Relationship between Environmental Pollution, Environmental Regulation and Resident Health in the Urban Agglomeration in the Middle Reaches of Yangtze River, China: Spatial Effect and Regulating Effect
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Environmental Pollution and Resident Health
2.2. The Regulating Effect of Environmental Regulation
2.3. The Spatial Spillover of Environmental Pollution and Environmental Regulation
3. Model Construction and Data Processing
3.1. Model Construction
3.2. Variable Selection
3.2.1. Explained Variable: Resident Health
3.2.2. Core Explanatory Variable: Environmental Pollution
3.2.3. Regulated Variable: Environmental Regulation
3.2.4. Control Variables
3.3. Study Area and Data Explanation
3.3.1. Study Area
3.3.2. Data Source
3.3.3. Descriptive Statistics of Variables
4. Empirical Results
4.1. Health Effect of Environmental Pollution
4.2. Regulating Effect of Environmental Regulation
4.3. Spatial Spillover Effect of Environmental Pollution and Environmental Regulation
4.3.1. Decomposing the Spatial Effect of Environmental Pollution
4.3.2. Decomposing the Spatial Effect of Environmental Regulation
4.3.3. The Analysis of Regional Differences in Spatial Effects
5. Robustness Test
5.1. Endogeneity Test
5.2. Robustness Test
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Test | Statistic | p-Value | Test | Statistic | p-Value |
---|---|---|---|---|---|
LM–spatial lag | 332.580 | 0.000 | LR–spatial lag | 43.87 | 0.000 |
Robust LM–spatial lag | 13.007 | 0.000 | Wald–spatial lag | 13.42 | 0.037 |
LM–spatial error | 329.212 | 0.000 | LR–spatial error | 45.36 | 0.000 |
Robust LM–spatial error | 9.639 | 0.002 | Wald–spatial error | 13.22 | 0.040 |
References
- Xie, Y.; Dai, H.; Hanaoka, T.; Masui, T. Health and economic impacts of PM2.5 pollution in Beijing-Tianjin-Hebei Area. China Popul. Resour. Environ. 2016, 26, 19–27. [Google Scholar] [CrossRef]
- Shi, X. Promoting research on air pollution, climate change and population health under the goal of carbon neutrality and at the peak carbon dioxide emissions. Chin. J. Dis. Control Prev. 2021, 25, 1117–1119. [Google Scholar] [CrossRef]
- Voorhees, A.S.; Wang, J.; Wang, C.; Zhao, B.; Wang, S.; Kan, H. Public health benefits of reducing air pollution in Shanghai: A proof-of-concept methodology with application to BenMAP. Sci. Total Environ. 2014, 485, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zou, Y.; Zheng, J.; Wang, Y.; Liang, X.; Tan, Y.; Fu, X.; Peng, X. Effects of haze on children’s respiratory symptoms in Guangzhou. J. Environ. Health 2016, 33, 48–51. [Google Scholar] [CrossRef]
- Bagula, H.; Olaniyan, T.; De, H.K.; Saucy, A.; Parker, B.; Leaner, J.; Röösli, M.; Dalvie, M.A. Ambient air pollution and cardiorespiratory outcomes amongst adults residing in four informal settlements in the Western Province of South Africa. Int. J. Environ. Res. Public Health 2021, 18, 13306. [Google Scholar] [CrossRef]
- Tsan, Y.T.; Chen, D.; Liu, P.; Kristiani, E.; Nguyen, K.L.P.; Yang, C. The Prediction of Influenza-like Illness and Respiratory Disease Using LSTM and ARIMA. Int. J. Environ. Res. Public Health 2022, 19, 1858. [Google Scholar] [CrossRef]
- Pan, L.; Ni, Y.; Xu, J.; Li, H.; Dong, W.; Yang, D.; Liu, Y.; Zhu, Y.; Shan, J.; Yang, X.; et al. Effects of outdoor and indoor PM2.5 on exhaled biomarkers of patients with chronic obstructive pulmonary disease. J. Environ. Health 2016, 33, 1–4. [Google Scholar] [CrossRef]
- Fan, Q.; Li, C.; Li, T.; Bai, X.; Zhao, Z.; Zhang, X. Effects of Air Pollutants on Respiratory Health in Junior High Schools in Taiyuan. J. Shanxi Univ. (Nat. Sci. Ed.) 2018, 41, 636–641. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Lei, Y.; Wu, S.; Yan, D.; Dong, Z. Public Health Effect and its Economics Loss of PM2.5 Pollution from Coal Consumption in China. Sci. Total Environ. 2020, 732, 138973. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H. Multi-pollutant air pollution and associated health risks in China from 2014 to 2020. Atmos. Environ. 2022, 268, 118829. [Google Scholar] [CrossRef]
- Li, M.; Du, W. Effects of Air Pollution on Residents’ Health and Group Differences: An Empirical Analysis Based on CFPS (2012) Micro-survey Data. Econ. Rev. 2018, 211, 142–154. [Google Scholar] [CrossRef]
- Li, X.; Gu, Z.; Xu, Y. The Impact of Public Environmental Appeals on Enterprise Pollution Emissions: Micro Evidence from Baidu Environmental Search. J. Financ. Econ. 2022, 48, 34–48. [Google Scholar] [CrossRef]
- Lin, B.; Liu, H. Do Energy and Environment Efficiency Benefit from Foreign Trade?—The Case of China’s Industrial Sectors. Econ. Res. J. 2015, 5, 127–141. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2016&filename=JJYJ201509011 (accessed on 12 September 2021).
