Simulation Parameters by Experiment

Experiment 0 Experiment 1 Experiment 2

Test Number(s) 1 {2, 3, 4, 5} 6

Parameters

Π (0.33, 0.33, 0.33) (0.33, 0.33, 0.33), (0.5, 0.25, 0.25),
(0.25, 0.5, 0.25), (0.25, 0.25, 0.5) (0.33, 0.33, 0.33)

K True True False

SDR {0.01, 0.1, 0.2, . . . , 2.0} {0.01, 0.1, 0.2, . . . , 2.0} {0.01, 0.1, 0.2, . . . , 2.0}

M “Baseline” “UDA” “UDA”

ΠA local type distribution for prosumer value preferences has not been specified for
the simulated Brooklyn Microgrid area, and while a growing number of works have pre-
sented data on prosumers’ LEM value preferences and participation motivations, we do not
assume that these factors will be similar across spatio-temporal or socio-economic circum-
stances. Experiment 1 considers a sensitivity analysis on Π, the distribution of prosumer
preference “types” described in Section 2.3. In Test 2, prosumer preference types are drawn
from a multinomial probability distribution θpro ∼ Multinom (n = 3, Π = {0.33, 0.33, 0.33})
which gives each possible preference “type” θi ∈ {1, 2, 3} an equal probability of being
applied to a prosumer. Prosumer type distribution Π = {0.5, 0.25, 0.25} is used in Test 3.
Π = {0.25, 0.5, 0.25} and Π = {0.25, 0.25, 0.5} for Tests 4 and 5.

A number of previous works (e.g., [4,11,18,21]) assume that the bids of LEM users (or
their software agents) are restricted to the range ploc ∈

[
p f it, pret

]
. However, real-world

LEMs do not necessarily make this assumption; the Brooklyn Microgrid, for example, does
not appear to [10]. In Experiment 2, Test 6 holds K = f alse, indicating that all agents’
hold Si = { p f it, . . . , pret} . In Experiment 2, Test 6, Π = {0.33, 0.33, 0.33} is held to
simplify comparison with Experiment 1.

As in previous work [16], market outcomes under a range of local-level supply-
demand ratios (SDRs) are evaluated for each simulation test indicated. To support clear
and concise results discussion, SDRs are grouped together in the analysis. “Low-SDR”
describes simulations in which SDR ∈ {0.01, 0.2, 0.4, 0.6}. “Target-SDR” simulations are
represented by SDR ∈ {0.8, 1.0, 1.2}; local-level supply is approximately equal to demand,
indicating a target operation state for LEMs and their underlying power systems. In “High-
SDR” conditions, represented here by SDR ∈ {1.4, 1.6, 1.8, 2.0}, supply may be notably
greater than demand. High SDRs may produce desirable market conditions for consumers,
but over time they may also present voltage stability issues for the underlying power
system. In future work, these cut-offs may be tuned to reflect goals and constraints for
specific real-world systems, and may be correlated with specific stability thresholds.

3.2. Simulated Agent Results Clustering

Consistent with [25], group-level analysis is taken to be fundamental to the assessment
of socio-economic impacts from LEM operation. In the current work, agent-level outcomes
are computed at the individual level, and are aggregated according to the agent clusters
described in Table 5. Consumer agent heterogeneity is captured in two main parameters,
income (Rcon) and value preferences (θcon); prosumer agent heterogeneity is captured by
prosumer “types” (θpro). The agent clustering in Table 2 is defined to support dis-aggregated
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analysis of heterogeneity impacts, even while agent results are aggregated into cluster
groupings.

Table 5. Overview of agent outcome clustering. Labels are given to provide concise reference in
Section 4 results figures.

