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Abstract: Concrete has a large environmental impact due to CO2 emissions related to cement manu-
facturing and the consumption of natural aggregates. More sustainable concretes can be developed,
replacing part of the cement with mineral admixtures or natural aggregates with recycled ones. How-
ever, recycled materials are less regular than natural ones, and using new deposit changes concrete
properties, which necessitates the re-optimization of mixture proportions. For small/medium-size
waste deposits, the expensive experimental work needed to adapt concrete formulation containing
these particular wastes is not profitable, which prevents from their valorization. The aim of this study
is to develop a numerical model to optimize the mixture proportions of concentrated suspensions
based on very limited entry data. In the model, spheres of small radii are seeded in the porosity and
allowed to swell until reaching a target radius/density. On monosized suspensions, it is shown that
the ratio between the number of random displacements to the number of particles varies with density,
following a classical viscosity–density relationship, which allows identification of the packing fraction.
The model is extended to bidisperse systems, with the viscosity of the whole suspension calculated
by combining the viscosities of each granular class. The model is applied to bidisperse systems of size
ratios 4:1 and 2:1 with varying proportions of large particles. The optimum proportions identified
numerically are compared successfully to experimental results from the literature.

Keywords: concentrated suspension; numerical model; maximum packing fraction; viscosity

1. Introduction

Concrete production has a large environmental impact due both to the CO2 emissions
related to cement manufacture and to the large consumption of natural aggregates. Op-
timizing concrete mixture proportions is fundamental from a sustainable development
perspective, as it allows for minimizing the volume fraction of cement paste for a given
workability, therefore reducing the amount of cement in the mix for a given set of speci-
fications [1]. Another way to improve the environmental impact of concrete is to replace
part of the cement with mineral admixtures or a portion of the natural aggregates with
recycled ones to reduce the shortage of natural resources. Several industrial by-products,
such as blast furnace slags or coal fly ashes, have been used as cement substitutes for a
long time and have proven to be efficient both in the carbon footprint reduction of concrete
and in the improvement of some specific properties, such as durability [2]. Other recycled
materials could be used as cement or aggregate substitutes in concrete (sugarcane bagasse
ash [3], grinded bricks [4], recycled concrete aggregates [5], etc.), but these materials are
produced at a smaller industrial scale than classical admixtures, and deposits are much
more variable. Replacing a well-known material with a new one changes the properties
of concrete both at fresh and hardened states, and the optimization of the new mixture
proportions is required in each case. In particular, the substitution of a concrete constituent
with a recycled material very often leads to a decrease in the workability of concrete due
to a lack of granular optimization of the new mixture. The experimental optimization of
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granular materials is expensive and takes a long time, and the laboratory optimization of
concrete-containing recycled materials can only be carried out if the deposit of recycled
materials is large enough for experimentation to be profitable. There are some numerical
models of concrete mixture proportioning [6], but they also require substantial experiments
to determine the entry data of each constituent, and once again, they are more suited to
large deposits. Having a simple and fast solution for mixture proportion optimization is
therefore necessary to increase the proportion of recycled materials in concrete. In this
paper, we propose a numerical model for granular mixture proportioning, attempting
to fill the gap between the need for a reliable model of granular optimization and the
necessity to limit the cost of experiments to feed the model. The proposed model allows
comparison of the viscosity of concentrated suspensions with different granular mixture
proportions. It can therefore be used to optimize the composition of the granular mixture
in order to minimize the viscosity of the suspension. This could lead to a simple tool for
the development of concretes containing recycled materials.

Predicting the relative viscosity (ηr = η/η0: ratio between the viscosity of the sus-
pension to that of the suspending fluid) of non-colloidal concentrated suspensions from
their solid volume fraction is a matter of importance, both theoretically and for industrial
purposes. Many models have been proposed to derive the relative viscosity from the ratio
(ϕ/ϕm) between the solid volume fraction of particles in the suspension to their random
packing fraction [7–11]. The latter can either be computed from rheological experiments
by measuring the viscosity of suspensions of various solid volume fractions or estimated
from packing experiments with dry particles [12]. Both methods require time-consuming
experiments and are not suited to the purpose of optimization.

