Research in Electronic and Mobile Payment Systems: A Bibliometric Analysis
Abstract
:1. Introduction
2. Related Studies and Background
- RQ (1) Who are the most influential researchers in this field?
- RQ (2) Which countries substantially contribute to scientific research?
- RQ (3) Which keywords, co-occurrence network, and clusters are the most frequently?
- RQ (4) What are the most significant links across countries, authors, author keywords, and sources in this research?
- RQ (5) What are some of the most prevalent research topics in this area of study?
3. Materials and Methods
3.1. Materials
3.2. Methods
- The article must be written in the English language.
- Between 2001 and November 2021, all WoS-registered sources of scientific article are examined (i.e., Journals, books, and Conferences).
- User acceptance and preferences for electronic (mobile) payment systems, payment frameworks, and payment interfaces should be the focus of the articles’ research.
4. Results and Analysis
4.1. Bibliometric Analysis_General Characteristics
4.2. Source Patterns
4.3. Main Authors and Network Visualization
4.4. Principal Countries and Affiliations Authors
4.5. Keywords Co-Occurrence and Dendrogram Analysis
4.6. Keyword Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkhowaiter, W.A. Digital payment and banking adoption research in Gulf countries: A systematic literature review. Int. J. Inf. Manag. 2020, 53, 102102. [Google Scholar] [CrossRef]
- Tounekti, O.; Ruiz-Martinez, A.; Gómez, A.F. Users supporting multiple (mobile) electronic payment systems in online purchases: An empirical study of their payment transaction preferences. IEEE Access 2019, 8, 735–766. [Google Scholar] [CrossRef]
- Tounekti, O.; Ruiz-Martínez, A.; Skarmeta-Gómez, A.F. An evolution analysis of electronic payment systems and mobile payment systems characteristics. J. Curr. Issues Media Telecommun. 2017, 9, 219–252. [Google Scholar]
- Ali, M.A.; Hussin, N.; Abed, I.A. Electronic Payment Systems: Architecture, Elements, Challenges and Security Concepts: An Overview. J. Comput. Theor. Nanosci. 2019, 11, 4826–4838. [Google Scholar] [CrossRef]
- Ahmed, W.; Rasool, A.; Javed, A.R.; Kumar, N.; Gadekallu, T.R.; Jalil, Z.; Kryvinska, N. Security in Next Generation Mobile Payment Systems: A Comprehensive Survey. IEEE Access 2021, 9, 115932–115950. [Google Scholar] [CrossRef]
- Capegemini. COVID-19 and the Financial Services Consumer, Capgemini Worldwide. 29 April 2020. Available online: https://www.capgemini.com/research/covid-19-and-the-financial-services-consumer/ (accessed on 7 March 2022).
- Xiao, Y.; Chorzempa, M. How Digital Payments Can Help Countries Cope with Pandemics, World Economic Forum. Available online: https://www.weforum.org/agenda/2020/05/digital-payments-cash-and-covid-19-pandemics/ (accessed on 7 March 2022).