Results Clustering by Agent Type

Consumers : i ∈ Icon Agent Income Ri ∈ [10, 200] (in Thousands $USD)

Low-Income:
Ri ∈ (10, 35]

Middle-Income:
Ri ∈ (35, 95.5]

High-Income:
Ri ∈ (95.5, 200]

Value
Preference:
θi ∈ [0, 1]

θi ∈ [0.9, 1] Con 1 Con 2 Con 4

θi ∈ [0.64, 0.9) Con 3 Con 5

θi ∈ (0, 0.64) Con 6

Prosumers : i ∈ Ipro

Value
Preference:
θi ∈ {1, 2, 3}

θi = 1 Pro 1

θi = 2 Pro 2

θi = 3 Pro 3

The three modeled prosumer preference types θi ∈ {1, 2, 3} define prosumer clusters
Pro 1–Pro 3. For consumers, clustering produces six income/preference parameter combi-
nations. A comparison between Con 1 and Con 4, for example, may help describe outcome
differences attributable to income heterogeneity, holding value preference effectively con-
stant. Conversely, comparing Con 4 and Con 6 may help describe outcome differences
attributable to value preference differences among users within the same income range.
Three potential combinations of consumer clustering parameters are excluded, due to
current rationality constraints on consumers’ expression of θi.

Each cluster contains approximately 1/3 of all same-type agents, ensuring sample size
consistency. The range of θi for each consumer group is lower bounded by the minimum θi
modeled for the corresponding income groups. Low-income consumers are at or below the
2019 poverty threshold of $35,000/per year (for a mean household size) in Brooklyn, New
York [35], and middle-income median is approximately the 2019 median household income
for Brooklyn, New York [17]. “High income” represents the upper 1/3 of the modeled
income range.

4. Results & Discussion

The presented work extends on current modeling and evaluation methodologies for
LEM mechanism design analysis. Study conclusions are relevant to LEM design in the
Brooklyn Microgrid context, but are also applicable to any real-world LEM with similar
local income distribution, distribution of local-level supply and demand (among prosumers
and consumers respectively), and pricing conditions in a pre-existing retail market. An
additional data analysis step is required to apply the presented study results to a specific
LEM operation setting, but the generalized analysis approach used here ensures that the
accuracy of outcome expectations can be maintained even as power grid conditions change.

For example, previous studies commonly use specific power load time-series data
to produce expected LEM outcomes; as the impacts of climate change increasingly affect
energy consumption and generation profiles, the results of these studies may become
increasingly inaccurate. Current study results can be expected to be more robust, allowing
for maintained accuracy under varying local conditions, e.g., climatic conditions, as long
as local retail market and socio-economic conditions remain similar to the simulation
modeling described here. As differences in these conditions grow, or as supply or demand
vary from the mean values assumed in this study, updated outcome analysis is increasingly
suggested. While they remain similar to currently-considered conditions, however, results
may apply to a range of system implementations and deployment scenarios.
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On results figures for RMA (including RMAc and RMAp) and ECB, note that line color
brightness indicates SDR scenario: low, target, or high SDR corresponds to light, medium, or
dark color respectively. This distinction is also indicated on the appropriate plot legends. In
the rest of the current section, the impact of IP agents (defined in Section 3; describes agents
modeling presented in Section 2) on LEM outcome expectations is evaluated according to
the results metrics presented in Section 2.6, to address the research question from Section 1.

4.1. Local Market Price

The LEM price outcomes in Figure 2 suggest that IP agents produce higher price
expectations in the UDA market, compared to the “identical” agents simulated in [11,16].
Price expectations are also higher than the retail market price in low-SDR scenarios without
price restriction (i.e., Experiment 1, where K = True). When SDR ≥ 0.6, prices produced
in simulation experiments were consistent with previous work; however, as SDR increases,
prices in Tests 2–6 fall more slowly than previous tests [16], resulting in prices approximately
$0.02/kWh higher in the current tests. When SDR ≤ 0.6, Tests 2–5 produce prices
considerably higher than the retail market price. Prices are nearly $0.04/kWh higher in
these tests, on average, compared to the retail price. As SDR increases towards 0.6, LEM
price ploc converges to the local retail price pret from above.
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Pricing outcomes are consistent with current LEM design requirements in [10,36],
suggesting an appropriate simulation implementation. Overall, IP agents produce prices
consistent with the general expectation that LEM development may improve local energy
prices using an auction-based mechanism.

Price increases in low-SDR settings are qualitatively consistent with expected influence
of socio-economic factors in agent behavior, due to the higher valuation LEM users are
expected to place on energy traded in the local market, compared to on energy traded with
the retail utility grid. In simulations, the price increases expected from IP agents produce
higher sale profitability for local prosumers; this produces greater generation incentive,
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and stronger “upward pressure” on LEM supply-base growth, potentially resulting in
better local demand matching over time (i.e., more frequent target-SDR market conditions).
However, prices greater than retail may significantly reduce LEM platform adoption among
potential users; price increases are especially unaffordable and economically irrational for
low income users and may conflict with the expected preferences of potential LEM users
from a range of income backgrounds [1,10,11,30].