The increase in viscosity due to the addition of particles in a suspending fluid can
be accounted for by the intrinsic viscosity (2.5 for spheres) considering hydrodynamic
effects and by geometric considerations, captured by the ratio (ϕ/ϕm) [10]. For a given
particle geometry, the influence of the volume fraction of particles should only depend on
geometric considerations. The basic idea of the model is that, for a given particle geometry
(spheres in this paper), the numerical generation of a suspension of volume fraction ϕ is
easier (i.e., less computationally expensive) for a granular system with a larger ϕm value
(i.e., for a less viscous suspension). With this hypothesis, the optimization of the granular
mixtures should be possible based on the generation of suspensions and not on that of
packings, which is much less computationally expensive.

In Section 2, the numerical methods used to generate and characterize monosized
suspensions is described. In Section 3, monosized suspensions of spheres of densities
ranging between 0.025 and 0.5 are generated, the ϕm value of the system is identified
following two different approaches and compared to the random loose packing density
determined by Onoda and Liniger [13]. In Section 4, the numerical procedure is adapted
for the generation of bidisperse suspensions, introducing particles by order of decreasing
radius. The viscosity of bidisperse suspensions with size ratios 4:1 and 2:1 and of varying
proportions of large particles are computed, and the optimum values are compared to
experimental results from the literature.

2. Numerical Methods: Generation and Characterization of Monosized Suspensions
of Spheres
2.1. Generation Procedure

The easiest way to simulate a random suspension is to use the Random Sequential
Addition algorithm (RSA), where particle positions are simply generated randomly until a
place where they can fit without overlapping already placed particles is found [14]. How-
ever, the maximum solid volume fraction that can be reached using RSA with monosized
spheres is 0.38, whereas most of the experimental studies available in the literature deal
with suspensions with solid volume fractions of up to 0.50. Therefore, a modified algo-
rithm inspired by RSA and by the “symmetric vibration” procedure presented in [15] has
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been developed to simulate suspensions of higher density. A flow chart of the numerical
procedure is presented in Figure 1, and the model is described in detail in the lines below.
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Figure 1. Flow chart of the numerical procedure used to generate a suspension of density γmax.

A suspension of very low density (0.025) is first generated by RSA. Then, the con-
centration of the system is progressively increased by swelling the radius of particles up
to the required density. In each swelling cycle, the radius increment dr is computed to
have a constant density increase dγ = 0.005. To do this, for each swelling step, successive
“vibration” cycles are performed. Particles are scanned in a random order, and a trial
placement of a larger particle of radius r + 2dr is performed in its original position, all the
other particles conserving their initial radius r. If the trial placement is successful, i.e., if no
collision occurs with other particles, the particle recovers its initial radius r and stays at
its original place. Otherwise, the particle recovers its initial radius r and up to four trial
random displacements are performed to find a new position. With this procedure, particles
that can “vibrate” freely are not moved whereas particles located in places where they
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cannot, are moved until finding an appropriate location. Once all the particles “vibrate”
freely with an amplitude 2 dr, their radius can be increased to r + dr without producing
any overlap and the density of the system can be raised. It has to be pointed out that, to
accelerate the simulation and ensure convergence, the swelling cycle is interrupted after
a user-defined maximum number of vibrations. In that case, some particles might still
not “vibrate” at the end of the cycle. Starting the next swelling cycle allows reorganizing
the whole system and the radii of remaining particles can eventually be increased. At the
very last swelling cycle, some particles with a radius smaller than required might persist,
leading to a suspension of density lower than the target density.