- Singh, N.; Srivastava, S.; Sinha, N.; Liébana-Cabanillas, F. Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. Int. J. Inf. Manag. 2020, 50, 191–205. [Google Scholar] [CrossRef]
- Singh, N.; Srivastava, S.; Sinha, N. Consumer preference and satisfaction of M-wallets: A study on North Indian consumers. Int. J. Bank Mark. 2017, 35, 944–965. [Google Scholar] [CrossRef]
- Ramos-de-Luna, I.; Liébana-Cabanillas, F.; Sánchez-Fernández, J.; Muñoz-Leiva, F. Mobile payment is not all the same: The adoption of mobile payment systems depending on the technology applied. Technol. Forecast. Soc. Chang. 2019, 146, 931–944. [Google Scholar] [CrossRef]
- Raharja, S.U.J.; Muhyi, H.A.; Herawaty, T. Digital Payment as an Enabler for Business Opportunities: A Go-Pay Case Study. Rev. Integr. Bus. Econ. Res. 2020, 9, 319–329. [Google Scholar]
- Bojjagani, S.; Sastry, V.N.; Chen, C.M.; Kumari, S.; Khan, M.K. Systematic survey of mobile payments, protocols, and security infrastructure. J. Ambient Intell. Hum. Comput. 2021, 1–46. [Google Scholar] [CrossRef]
- Migliore, G.; Wagner, R.; Cechella, F.S.; Liébana-Cabanillas, F. Antecedents to the Adoption of Mobile Payment in China and Italy: An Integration of UTAUT2 and Innovation Resistance Theory. Inf. Syst. Front. 2022, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Chhonker, M.S.; Verma, D.; Kar, A.K. Review of Technology Adoption frameworks in Mobile Commerce. Procedia Comput. Sci. 2017, 122, 888–895. [Google Scholar] [CrossRef]
- Shankar, A.; Datta, B. Factors affecting mobile payment adoption intention: An Indian perspective. Glob. Bus. Rev. 2018, 19, S72–S89. [Google Scholar] [CrossRef]
- Chhonker, M.S.; Verma, D.; Kar, A.K.; Grover, P. M-Commerce technology adoption. Bottom Line 2018, 31, 208–233. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; García-Maroto, I.; Muñoz-Leiva, F.; Ramos-de-Luna, I. Mobile Payment Adoption in the Age of Digital Transformation: The Case of Apple Pay. Sustainability 2020, 12, 5443. [Google Scholar] [CrossRef]
- Ruiz-Martínez, A.; Tounekti, O.; Skarmeta, A.F. Electronic payment frameworks. In Advanced Methodologies and Technologies in Digital Marketing and Entrepreneurship; IGI Global: Hershey, PA, USA, 2019; pp. 205–218. [Google Scholar]
- Turban, E.; Outland, J.; King, D.; Lee, J.K.; Liang, T.P.; Turban, D.C. Electronic Commerce Payment Systems. In Electronic Commerce 2018; Springer Texts in Business and Economics; Springer: Cham, Switzerland, 2018; pp. 457–499. [Google Scholar] [CrossRef]
- Tounekti, O.; Ruiz-Martínez, A.; Skarmeta-Gómez, A.F. Users’ Evaluation of a New Web Browser Payment Interface for Facilitating the Use of Multiple Payment Systems. Sustainability 2021, 13, 4711. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Martínez, A. Towards a web payment framework: State-of-the-art and challenges. Electron. Commer. Res. Appl. 2015, 14, 345–350. [Google Scholar] [CrossRef]
- Cendana, D.I.; Palaoag, T.D. The Potential of Designing a Digital Payment Framework for Philippine HEIs. IOP Conf. Ser. Mater. Sci. Eng. 2020, 803, 012045. [Google Scholar] [CrossRef]
- Al-Okaily, M.; Lutfi, A.; Alsaad, A.; Taamneh, A.; Alsyouf, A. The Determinants of Digital Payment Systems’ Acceptance under Cultural Orientation Differences: The Case of Uncertainty Avoidance. Technol. Soc. 2020, 63, 101367. [Google Scholar] [CrossRef]
- Verkijika, S.F. An affective response model for understanding the acceptance of mobile payment systems. Electron. Commer. Res. Appl. 2020, 39, 100905. [Google Scholar] [CrossRef]