For each test presented in Figure 2, middle lines within a colored region show the
mean LEM price sampled (µ [MMP]) in an SDR scenario; upper and lower lines on colored
regions indicate µ [MMP]+/− σ [MMP] values. The unweighted mean of some vector
x is indicated by µ [x], while σ [x]gives standard deviation. Feed-in tariff p f it is noted in
black, and Test 1 retail price pret is noted in gray.

Brooklyn Microgrid users are said to have reported increases in derived utility for
energy transactions [37]; but at the same time, local market prices have reportedly not
decreased in comparison to retail market prices. Based on this report and given factors such
as project messaging towards local households [38], the spatial conditions of the Brooklyn
Microgrid area, and the reportedly low prosumer: consumer ratio in current LEM platform
trials [34], low-SDR states may currently be prevalent in market settlements. In this case,
the results of Tests 2–5 may explain currently-observed market outcomes, and may provide
an estimate of LEM outcomes as platform adoption grows in the DES area. Energy prices
in the LEM are notably improved in all target-SDR simulation scenarios, compared to the
retail market. Previous studies using “identical” agents expect overall price reductions
compared to the retail market, as a result of LEM participation; the results of Tests 2–6
confirm that IP agents, which more closely resemble expected real-world users, may also
be expected to find lower energy prices in a LEM with average SDR > 0.6, in addition to
qualitative utility improvements from LEM use.

4.2. Agent Rationality and Market Efficiency

For all agents in Tests 2–6, rational market participation is satisfied (Table 6). Market
efficiency results appear improved compared to previous simulation-based analyses of
auction-based LEMs, e.g., [11,13,21], and rationality results are consistent with [16]. Both
rationality and efficiency are satisfied by the “baseline” retail market simulated in Test
1, consistent with theoretical expectations for energy infrastructure operation. In Exper-
iment 1 (Tests 2–5), prosumer preference type distribution Π does not appear to be an
influential factor in LEM outcomes; note that this result may vary, as the gap is reduced
between pret and p f it.

Table 6. Agent rationality (ARA) and market efficiency (EME) results from tests included in Experi-
ments 1 and 2. In the current study, these are taken as validation metrics, as they are theoretically-
expected for the auction mechanism simulated.

Validation Metrics for Simulation Implementation

Range Agent Rationality (ARA) Market Efficiency (TME)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Low-SDR <na> 1 1 1 1 1 1 1 1 1 1 1

Target-SDR <na> 1 1 1 1 1 1 0.97 0.97 0.97 0.97 0.95

High-SDR <na> 1 1 1 1 1 1 1 1 1 1 1

In theory, the UDA mechanism is expected to maximize technical market efficiency [13,29]
and produce rational participation for all agents. At the local level, market efficiency gen-
erally refers to supply-demand matching—but under the current TME metric, efficiency
may be tested within each SDR scenario. While efficiency results in Tests 2–6 are consistent
with [16], and appear higher than [11], target-SDR results suggest that a more dynamic
approach to MRE learning parameter tuning may further improve market efficiency; for
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example, one that derives SDR-specific values, and/or fully-individualized values for each
agent. As current results are near-optimal under a single static parameter tuning, it is
suggested that future work may explore convergence speed and outcome stability for the
MRE algorithm in more detail, relative to other learning approaches for LEM platform
software implementation.