Remark 1: The current version of the model only deals with spherical particles,
whereas real granular systems are composed of irregular grains. More complex geometries
could be used in the model (parallelepipeds for example) and in that case additional
rotations would have to be considered in the random displacements of particles. However,
most of the experimental methods used to characterize granular systems assume sphericity
for the particles (sieving or laser granulometry for example). Our aim is to develop a
fast and simple tool to save expensive experiments, and it therefore needs to be fed with
very simple entry data (basically, particle size distribution and density). The model could
therefore be used to converge towards optimal proportions of the mixture, but simulations
would then have to be completed by a few (much less expensive) experiments to refine the
results and account for the real shape of particles.

Remark 2: The presented model is based only on geometrical considerations. Complex
interaction forces (grain–grain or fluid–grain) are not considered. As explained above,
hydrodynamic effects can be considered through the intrinsic viscosity of particles (2.5 for
spheres) [10]. However, interparticle forces (such as Van der Waals forces) could lead
to agglomeration of small particles, drastically changing the geometrical configuration
of the suspension [16], and then changing the maximum packing fraction (ϕm). The
proposed model is therefore only applicable if the appropriate dosage of dispersant agent
is used (High Range Water Reducing Admixture in the case of concrete). These chemical
admixtures are, however, quasi systematically used in modern concrete technology, and the
range of application of the model therefore covers most of the concretes used nowadays.

2.2. Structural Analysis

It is well known that the ratio (ϕ/ϕm) is correlated to the cubic power of the mean
distance between particles [1,17]. Indeed, a suspension of solid volume fraction ϕ can be
considered as the dilated state of an initial packing of density ϕm, where any solid grain of
radius r of the initial packing could be replaced by a composite particle of radius λr, made of
a hard solid core of radius r surrounded by a shell of fluid of width (λ-1)r. In the following,
λ is called “loosening factor” of the system. In this state, the volume fraction of composite
particles of radius λr is equal to ϕm, whereas that of solid particles is ϕ, and ϕ/ϕm = 1/λ3.
Knowing the loosening factor λ for a given suspension, its relative viscosity could be
computed using models proposed in the literature. In an ideal suspension, the loosening
factor λ would have a unique value and could be computed from the distance between any
pair of neighbor particles in the system. However, in real suspensions prepared by mixing
as well as in simulated suspensions where particles are placed following any random
procedure, particle positions do not correspond exactly to the positions of the expanded
packing, and some perturbation of the particle positions has to be accounted for. In this
case, a loosening factor for the whole system λs is more difficult to define. However, a local
loosening factor λi can simply be computed from the distance between particle Pi and its
nearest neighbor. It can be reasonably assumed that, in any suspension, the closest particle
from a given grain would also be one of its neighbors (in contact) in the condensed packing.
As mentioned above, in a random suspension, particle positions do not correspond exactly
to the positions of the expanded initial packing and the system is perturbed. In the first
order, it can be assumed that the perturbation corresponds to a small variation of the
position of grain Pi, the positions of all its neighbor particles being unchanged. In this
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case, the λs value of the system should correspond to the largest λi value. Indeed, in
the non-perturbed system, a particle is equidistant to all its neighbors. In the perturbed
system, it will get closer to a given neighbor, which will systematically result in a decrease
of its nearest neighbor distance. Finally, in the real suspension, the previous first order
hypothesis will not be exact and the largest λi could be larger than λs, because not only the
considered grain can move, but also all its neighbors. However, an increase in λi should be
rare because in this case, all the neighbor particles would have to get away from it at the
same time, which is very unlikely. Identification of λs should therefore be based not exactly
on the maximum value of the λi distribution, but rather on a fractile of this distribution,
allowing to exclude exceptions. In the following, a fractile 99% has been retained for this
structural analysis.