- Johnson, V.; Kiser AI, T.; Washington, R.; Torres, R. Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Comput. Hum. Behav. 2018, 79, 111–122. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29. [Google Scholar] [CrossRef] [Green Version]
- Appio, F.P.; Martini, A.; Massa, S.; Testa, S. Unveiling the intellectual origins of Social Media-based innovation: Insights from a bibliometric approach. Scientometrics 2016, 108, 355–388. [Google Scholar] [CrossRef] [Green Version]
- Corsini, F.; Certomà, C.; Dyer, M.; Frey, M. Participatory energy: Research, imaginaries and practices on people’ contribute to energy systems in the smart city. Technol. Forecast. Soc. Chang. 2019, 142, 322–332. [Google Scholar] [CrossRef]
- Abdullah; Naved Khan, M. Determining mobile payment adoption: A systematic literature search and bibliometric analysis. Cogent Bus. Manag. 2021, 8, 1893245. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, Q.; Zhu, X.; Zhao, L. A Comparative Study of Chinese and Foreign Research on the Internet of Things in Education: Bibliometric Analysis and Visualization. IEEE Access 2021, 9, 130127–130140. [Google Scholar]
- Luo, J.; Hu, Y.; Bai, Y. Bibliometric Analysis of the Blockchain Scientific Evolution: 2014–2020. IEEE Access 2021, 9, 120227–120246. [Google Scholar] [CrossRef]
- Wong, D.; Li, W.E.; Chau, M.; Pan, S.; Koh, L.S. A Survey of NFC Mobile Payment: Challenges and Solutions using Blockchain and Cryptocurrencies. In Proceedings of the 2020 7th International Conference on Dependable Systems and Their Applications (DSA), Xi’an, China, 28–29 November 2020; pp. 69–77. [Google Scholar]
- Zhang, J.; Luximon, Y.; Song, Y. The Role of Consumers’ Perceived Security, Perceived Control, Interface Design Features, and Conscientiousness in Continuous Use of Mobile Payment Services. Sustainability 2019, 11, 6843. [Google Scholar] [CrossRef] [Green Version]
- Soliman, W.; Rinta-Kahila, T. Toward a refined conceptualization of IS discontinuance: Reflection on the past and a way forward. Inf. Manag. 2020, 57, 103167. [Google Scholar] [CrossRef]
- Qu, B.; Wei, L.; Zhang, Y. Factors affecting consumer acceptance of electronic cash in China: An empirical study. Financ. Innov. 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Thusi, P.; Maduku, D.K. South African millennials’ acceptance and use of retail mobile banking apps: An integrated perspective. Comput. Hum. Behav. 2020, 111, 106405. [Google Scholar] [CrossRef]
- Dahlberg, T.; Guo, J.; Ondrus, J. A critical review of mobile payment research. Electron. Commer. Res. Appl. 2015, 14, 265–284. [Google Scholar] [CrossRef]
- Putri, M.F.; Purwandari, B.; Hidayanto, A.N. What do Affect Customers to Use Mobile Payment Continually? A Systematic Literature Review. In Proceedings of the 2020 Fifth International Conference on Informatics and Computing (ICIC), Gorontalo, Indonesia, 3–4 November 2020; pp. 1–6. [Google Scholar]
- Kim, C.; Mirusmonov, M.; Lee, I. An empirical examination of factors influencing the intention to use mobile payment. Comput. Hum. Behav. 2010, 26, 310–322. [Google Scholar] [CrossRef]
- Song, J.; Sawang, S.; Drennan, J.; Andrews, L. Same but different? Mobile technology adoption in China. Inf. Technol. People 2015, 28, 107–132. [Google Scholar] [CrossRef] [Green Version]