4.3. Consumers’ Relative Market Access

The IP agents show strong differences in market outcomes among consumers in
low-SDR scenarios along lines of household income and value preferences in Tests 2–5.
Households’ LEM access disparities are eliminated from these scenarios in Test 6, compared
to Tests 2–5 (Figure 3). This suggests that a differential willingness and ability (between
consumers) to pay for LEM energy may mediate access disparities produced by auction-
based settlement mechanisms. The market access disparities described in Figure 3 are
similar in shape and magnitude to previous work [16]. In the current work, however, these
disparities appear to emerge along lines of modeled income and preference inequality.
In the previous work, results were produced with parameters θi = 1 ∀ i ∈ I and
ploc ∈ { p f it, pret} .
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Due to rationality constraints, consumer preferences are indirectly shaped by income.
However, income does not fully determine preference under the current model—rather,
income constrains the the rational range of potential market preference expression, given
financial conditions. Under rationality constraints on consumers’ bidding range, middle-
income agents (Con 2, 3) become both willing and able to bid more than higher-income
agents (Con 4–6), despite the latter having the economically-rational ability to express
much greater “alternative” value preference (1− θi), and “ability to pay”. Accordingly,
Con 3 consumers (middle-income, medium “alternative” preference) may be able to secure
higher access than other consumer groups in a UDA-based LEM. Across all consumers,
the RMAc gap between own-economic preference outcomes and “alternative” preference
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outcomes is between 20–40%. In other words, consumers who are both willing and able
to rationally express “alternative” energy value preferences in the market place may use
strategies which produce between 20–40% higher market access (compared to highest
observed) under simulated conditions.

This result is produced by a merit-order supply allocation in UDA mechanism design,
in which higher-bidding consumers are preferentially matched with local supply. This
technique is desirable for its production of allocative efficiency in markets for private
goods, but appears theoretically incompatible with the access goals of energy distribu-
tion infrastructure. By comparison, Figure 3 indicates that fully-uniform market access
is produced by the baseline retail market scenario in Test 1; this result is consistent with
expected operating conditions of utility-scale energy infrastructure. Results suggest further
research on LEM mechanisms which can be expected to maintain market access standards
for utility customers, and suggest that auction-based LEMs without price restriction may
not be suitable for main roles in energy distribution infrastructure. At the same time, con-
sumer access disparities are reduced in target-SDR scenarios, with remaining market access
reductions being distributed near-uniformly among consumer groups. These remaining
access reductions may be supported by sub-optimal market efficiency.

Experiment 2 results (Test 6) show that consumer market access disparities in low-SDR
conditions may be eliminating by requiring agent strategies S′i,t ∈ { p f it, pret} . Under
merit-order supply allocation, unrestricted pricing provide a larger range of strategies for
users who are rationally able and willing to place higher bids, thereby allowing a user
agent to secure higher market access more consistently. When bidding is restricted to a
range which is rationally-feasible for all consumers, market competition is increased, and
the ability of consumer agents to distinguish their bids from others is reduced. Accordingly,
the average level of market access experienced by individual consumers becomes more
consistent, and becomes disconnected from socio-economic disparities. Future work may
therefore benefit from further extension of [16] to analyze potential differences in outcome
stability across time for IP agents.

4.4. Prosumers’ Relative Market Access

The market access disparities shown for prosumers in Figure 3 are consistent with [16],
and further indicate that prosumers with higher sensitivity to decreases in local market
price may select market strategies which increase their market share compared to other
prosumers. With increasing θi, prosumers derive greater value from LEM sales at lower
prices; this potentially enables them to rationally provide lower prices than their peers,
and gain preferential matching with local consumers via merit-order supply allocation.
However, the opposite result is seen in prosumer RMA: RMAp disparities begin to grow
as SDR → 1 , and continue to expand as SDR increases into the “high-SDR” range.

As SDR increases, an increasingly-wide gap is produced between outcomes for pro-
sumers that secure sale matches locally, versus prosumers who do not. In other words,
the gap between sale profits without LEM matching, versus with LEM matching, show a
strong positive correlation with SDR. This indicates that prosumer access disparities may
be produced by differences in market strategy learning adaptation, which may result from
differences in prosumers’ utility function sensitivity to changes in the multi-agent “environ-
ment” which produces LEM conditions—for example, sensitivity to LEM price fluctuations.

In short, current results suggest that price-sensitive prosumer agents may be expected
to outperform price-inelastic prosumers—whom, in theory, may be satisfied by market
strategies low enough to undercut their peers. On LEM platforms which require direct user
input of market strategies, these results suggest that prosumers which are more actively
engaged in market strategy adaptation on the LEM platform may be expected to secure
greater market share. Despite that RMA is a socio-economic metric, this does not necessarily
suggest a clear equity conflict in prosumer outcomes in the simulated UDA market.