2.3. Dynamical Analysis

Obviously, the number of operations needed to numerically generate a suspension
should depend on the mean distance between particles, it should therefore also be corelated
to the relative viscosity of the system. Suspensions where grains are far away from each
other require less operations (random displacements) for particles than suspensions where
grains are closer. During the generation of a suspension containing Np particles, the
total number of movements of particles Nv is recorded (number of trial displacements of
particles attempted when they cannot vibrate freely). The ratio (Np + Nv) to Np represents
the total number of placements and displacements of particles during the suspension
generation reported to the total number of particles. This ratio varies between 1 (for very
dilute suspensions) to infinity (for a density tending towards ϕm). It is therefore a good
indicator of the “numerical difficulty” to generate the system.

3. Application to Suspensions of Monosized Spheres Systems

Monosized suspensions of 10,000 spherical particles have been generated in periodic
cubic containers of varying sizes (depending on the target density), with solid volume
fractions ϕ ranging from 0.025 to 0.5. All the simulations have been repeated 10 times,
varying the seed number of the random generator. The loosening factor λ of each system
has been computed according to the procedure described in Section 2.2.

Figure 2 presents the variation of λ3 as a function of 1/ϕ. As expected, a linear
variation is observed, the slope of which can be identified as the packing fraction of the
condensed system (ϕm). The value of ϕm identified this way (forcing the curve to pass
by the origin) is 0.5525 ± 0.0010, which is very close to the random loose packing limit
(0.555 ± 0.005) obtained by Onoda and Liniger [13]. This result shows that the proposed
numerical procedure can simulate suspensions of varying solid volume fraction (from 0.025
up to 0.5), and that these suspensions can be considered as dilated systems of a packing
whose density is close to the random loose packing limit.

Figure 3 presents the variation of the logarithm of 1 + Nv/Np as a function of density
for all the simulations. It is compared to the variation of ηr as a function of ϕ, ηr being the
relative viscosity computed with the relation of Sengun and Probstein [11] (Equations (1)
and (2)).

ηr = 1 + C
3π
8

β

β+ 1

{
3 + 4.5β+ β2

β+ 1
− 3
(

1 +
1
β

)
ln(β+ 1)

}
(1)

where

β =

(
ϕ
ϕm

)1/3

1 −
(

ϕ
ϕm

)1/3 =
1

λ− 1
(2)

C and ϕm have been identified using a least-squares error method, on a logarith-
mic basis as for Sengun and Probstein. Two ranges of densities have been considered
for this identification: 0.025–0.5 and 0.15–0.5, excluding the less concentrated systems.
Indeed, in the dynamical analysis, viscosity is assessed from the number of numerical
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operations needed to generate the suspension. In dilute suspensions, number of operations
per particles is much smaller than in more concentrated systems, which implies a poor
representativity of the dynamical analysis.
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Figure 3 shows that the number of operations per particle needed to generate the
suspension (1 + Nv/Np) can be described properly using a classical viscosity–density
relationship (1). The fit for the range of densities 0.15–0.5 (R2 = 0.9974) is much better
than for 0.025–0.5 (R2 = 0.9906). The values obtained in the former case for ϕm and C are,
respectively, 0.5884 and 78.3. C depends on the used placing procedure (number of density
increments, number of trial random displacements in case of a collision, etc.). Theϕm value
is larger, but close to the random loose packing limit (0.555 ± 0.005) identified by Onoda
and Liniger [13]. The good correlation between Equation (1) and the numerical results,
together with the value obtained for ϕm (close to the random loose packing limit) both
show that (1 + Nv/Np) gives a good estimate of the relative viscosity of the suspension.
Nv can be easily computed during the generation procedure itself and does not need any
postprocessing of the results, it could therefore be used for the optimization of larger
systems.