- Ramtiyal, B.; Verma, D.; Rathore, A.P.S.; Mittal, S. A Bibliometric Analysis of Research on Mobile Payment Systems. Recent Pat. Eng. 2021, 15, 3–8. [Google Scholar] [CrossRef]
- Carlsson, H.; Larsson, S.; Svensson, L.; Åström, F. Consumer Credit Behavior in the Digital Context: A Bibliometric Analysis and Literature Review. J. Financ. Couns. Plan. 2017, 28, 76–94. [Google Scholar] [CrossRef]
- Ben Abdallah, M.; Fekete-Farkas, M.; Lakner, Z. Exploring the Link between Food Security and Food Price Dynamics: A Bibliometric Analysis. Agriculture 2021, 11, 263. [Google Scholar] [CrossRef]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997-2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018, 115, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Harzing, A.W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Liu, W. Accuracy of funding information in Scopus: A comparative case study. Scientometrics 2020, 124, 803–811. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egghe, L. Theory and practise of the g-index. Scientometrics 2006, 69, 131–152. [Google Scholar] [CrossRef]
- Shiffrin, R.M.; Börner, K. Mapping knowledge domains. Proc. Natl. Acad. Sci. USA 2004, 101, 5183–5185. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Mao, N.; Chen, L.; Wang, H. Research on biomass energy and environment from the past to the future: A bibliometric analysis. Sci. Total Environ. 2018, 635, 1081–1090. [Google Scholar]
- Chen, W.J. Comparison between bibliometric method and content analysis method. Inf. Sci. 2001, 8, 884–886. [Google Scholar]
- Borgman, C.L.; Furner, J. Scholarly communication and bibliometrics. Annu. Rev. Inf. Sci. Technol. 2002, 36, 2–72. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, D.V. Medical Internet of Things and Big Data in Healthcare. Healthc. Inform. Res. 2016, 22, 156–163. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Wang, X.; Fang, Z.; Sun, X. Usage patterns of scholarly articles on Web of Science: A study on Web of Science usage count. Scientometrics 2016, 109, 917–926. [Google Scholar] [CrossRef]
- Alidoost Nia, M.; Ruiz-Martínez, A. Systematic literature review on the state of the art and future research work in anonymous communications systems. Comput. Electr. Eng. 2018, 69, 497–520. [Google Scholar] [CrossRef]
- Rey-Martí, A.; Ribeiro-Soriano, D.; Palacios-Marqués, D. A bibliometric analysis of social entrepreneurship. J. Bus. Res. 2016, 69, 1651–1655. [Google Scholar] [CrossRef]
- De Kerviler, G.; Demoulin, N.T.; Zidda, P. Adoption of in-store mobile payment: Are perceived risk and convenience the only drivers? J. Retail. Consum. Serv. 2016, 31, 334–344. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Sánchez-Fernández, J.; Muñoz-Leiva, F. Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Comput. Hum. Behav. 2014, 35, 464–478. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Marinkovic, V.; de Luna, I.R.; Kalinic, Z. Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technol. Forecast. Soc. Chang. 2018, 129, 117–130. [Google Scholar] [CrossRef]
- Teo, A.C.; Tan, G.W.H.; Ooi, K.B.; Hew, T.S.; Yew, K.T. The effects of convenience and speed in m-payment. Ind. Manag. Data Syst. 2015, 115, 311–331. [Google Scholar] [CrossRef]
- Karjaluoto, H.; Shaikh, A.A.; Saarijärvi, H.; Saraniemi, S. How perceived value drives the use of mobile financial services apps. Int. J. Inf. Manag. 2019, 47, 252–261. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, H.; Yu, B. Understanding perceived risks in mobile payment acceptance. Ind. Manag. Data Syst. 2015, 115, 253–269. [Google Scholar] [CrossRef]