Based on the prosumer results in Figure 3, a given utility function may produce more
effective learning stimulus than another under the MRE algorithm, in a given learning



Sustainability 2022, 14, 7642 19 of 25

environment where identical and constant values of λ and ε are used for all agents. It is
also noted that these RMAp results may be affected by MRE learning parameter tuning;
just as utility function sensitivity to changes in market conditions appear to impact effective
learning adaptation, learning parameters λ and ε may modulate agent learning. Accord-
ingly, future work may consider deriving more individualized parameter tunings at the
agent level.

This implies that we can expect similar behavioral phenomena for consumers, sug-
gesting that consumers with lower θi values are expected to be less sensitive to local price
changes, while consumers with higher θi may be expected to produce more price-sensitive
behaviors. However, this is consistent with the interpretation of consumer θi as modeling
“willingness to pay”, constrained by “ability to pay” offered in Section 2.4. Accordingly,
the results described in Figure 3 are also considered interpretable for real-world user
agents, based on the current modeling interpretation. Further analysis may aim to dis-
aggregate the impact of learning disparities on consumer outcomes from that of market
settlement dynamics.

4.5. Energy Cost Burden

Energy affordability was improved by LEM operation in target-SDR and high-SDR
ranges of Tests 2.6 compared to the baseline retail market simulated in Test 1 (Figure 4). In
these cases, greater market access for lower-income groups led to notable reductions in
local outstanding energy cost burden. With the exception of low-income consumers (Con 1),
agents’ energy costs in all tests are affordable, requiring less than 3% of agents’ income (Ri).
For Con 1, energy costs remained unaffordable in low-SDR and target-SDR scenarios, with
costs as high as ~140% and ~115%, respectively, of their individually affordable energy cost.
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In low-SDR scenarios, considerable price increases above pret are produced in the
local market; in these cases, energy cost burdens for low-income consumers would not
be reduced by LEM operation, compared to the baseline retail market (Test 1), even if
uniform RMAc was achieved. Results are consistent across all tests in Experiment 1, further
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confirming a lack of sensitivity to the local prosumer preference distribution Π in local
market outcomes. In comparison with Tests 2–5 results, Test 6 results indicate that low-SDR
energy affordability gaps are only slightly reduced by local price restriction, despite the
production of more uniform market access among consumers.

In target-SDR conditions, a greater reduction in ECB is noted for Test 6, resulting in
low-income ECB which is at least 10% higher, on average, than what households can afford
to pay (i.e., 110%). For all other consumer groups, ECB is no greater than 40% in any test
presented here in comparison to mean observed ECB values of 48% in New York City
overall [1]. We note that these results may be conservative, based on the current modeling;
real ECB values may be even higher.

In low-SDR settings, simulated energy burden outcomes from LEM and retail markets
are similar for low-income consumers, and are consistent with empirical data. In New York
City, for example, the cited work estimates that at least 50% of low-income households
experience energy burdens greater than 9%, with energy burden reaching nearly 18% of
income for at least 25% of low-income households. These outcomes are neither uncommon
nor the most severe, in the context of metro areas in the United States today. Low-income
energy burden in the U.S. overall may be above 7%; for comparison, the average remaining
energy cost burden for low-income consumers in low-SDR and target-SDR conditions is
~8.4% and ~6.9%, respectively (across Tests 2–6). An ECB of 6% is considered affordable
locally (e′).

Relatively small ECB differences are seen between consumer groups with varying θi.
Con 2 and Con 3 ECB varies by 10%; Con 5 and Con 6 vary by just 5%; Con 1 and Con 2,
however, have a relative difference of ~100%. Individually, ECB can be seen as a function of
income (Ri) and local market quantity (Qcon,loc), as simulated energy price and demand are
held uniform among consumers. As locally-secured energy quantity goes down, quantity
purchased at retail price goes up to compensate; therefore, a correlation between RMA
and ECB might be expected. However, this correlation is not apparent in current results,
possibly suggesting a non-linear relationship. In any case, further analysis may extend
current understanding of market dynamics under the simulated UDA mechanism.