The fit on Figure 3 between numerical results and Equation (1) is not perfect and C
and ϕm both depend on the range of densities chosen for the adjustment. Table 1 shows
the values obtained for these two parameters for five different ranges of densities. Both C
and ϕm values increase with the density range. However, the comparison is easier with
a single variable parameter, and in a second analysis the C value is forced to C = 63, C
being the mean value of C for the five studied ranges of densities. In that case, it can be
observed that the correlation coefficient is still very high. Moreover, the ϕm values are
much closer for ranges of density from 0.15 up to 0.40/0.45. For larger densities, the ϕm
value starts to increase significantly. This suggests that the modified RSA procedure used
for the building of suspensions leads to a compaction of the system when the density gets
closer to the maximum packing fraction. For densities significantly smaller than ϕm (about
80% of ϕm), it can be considered that the procedure allows the simulation of suspensions
of varying density without compacting the system and therefore without affecting its
maximum packing fraction.

Table 1. Fitting parameters C and ϕm obtained for adjustments performed on different ranges of
densities with Equation (1).

Range of Densities 0.15–0.30 0.15–0.35 0.15–0.40 0.15–0.45 0.15–0.50

C 46.9 55.6 63.3 71.1 78.3
ϕm 0.4935 0.5251 0.5497 0.5712 0.5884
R2 0.9977 0.9974 0.9973 0.9973 0.9974

C = C 63 63 63 63 63
ϕm 0.5467 0.5463 0.5489 0.5549 0.5648
R2 0.9985 0.9979 0.9973 0.9961 0.9943

4. Application to Bidisperse Suspensions

Bidisperse spherical particles systems with particle size ratios 4:1 and 2:1 (ratio be-
tween the radius of large particles R1 to the radius of small particles R2) have been studied
and compared with experimental results of the literature. Systems containing more than
100,000 particles have been generated with varying proportions of large spheres (X1) using
the previous procedure with the following modification, to adapt it to the case of polydis-
perse spherical particles systems. Np1 large particles are placed first and ηr,1 = 1 + Nv1/Np1
is computed. Then, Np2 small grains are added and allowed to swell in the porosity of
the previous system, and ηr,2 is determined similarly. The resulting viscosity is finally
computed according to the Arrhenius [18] relation as following (Equation (3)):

ln(ηr) = X1 ln(ηr,1) + (1 − X1) ln(ηr,2) (3)

For each particle size ratio, and each proportion of large particles, several suspensions
of density ranging from 0.150 up to 0.65, with steps of 0.025 have been generated. No
system of density smaller than 0.150 has been simulated because, as shown in Figure 3,
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the fit between 1 + Nv/Np and Equation (1) is poor for low density suspensions and in
that case ηr,1 and/or ηr,2 (depending on the proportion of large particles) would not be
computed accurately. Moreover, after a first estimate of the maximum packing fraction
ϕm, the range of density has been limited to a value close to 0.8 ϕm to avoid any over
compaction of the suspensions. The range of density finally retained for the analysis of
results is 0.15 to 0.6 for systems 4:1 and 0.15 to 0.5 for systems 2:1. Then, the C, and ϕm
values of each system have been computed by fitting Equation (1) to the variation of ηr as a
function of density, using a least-squares error method on a logarithmic basis.

Figure 4 presents the variation of ln(ηr) as a function of density for two systems
(1:2, X1 = 0.5 and 1:4, X1 = 0.55). The figure also presents the best fit obtained with
Equation (1) in both cases and shows that for bidisperse systems, the variation of relative
viscosity computed according to the Arrhenius relation (Equation (3)) as a function of
solid volume fraction can also be described very satisfactorily by the Sengun and Probstein
relationship [11]. For these two systems, ten successive simulations have been repeated for
all the studied solid volume fractions to assess the repeatability of the procedure. The mean
values obtained for C and ϕm for system (1:2, X1 = 0.5) are 20.0 and 0.6257 with standard
deviations of 0.320 and 0.0017. The mean values obtained for C and ϕm for system (1:4,
X1 = 0.55) are 27.3 and 0.7368 with standard deviations of 0.517 and 0.0019.
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Figure 4. Variation of ln(ηr) as a function of density for systems 1:2 with 50% large particles and 1:4
with 55% large particles and best fit with Equation (1) (R2 = 0.9975 and 0.9973, respectively).