- Gao, L.; Waechter, K.A. Examining the role of initial trust in user adoption of mobile payment services: An empirical investigation. Inf. Syst. Front. 2017, 19, 525–548. [Google Scholar] [CrossRef]
- Chen, L.D. A model of consumer acceptance of mobile payment. Int. J. Mob. Commun. 2008, 6, 32–52. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.J.; Sánchez-Fernández, J.; Muñoz-Leiva, F. Role of gender on acceptance of mobile payment. Ind. Manag. Data Syst. 2014, 114, 220–240. [Google Scholar] [CrossRef]
- Khan, A.N.; Ali, A. Factors affecting retailer’s adopti on of mobile payment systems: A SEM-neural network modeling approach. Wirel. Pers. Commun. 2018, 103, 2529–2551. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Ramos de Luna, I.; Montoro-Ríos, F.J. User behaviour in QR mobile payment system: The QR Payment Acceptance Model. Technol. Anal. Strateg. Manag. 2015, 27, 1031–1049. [Google Scholar] [CrossRef]
- Teo, A.C.; Tan, G.W.H.; Ooi, K.B.; Lin, B. Why consumers adopt mobile payment? A partial least squares structural equation modelling PLS-SEM approach. Int. J. Mob. Commun. 2015, 13, 478–497. [Google Scholar] [CrossRef]
- Kalinic, Z.; Marinkovic, V. Determinants of users’ intention to adopt m-commerce: An empirical analysis. Inf. Syst. e-Bus. Manag. 2016, 14, 367–387. [Google Scholar] [CrossRef]
- Duane, A.; O’Reilly, P.; Andreev, P. Realising M-Payments: Modelling consumers’ willingness to M-pay using Smart Phones. Behav. Inf. Technol. 2014, 33, 318–334. [Google Scholar] [CrossRef]
- Koghut, M.; AI-Tabbaa, O. Exploring Consumers’ Discontinuance Intention of Remote Mobile Payments during Post-Adoption Usage: An Empirical Study. Adm. Sci. 2021, 11, 18. [Google Scholar] [CrossRef]
- Muñoz-Leiva, F.; Viedma-del-Jesús, M.I.; Sánchez-Fernández, J.; López-Herrera, A.G. An application of co-word analysis and bibliometric maps for detecting the most highlighting themes in the consumer behaviour research from a longitudinal perspective. Qual. Quant. 2012, 46, 1077–1095. [Google Scholar] [CrossRef]
- Syed, A.M.; Bawazir, H.S.; McMillan, D. Recent trends in business financial risk—A bibliometric analysis. Cogent Econ. Financ. 2021, 9, 1913877. [Google Scholar] [CrossRef]
- Rusydiana, A.; Taqi, M.; Firmansyah, I.; Assalafiyah, A.; Kustiningsih, N. A Bibliometric Analysis of Islamic Accounting Research Indexed by Dimensions.ai. Libr. Philos. Pract. 2020, 4803. Available online: https://digitalcommons.unl.edu/libphilprac/4803/ (accessed on 21 June 2022).
Main Information about Data | |
---|---|
Timespan | 2001–2021 |
Sources (Journals, Books, etc.) | 137 |
Documents | 177 |
Average years from publication | 5.18 |
Average citations per document | 20 |
Average citations per year per doc | 3.29 |
References | 6964 |
Document Types | |
Article | 112 |
Article; book chapter | 4 |
Article; early access | 6 |
Article; proceedings paper | 2 |
Article; retracted publication | 1 |
Proceedings paper | 52 |
Document Keywords | |
Keywords Plus (ID) | 315 |
Author’s Keywords (DE) | 584 |
Authors | |
Authors | 467 |
Author Appearances | 515 |
Authors of single-authored documents | 10 |
Authors of multi-authored documents | 457 |
Authors Collaboration | |
Single-authored documents | 10 |
Documents per Author | 0.37 |
Authors per Document | 2.64 |
Co-Authors per Documents | 2.91 |
Collaboration Index | 2.74 |
Number of Articles | Number of Authors | Frequency |