- Zhou, Y.; Hu, Q. Influences of environment regulation on environment pollution from the perspective of Hidden Economy: An analysis based on Zhejiang Province. Urban Probl. 2019, 289, 4–12. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Z.; Gao, Y.; Chen, Z.; Li, B.; Du, Y. Environmental regulation policies and public health: Based on the mediating effect test of environmental pollution. Theory Pract. Syst. Eng. 2018, 38, 361–373. [Google Scholar] [CrossRef]
- Song, L.; Cui, F. Environmental Regulation, Environmental Pollution and the Health of Residents—The Analysis of Mediating Effect and Spatial Spillover Effect. J. Xiangtan Univ. (Philos. Soc. Sci. Ed.) 2019, 43, 60–68. [Google Scholar] [CrossRef]
- Song, D.; Yang, Q.; Cheng, X. Does Environmental Regulation Improve Residents’ Subjective Well-being: An Empirical Study of China. Mod. Econ. Res. 2019, 445, 7–15. [Google Scholar] [CrossRef]
- Grossman, M. On the Concept of Health Capital and the Demand for Health. J. Political Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Cui, E.; Jiang, S.; Gu, S. Research on the Impact of Environmental Pollution, Commercial Health Insurance to Health Costs: Based on the Empirical Analysis of Provincial Panel Data. Nankai Econ. Stud. 2016, 192, 140–150. [Google Scholar] [CrossRef]
- Zhao, Z. Health status and influencing factors of rural population in China. Manag. World 2006, 22, 78–85. [Google Scholar] [CrossRef]
- Lu, H.; Qi, Y. Environmental Quality, Public Services and National Health: An Analysis Based on Cross-country Data. Financ. Res. 2013, 39, 106–118. [Google Scholar] [CrossRef]
- Qi, Y.; Lu, H. Pollution, Health and inequality—overcoming the “Environmental Health Poverty” trap. Manag. World 2015, 31, 32–51. [Google Scholar] [CrossRef]
- Ruan, F.; Zeng, X.; Duan, C. Influence of PM2.5 pollution on public health based on urban panel data. China Environ. Sci. 2020, 40, 5451–5458. [Google Scholar] [CrossRef]
- Shi, D.; Ding, H.; Wei, P.; Liu, J. Can Smart City Construction Reduce Environmental Pollution. China Ind. Econ. 2018, 32, 117–135. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, H.; Zhao, M. Is the development of digital finance conducive to environmental pollution control? Concurrently discussing the regulatory impact of local resource competition. Ind. Econ. Res. 2022, 21, 1–13. [Google Scholar] [CrossRef]
- Yu, L.; Xue, D. Spatiotemporal change of urban green development efficiency in the Yellow River Basin and influencing factors. Resour. Sci. 2020, 42, 2274–2284. [Google Scholar] [CrossRef]
- Huang, L.; Wu, C. Foreign Investment, Environmental Regulation and Green Development Efficiency of Cities along the Yangtze River Economic Belt. Reform 2021, 37, 94–110. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=REFO202103008 (accessed on 15 September 2021).
- Chen, S. Energy Consumption, CO2 Emission and Sustainable Development in Chinese Industry. Econ. Res. J. 2009, 44, 41–55. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=JJYJ200904006 (accessed on 15 September 2021).