The fit with Equation (1) is good (R2 larger or equal to 0.9973), which shows that this
equation allows for a good prediction of the packing densities. However, numerical results
could also be approached satisfactorily with a linear relation (R2 larger than or equal to
0.9990 in both cases). This observation also stands for all the other studied systems and
suggests that the slope of the variation of ln(ηr) as a function of density could also be used
to compare the systems, the larger the slope, the higher the viscosity.

The C value strongly depends on the particle size ratio, and to a lesser extent on the
proportion of large particles (X1). For a particle size ratio of 1:4, C varies between 25.3 and
33.0, and its value is comprised between 19.9 and 21.5 for particle size ratio 1:2. Whatever
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the size ratio, C is much lower than the value identified previously on monosized systems
(78.3). This large difference probably depends on the placing procedure, which is carried
out in two steps for bidisperse systems.

To assess the role of the two step procedure, the ϕm value of the monosized systems
containing 10,000 particles has been recomputed in two steps, as for the bidisperse systems,
by first placing a part of the particles (from 20 to 80%, that are in this case considered as
“large grains”), letting them swell up to the final radius, and then the remaining part (these
systems are noted 1:1 in the following). Table 2 presents the obtained values for C and ϕm
for the different proportions of particles placed in the first step (X1). It can be observed
that, for proportions comprised between 0.3 and 0.7, the C value is comprised between
20.6 and 24.3, which is close to the values obtained for systems of particle size ratio 1:2.
Additionally, the ϕm value for all these systems varies between 0.5045 and 0.5204, the
variation being larger for proportions X1 lower than 0.3 or larger than 0.7. The packing
densities obtained for systems 1:1 (monosized systems placed in two steps) therefore vary
significantly as a function of the proportion of particles placed in the first step. A constant
value of the packing density is expected here because the systems are the same, simulations
only differ from the placing procedure. Placing part of the grains in the first step of course
adds constraints to the system as the first batch of particles cannot be moved once they have
reached their final radius. These constraints depend however on the specific surface of
particles and are therefore maximized when the size of grains is the same for the two steps
of the process. This effect of the placing procedure should therefore be less pronounced for
systems of increasing size ratios, but for the latter the influence is more difficult to quantify,
and we neglect it in the following.

Table 2. Fitting parameters C and ϕm obtained for adjustments performed on monosized systems
placed in two steps (systems 1:1), with a varying proportion of particles placed in the first step.

Proportion of Particles
Placed at the First Step 0.15 0.3 0.4 0.5 0.6 0.7 0.8

C 28.8 20.9 20.7 20.6 21.0 24.3 32.4
ϕm 0.5503 0.5204 0.5133 0.5040 0.5041 0.5131 0.5465
R2 0.9973 0.9940 0.9937 0.9890 0.9877 0.9888 0.9906

In order to compare the bidisperse systems with a single value, it has been decided to
force C to C (C being the mean value of C for all the proportions of large particles studied
for each size ratio, C = 28.4 for 4:1 systems, and C = 20.7 for 2:1 systems), and only ϕm is
identified. Even with a fixed value of C, the correlation between ηr and Equation (1) is still
good (R2 larger than 0.9962).

Figure 5 shows the variation of ϕm as a function of the proportion of large particles
for the two studied systems (4:1, and 2:1). These results are compared to those obtained
experimentally by Shapiro and Probstein [12] on bidisperse 4:1 and 2:1 suspensions and
packings. The optimum values obtained in our simulations for the 4:1 and 2:1 suspensions
(0.50) lie in the range of optimum proportions measured by Shapiro and Probstein on
suspensions (between 0.5 and 0.65). For the 2:1 suspensions, the variation of ϕm with the
proportion of large particles is very flat for proportions of large grains comprised between
0.45 and 0.55, and a neat optimum is more difficult to define. Overall, the simulations
seem to give a good estimate of optimum proportions, the predictions being probably more
accurate as the size ratio increases.