5. Conclusions & Future Work

Simulation results are consistent with many expectations from previous works, and
with theoretical expectations for techno-economic outcomes of double-sided auction market
mechanisms. Consistent with previous works, LEM operation is expected to produce energy
prices which greatly improve sale profitability for local prosumers, while also reducing
energy prices for local consumers, compared to the retail utility market. Market efficiency
results for IP agents suggest that a more dynamic approach to MRE parameter tuning may
produce behavior suitable for use in LEM software agents, depending on the results of
follow-up tests for algorithm convergence speed and outcome stability.

In LEM settlements with a low supply-demand ratio (SDR), however, market access
issues may emerge under UDA market design which are not observed in the baseline energy
market scenario. In addition, while energy affordability is expected to improve under
LEM operation, the current results do not expect the elimination of energy affordability
issues for low-income households under low-SDR or target-SDR conditions. Results show
that restricting LEM prices to the range between p f it and pret may effectively eliminate
market access disparities between consumers; however, they also suggest that market
access improvements may not greatly improve energy affordability outcomes compared to
unrestricted pricing (with the latter producing stronger LEM price incentives for prosumers
in low-SDRs).

While emergent disparities in prosumers’ market access may provide insight on
effective supply-side LEM behaviors, consumer results suggest against using auction-based
LEMs with non-trivial local income and/or value preference inequality. The expectation of
continued low-income energy insecurity under LEM operation, and the observed mapping
of market access disparities from previous work to local inequalities modeled in the present
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work, suggest that current auction-based mechanisms may not be appropriate for use in
low-income settings.

Auction-based mechanisms may significantly improve cost affordability and sale
profitability for LEM users overall, but low-income users may see minimal value in LEM
participation in the majority of SDR conditions evaluated—suggesting that auction-based
LEMs may require continued external investments in local energy affordability programs
for consumers, or cost subsidy programs aimed at remaining local energy affordability
gaps. An individually rational LEM mechanism which consistently addresses energy access
and affordability issues may support reductions in overall expenses for energy distribution
infrastructure operations. This goal may be especially relevant to municipal energy utilities.

The current study simplifies a number of LEM operation factors; a once-daily market
settlement is considered, agents’ supply and demand are static and uniform across same-
type agents, and prosumer energy storage is not modeled. These decisions allow for clearer
observation of mechanism design dynamics and their impacts, by reducing the number of
variable parameters. At the same time, the simplicity of the current simulation environment
may reduce the direct applicability of results to a specific LEM operation scenario. As
exogenous factors are modeled more fully, and as LEM settlement data becomes more
widely available, greater accuracy and detail can be produced for specific platforms LEM
platforms. We note, however, that the ability of such studies to comment on a mechanism
design itself may be reduced.

It is strongly recommended that socio-economic evaluation metrics should be derived
from established theoretical foundations. In the environmental justice literature, an eth-
ical analysis approach based on fairness-justice criteria has been developed to analyze
socio-economic outcomes through an “energy equity” scope, consistent with emerging
“equitable” impact standards for energy industry. The socio-economic results metrics in this
current work represent necessary components of equity analysis, but are not yet minimally-
sufficient for equity analysis by themselves. At minimum, a measure of agents’ temporal
outcome stability is needed. Overall, the current study presents foundational steps toward
normalizing LEM mechanism analysis in a more complete socio-technical context.

6. Glossary of Symbols and Abbreviations

This section gives an overview of parameter notation presented in the previous sections
of the paper (see Tables 7 and 8). Description of LEM input and output data is also provided
to help clarify the process of agent learning and results derivation.

Table 7. Overview of key simulation parameters.

Simulation Parameters

Name Initialization Description

Set of simulation steps T = {1, 2, 3, . . . , 365} Local and retail markets settled once per step

Agent index numbers I = {Icon, Ipro
}

= {1, . . . , 100}
Icon ← Consumer agent indices
Ipro ← Prosumer agent indices

Number of consumers |Icon| = 75 75 consumer agents selected at initialization
(Section 2.4)

Number of prosumers
∣∣Ipro| = 25 25 consumer agents selected at initialization

(Section 2.4)

Grid feed-in tariff p f it =$0.053 USD/kWh (Section 2.1)

Grid retail price pret =$0.175 USD/kWh (Section 2.1)

Agent daily demand Di = 19.64 kWh ∀ i ∈ I (Section 3)
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Table 7. Cont.