---|---|---|
1 | 434 | 0.929 |
2 | 25 | 0.054 |
3 | 7 | 0.015 |
10 | 1 | 0.002 |
Journal | h_Index | Total Citation | Start Year |
---|---|---|---|
Computers in human behavior | 4 | 695 | 2010 |
Industrial management and data systems | 4 | 367 | 2014 |
International journal of mobile communications | 4 | 290 | 2008 |
International journal of information management | 2 | 182 | 2014 |
Journal of retailing and consumer services | 2 | 149 | 2016 |
Technological forecasting and social change | 2 | 97 | 2018 |
Information systems research | 1 | 296 | 2001 |
Communications of the association for information systems | 1 | 152 | 2010 |
Journal of product innovation management | 1 | 94 | 2001 |
Information systems frontiers | 1 | 91 | 2017 |
Author | Dominance Factor | Total Articles | Multi-Authored | First-Authored | Rank by Articles | Rank by DF |
---|---|---|---|---|---|---|
Liebana-Cabanillas F | 1.00 | 15 | 15 | 12 | 1 | 1 |
Ladkoom K | 1.00 | 2 | 2 | 2 | 4 | 1 |
Pei Y | 1.00 | 2 | 2 | 2 | 4 | 1 |
Kalinic Z | 0.66 | 2 | 3 | 2 | 2 | 4 |
Khan An | 0.66 | 2 | 3 | 2 | 2 | 4 |
Andreev P | 0.50 | 2 | 2 | 1 | 4 | 6 |
Chaiyasoonthorn W | 0.50 | 2 | 2 | 1 | 4 | 6 |
Kelana B | 0.50 | 2 | 2 | 1 | 4 | 6 |
Keramati A | 0.50 | 2 | 2 | 1 | 4 | 6 |
Liu Y | 0.50 | 2 | 2 | 1 | 4 | 6 |
Author | h_Index | G_Index | TC | NP | PY_Start |
---|---|---|---|---|---|
Liebana-Cabanillas F | 7 | 9 | 468 | 9 | 2014 |
Sanchez-Fernandez F | 3 | 3 | 363 | 3 | 2014 |
Tan Gwh | 3 | 3 | 198 | 3 | 2015 |
Kalinic Z | 3 | 3 | 146 | 3 | 2016 |
Marinkovic V | 3 | 3 | 146 | 3 | 2016 |
Khan An | 3 | 3 | 58 | 3 | 2018 |
Lin B | 2 | 2 | 94 | 2 | 2013 |
Fong Mwl | 2 | 2 | 49 | 2 | 2016 |
Andreev P | 2 | 2 | 47 | 2 | 2012 |
Abd Ghani M | 2 | 2 | 42 | 2 | 2019 |
Authors | Source | Title | TC | TC/Year | |
---|---|---|---|---|---|
1 | Kim et al. (2010) [40] | Computers in human behavior | An empirical examination of factors influencing the intention to use mobile payment | 424 | 32.6 |
2 | De kerviler et al. (2016) [61] | Journal of retailing and consumer services | Adoption of in-store mobile payment: are perceived risk and convenience the only drivers? | 140 | 20 |
3 | Liébana-Cabanillas et al. (2014) [62] | Computers in human behavior | Antecedents of the adoption of the new mobile payment systems: the moderating effect of age | 172 | 19.1 |
4 | Liébana-Cabanillas et al. (2018) [63] | Technological forecasting and social change | Predicting the determinants of mobile payment acceptance: a hybrid sem-neural network approach, | 89 | 17.8 |
5 | Teo et al. (2015) [64] | Industrial management & data systems | The effects of convenience and speed in m-payment | 141 | 17.6 |
6 | Johnson et al. (2018) [26] | Computers in human behavior | Limitations to the rapid adoption of m-payment services: understanding the impact of privacy risk on m-payment services | 88 | 17.6 |
7 | Karjaluoto et al. (2019) [65] | International journal of information management | How perceived value drives the use of mobile financial services apps | 64 | 16 |
8 | Yang et al. (2015) [66] | Industrial management & data systems | Understanding perceived risks in mobile payment acceptance | 123 | 15.3 |
9 | Gao and Waechter, (2017) [67] | Information systems frontiers | Examining the role of initial trust in user adoption of mobile payment services: an empirical investigation | 91 | 15.1 |
10 | Chen L., (2008) [68] | International journal of mobile communications | A model of consumer acceptance of mobile payment | 221 | 14.7 |