Figure 6 shows the variation of the slope of the relation ln(ηr) = f(ϕ) for the two studied
systems (4:1 and 2:1). This result leads to similar conclusions than the previous analysis, the
optimum proportion for 4:1 systems is 0.5 and that of 2:1 systems is comprised between 0.45
and 0.5. The slope of the viscosity–density relation does not give the maximum packing
density of the system, but it seems sufficient to identify the optimum proportions and could
therefore be used as an efficient parameter for the optimization of granular mixtures.
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Figure 6. Variation of the slope “a” of the relation ln(ηr) = f(ϕ) for the 4:1 and 2:1 bidisperse spherical
particles systems.
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5. Conclusions

The main objective of this paper was to propose a simple numerical model allowing us
to optimize the mixture proportions of granular systems with very few entry data (basically
the particle size distribution). The principle of the model was first tested on monosized
spheres systems, and it was then applied to bidisperse spherical particles mixtures and
compared successfully to results of the literature.

Monosized spheres suspensions of varying density have first been simulated with an
original numerical procedure. Simulated systems have then been analyzed following two
different approaches: a structural analysis of the final suspension or a dynamical analysis
of the whole generation of the system. The structural analysis showed that the generated
suspensions can be considered as dilated states of a denser packing whose density is
very close to the well-known random loose packing limit. The dynamical analysis has
shown that the variation of the number of operations per particle needed to generate the
suspension follows a classical viscosity–density relationship, showing that the “numerical
difficulty” to generate the suspension is correlated to its viscosity and suggesting also that
the maximum packing fraction of the system is close to the random loose packing limit.

The numerical procedure used for the generation of suspensions has then been ex-
tended to bidisperse systems, placing first the large grains and then the small ones. The
viscosity of the whole suspension has been calculated by combining the viscosities of each
granular class, and the optimum proportions of the bidisperse suspensions have been iden-
tified. The two steps procedure could be questioned because no interaction (the so-called
“loosening effect”) between large and small particles is considered during the placement of
large grains. However, the optimum proportions of simulated systems compared quite well
to the optimum proportions identified experimentally in the literature, and this assumption
does not seem to affect the optimization results. This might be because the optimum
proportion is researched not from the generation of packings, but of suspensions, for which
the presence of the interstitial fluid between particles could decrease the influence of the
loosening effect.

A similar approach could be used for the optimization of polydisperse systems such
as concrete containing recycled materials, placing particles from the largest to the smallest,
providing thus an efficient and fast tool for the optimization of the proportions of granular
mixtures of known particle size distributions.

Author Contributions: Conceptualization, methodology, software, writing—original draft prepara-
tion: S.R.; validation, formal analysis, resources, writing—review and editing, S.R. and M.E.K.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC was funded by the Erasmus+ project
KA2—Higher education strategic partnerships no.2018-1-RO01-KA203-049214, “Rehabilitation of
the Built Environment in the Context of Smart City and Sustainable Development Concepts for
Knowledge Transfer and Lifelong Learning—RE-BUILT”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Larrard, F. Concrete Mixture Proportioning: A Scientific Approach; E & FN Spon: London, UK, 1999.
2. Cyr, M. Influence of supplementary cementitious materials (SCMs) on concrete durability. In Woodhead Publishing Series in Civil

and Structural Engineering, Eco-Efficient Concrete; Pacheco-Torgal, F., Jalali, S., Labrincha, J., John, V.M., Eds.; Woodhead Publishing:
Sawston, UK, 2013; pp. 153–197, ISBN 9780857094247.