Simulation Parameters

Name Initialization Description

Agent daily generation
Function of variable parameter
Set based on current SDR value

(Section 3.1)

For each i ∈ I:
If (Ci = 0 ):

Gi = Di +
SDR ∗ ( ∑j∈Icon Dj )

|Ipro|
Else : Gi = 0

Equitable supply threshold EST = µ [ Di ∈ I ] (Section 2.6)

Minimum agent income rmin = $10,000 USD/year (Section 2.1)

Maximum agent income rmax = $200,000 USD/year (Section 2.1)

Agent incomes Set by random distribution (Section 2.1)

Locally-defined threshold for
affordable energy cost e′ = 0.06 6% of income is considered affordable locally

(Section 2.4, Section 2.6)

Locally-observed “high” energy
cost burden

eobs = 0.13
(note : eobs � e′ )

Energy bills above 13% of income are observed locally;
taken as upper-limit to “willingness to pay” for agents′

Si initialization (Section 2.4)

Consumers’ individually affordable
energy prices

For each i ∈ Icon:
P∗i = ( Ri /|T|) ∗ e′

EST
(Section 2.4)

Agent is “consumer”? Ci ∈ {true, f alse} ∀ i ∈ I Set of Boolean values indicating agent “type”
(Section 3)

Learning “memory” ε = 0.01 (Section 2.5)

Learning “rate” λ = 0.083 (Section 2.5)

Agent utility preferences

Consumer:
θcon, i ∈ [0, 1]

Prosumer:
θpro, i ∈ {1, 2, 3}

Consumer: own-economic utility preference
Prosumer: utility preference “type”

(Sections 2.2–2.4)

Market mechanism Mapping from {S′t, Q0,t}
to { Ploc,t, Qloc,t }, for t ∈ T

(Section 2.1, Section 3)
Experiment 0 Parameter

Prosumer type distribution

Π = { π1, π2, π3 }
Where:

πj ∈ {1,2,3} = Prob(θi = j )

And :
(

∑j∈{1,2,3} πj

)
= 1

(Section 3.1)
Experiment 1 Parameter

Local price constraint?
Is ploc,t ∈

[
p f it, pret

]
required

in the LEM at each time step?
Noted by : K ∈ {true, f alse}

(Section 3.1)
Experiment 2 Parameter

Market supply-demand ratio (SDR)
Variable parameter for all
modeling scenarios tested

(Section 3.1)

SDR = { 0.01, 0.1, 0.2, 0.3, . . . , 1.0, . . . , 2.0 }
Determines prosumer Gi∀ i ∈ Ipro



Sustainability 2022, 14, 7642 23 of 25

Table 8. Overview of model output data from simulated marketplace.

Market Data Notation

Variable Description

Pi,t
Set of prices for each agent at step t ∈ T

Each element is Pi,t =
{

Ploc,i,t , Pret,i,t
}

for some i ∈ I and t ∈ T

Ploc,t
Local market prices (for each agent) at step t ∈ T

Each element of Ploc,t =
{

Ploc,con,t , Ploc,pro,t

}
holds consumer costs and prosumer sales

Pret,t
Retail market prices (for each agent) at step t ∈ T , such that Pret,t = {Pret,con,t, Pret,pro,t

}
.

Each element Pret,con,t = pret for i ∈ Icon, and each Pret,pro,t = p f it for i ∈ Ipro

Qi,t
Individual market return quantities at step t ∈ T

Each element is Qi,t =
{

Qloc,i,t , Qret,i,t
}

for some i ∈ I, t ∈ T

Qloc,t
Consumers′ local energy purchase quantities at step t ∈ T

Each element of Qloc,t =
{

Qloc,con,t , Qloc,pro,t

}
holds agents’ local purchase and sale quantities

Qret,t
Prosumers′ local energy sale quantities at step t ∈ T

Each element of Qret,t =
{

Qret,con,t , Qret,pro,t
}

holds agents’ retail purchase and sale quantities

Q0,t
Agents′ initial supply or demand quantities at step t ∈ T

Each element of Q0,t =
{

Q0,con,t , Q0,pro,t
}

holds agents’ initial demand and supply quantities

S′t
Agents′ selected market strategies for step t ∈ T

Each element S′i,t holds the submitted price strategy of agent i ∈ I at time t ∈ T
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