11 | Liébana-Cabanillas et al. (2014) [69] | Industrial management & data systems | Role of gender on acceptance of mobile payment | 73 | 8.11 |
12 | Khan and Ali (2018) [70] | Wireless personal communications | Factors affecting retailer’s adoption of mobile payment systems: a sem-neural network modeling approach | 33 | 6.6 |
13 | Liébana-Cabanillas et al. (2015) [71] | Technology analysis & strategic management | User behaviour in QR mobile payment system: the QR payment acceptance model | 49 | 6.12 |
14 | Chuan Teo et al. (2015) [72] | International journal of mobile communications | Why consumers adopt mobile payment? a partial least squares structural equation modelling (pls-sem) approach | 48 | 6 |
15 | Kalinic and Marinkovic (2016) [73] | Information systems and e-business management | Determinants of users’ intention to adopt m-commerce: an empirical analysis | 41 | 5.85 |
16 | Duane et al. (2014) [74] | Behaviour & information technology | Realising m-payments: modelling consumers’ willingness to m-pay using smart phones | 36 | 4 |
Countries | MCP Frequency | Total Articles (SCP + MCP) | Single Country Publication (SCP) | Multiple Country Publication (MCP) | MCP Ratio |
---|---|---|---|---|---|
CHINA | 0.196 | 34 | 29 | 5 | 0.14 |
MALAYSIA | 0.075 | 13 | 10 | 3 | 0.23 |
USA | 0.069 | 12 | 6 | 6 | 0.5 |
SPAIN | 0.063 | 11 | 8 | 3 | 0.27 |
INDIA | 0.052 | 9 | 8 | 1 | 0.11 |
THAILAND | 0.052 | 9 | 6 | 3 | 0.33 |
INDONESIA | 0.034 | 6 | 6 | 0 | 0 |
IRAN | 0.034 | 6 | 5 | 1 | 0.16 |
PAKISTAN | 0.034 | 6 | 3 | 3 | 0.5 |
CANADA | 0.028 | 5 | 3 | 2 | 0.4 |
Country | Affiliations | Articles/Country | Articles |
---|---|---|---|
Spain | University of Granada | 23 | 23 |
Thailand | King Mongkut’s Institute of Technology Ladkrabang | 9 | 9 |
Serbia | University of Kragujevac | 8 | 8 |
Jordan | University of Jordan | 7 | 7 |
Iran | University of Tehran | 7 | 7 |
Malaysia | Tunku Abdul Rahman University | 18 | 7 |
Multimedia University | 6 | ||
UCSI University | 5 | ||
China | Beijing Foreign Studies University | 16 | 4 |
Renmin University China | 4 | ||
Tongji University | 4 | ||
Jiaxing University | 4 | ||
USA | Louisiana State University | 4 | 4 |
Taiwan | National Chung Hsing University | 8 | 4 |
National Taipei University Technology | 4 |
Coupling Keywords | Co-Occurrences |
---|---|
Mobile payment (M-payment) | 63 |
E-payment | 19 |
Trust | 19 |
TAM | 17 |
Adoption | 13 |
E-commerce | 13 |
Perceived risk | 11 |
UTAUT | 9 |
Mobile commerce | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tounekti, O.; Ruiz-Martínez, A.; Skarmeta Gomez, A.F. Research in Electronic and Mobile Payment Systems: A Bibliometric Analysis. Sustainability 2022, 14, 7661. https://doi.org/10.3390/su14137661
Tounekti O, Ruiz-Martínez A, Skarmeta Gomez AF. Research in Electronic and Mobile Payment Systems: A Bibliometric Analysis. Sustainability. 2022; 14(13):7661. https://doi.org/10.3390/su14137661
Chicago/Turabian StyleTounekti, Oussama, Antonio Ruiz-Martínez, and Antonio F. Skarmeta Gomez. 2022. "Research in Electronic and Mobile Payment Systems: A Bibliometric Analysis" Sustainability 14, no. 13: 7661. https://doi.org/10.3390/su14137661
APA StyleTounekti, O., Ruiz-Martínez, A., & Skarmeta Gomez, A. F. (2022). Research in Electronic and Mobile Payment Systems: A Bibliometric Analysis. Sustainability, 14(13), 7661. https://doi.org/10.3390/su14137661