3. de Siqueira, A.A.; Cordeiro, G.C. Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive
Strength and Acid Attack of Mortar. Sustainability 2022, 14, 5683. [CrossRef]

http://doi.org/10.3390/su14095683


Sustainability 2022, 14, 7773 12 of 12

4. Grellier, A.; Bulteel, D.; Bouarroudj, M.E.K.; Rémond, S.; Zhao, Z.; Courard, L. Alternative hydraulic binder development based
on brick fines: Influence of particle size and substitution rate. J. Build. Eng. 2021, 39, 102263. [CrossRef]

5. Chu, S.H.; Poon, C.S.; Lam, C.S.; Li, L. Effect of natural and recycled aggregate packing on properties of concrete blocks. Constr.
Build. Mater. 2021, 278, 122247. [CrossRef]

6. de Larrard, F.; Sedran, T. Mixture-proportioning of high-performance concrete. Cem. Concr. Res. 2002, 32, 1699–1704. [CrossRef]
7. Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [CrossRef]
8. Krieger, I.M.; Dougherty, T.J. A mechanism for non-Newtonian flow in suspensions of spherical particles. Trans. Soc. Rheol. 1959,

3, 137–152. [CrossRef]
9. Quemada, D. Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol. Acta 1977, 16, 82.

[CrossRef]
10. Brouwers, H.J.H. Viscosity of a concentrated suspension of rigid monosized particles. Phys. Rev. E 2010, 81, 051402. [CrossRef]

[PubMed]
11. Sengun, M.Z.; Probstein, R.F. Bimodal model of slurry viscosity with application to coal-slurries. Part 1. Theory and Experiment.

Reol. Acta 1989, 28, 382–393.
12. Shapiro, A.P.; Probstein, R.F. Random Packings of Spheres and Fluidity Limits of Monodisperse and Bidisperse Suspensions.

Phys. Rev. Lett. 1992, 68, 1422. [CrossRef] [PubMed]
13. Onoda, G.Y.; Liniger, E.G. Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 1990, 64, 2727.

[CrossRef] [PubMed]
14. Widom, B.J. Random Sequential Addition of Hard Spheres to a Volume. J. Chem. Phys. 1966, 44, 3888–3894. [CrossRef]
15. Rémond, S. Compaction of confined mono-sized spherical particles systems under symmetric vibration: A suspension model.

Phys. A 2004, 337, 411–427. [CrossRef]
16. Manounou, A.K.; Rémond, S. Discrete element modeling of the microstructure of fine particle agglomerates in sheared dilute

suspension. Phys. A 2014, 412, 66–83. [CrossRef]
17. Frankel, N.A.; Acrivos, A. On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 1967, 22, 847. [CrossRef]
18. Arrhenius, S. Über die Innere Reibung Verdünnter Wässeriger Lösungen. Z. Phys. Chem. 1887, 1, 285–298. [CrossRef]

http://doi.org/10.1016/j.jobe.2021.102263
http://doi.org/10.1016/j.conbuildmat.2021.122247
http://doi.org/10.1016/S0008-8846(02)00861-X
http://doi.org/10.1016/0095-8522(51)90036-0
http://doi.org/10.1122/1.548848
http://doi.org/10.1007/BF01516932
http://doi.org/10.1103/PhysRevE.81.051402
http://www.ncbi.nlm.nih.gov/pubmed/20866225
http://doi.org/10.1103/PhysRevLett.68.1422
http://www.ncbi.nlm.nih.gov/pubmed/10046162
http://doi.org/10.1103/PhysRevLett.64.2727
http://www.ncbi.nlm.nih.gov/pubmed/10041794
http://doi.org/10.1063/1.1726548
http://doi.org/10.1016/j.physa.2004.02.014
http://doi.org/10.1016/j.physa.2014.06.023
http://doi.org/10.1016/0009-2509(67)80149-0
http://doi.org/10.1515/zpch-1887-0133

	Introduction 
	Numerical Methods: Generation and Characterization of Monosized Suspensions of Spheres 
	Generation Procedure 
	Structural Analysis 
	Dynamical Analysis 

	Application to Suspensions of Monosized Spheres Systems 
	Application to Bidisperse Suspensions 
	Conclusions 
	References