- Tian, Z.; Dong, K.; Wu, F. Research on Total Estimates and Driving Factors of the End-use Energy Consumption’s CO2 Emissions in Jiangsu Province. China Popul. Resour. Environ. 2015, 25, 19–27. [Google Scholar] [CrossRef]
- He, A.; An, M. Competition among local governments, environmental regulation and green development efficiency. China Popul. Resour. Environ. 2019, 29, 21–30. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, H. Impact of Urban Industrial Structure Optimization on Carbon Emissions of Urban Agglomeration in the Middle Reaches of the Yangtze River. Reform 2018, 34, 130–138. [Google Scholar]
- LeSage, J.; Pace, K. Introduction to Spatial Econometrics; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Wang, Y.; Hao, C.; Shi, M. Does Environmental Pollution Provoke Public Environmental Concern? J. Financ. Econ. 2018, 44, 106–124. [Google Scholar] [CrossRef]
- Li, H.; Zou, Q. Environmental Regulations, Resource Endowments and Urban Industry Transformation: Comparative Analysis of Resource-based and Non-resource-based Cities. Econ. Res. J. 2018, 53, 182–198. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=JJYJ201811012 (accessed on 24 October 2021).
- Hu, Z.; Peng, X. Governance Choices in Dealing with China’s Aging Population. Soc. Sci. China 2018, 39, 134–155. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=JJYJ20181101 (accessed on 17 November 2021).
- Yang, K.; Zang, W.; Li, G. The Impact of Adult Children’s Education on the Health of Middle Aged and Elderly Parents. Popul. J. 2019, 41, 72–90. [Google Scholar] [CrossRef]
Variables | Names | Units | Symbols | Definitions |
---|---|---|---|---|
Explained variable | Mortality | ‰ | Reflect the health status of resident | |
Core explanatory variable | Environmental pollution | - | Reflect the degree of environmental pollution | |
Regulated variable | Environmental regulation | - | Reflect the intensity of environmental regulation | |
Control variables | Per-capita gross domestic product | Ten thousand Yuan | Reflect the level of economic development | |
Number of certified (assistant) doctors per 1000 people | People | Reflect the level of medical and health | ||
Number of university students per 10,000 people | People | Reflect the educational level of the population | ||
Urbanization rate | % | Reflect the level of urban development | ||
Number of patent authorizations | One hundred Pieces | Reflect the level of science and technology |
Variables | The Full Sample | The Circum-Changsha–Zhuzhou– Xiangtan Urban Agglomeration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Obs | Mean | Sd | Min | Max | Obs | Mean | Sd | Min | Max | |
308 | 0.62 | 0.15 | 0.07 | 1.34 | 88 | 0.72 | 0.07 | 0.42 | 0.85 | |
308 | 0.32 | 0.18 | 0.02 | 0.95 | 88 | 0.34 | 0.14 | 0.05 | 0.63 | |
308 | 0.75 | 0.18 | 0.16 | 1.00 | 88 | 0.80 | 0.15 | 0.31 | 0.99 | |
308 | 3.51 | 1.96 | 0.99 | 11.54 | 88 | 3.74 | 2.09 | 1.26 | 10.52 | |
308 | 2.01 | 0.72 | 0.81 | 4.86 | 88 | 2.26 | 0.74 | 1.09 | 4.40 | |
308 | 217.03 | 292.02 | 24.86 | 1176.28 | 88 | 243.57 | 260.93 | 54.62 | 965.05 | |
308 | 53.64 | 11.30 | 21.83 | 80.49 | 88 | 53.16 | 10.47 | 34.97 | 79.56 | |
308 | 25.85 | 46.58 | 1.07 | 391.26 | 88 | 29.75 | 42.51 | 2.28 | 225.04 | |
Variables | The Wuhan Urban Agglomeration | The Poyang Lake Urban Agglomeration | ||||||||
Obs | Mean | Sd | Min | Max | Obs | Mean | Sd | Min | Max | |
110 | 0.57 | 0.22 | 0.07 | 1.34 | 110 | 0.61 | 0.01 | 0.55 | 0.63 | |
110 | 0.31 | 0.22 | 0.04 | 0.95 | 110 | 0.30 | 0.17 | 0.02 | 0.70 | |
110 | 0.68 | 0.19 | 0.16 | 0.96 | 110 | 0.79 | 0.16 | 0.35 | 1.00 | |
110 | 3.83 | 2.19 | 0.99 | 11.54 | 110 | 3.01 | 1.46 | 1.00 | 6.81 | |
110 | 2.12 | 0.78 | 0.94 | 4.86 | 110 | 1.70 | 0.51 | 0.81 | 3.56 | |
110 | 210.62 | 309.69 | 41.05 | 1175.57 | 110 | 202.21 | 298.50 | 24.86 | 1176.28 | |
110 | 53.24 | 12.39 | 21.83 | 80.49 | 110 | 54.43 | 10.84 | 35.52 | 75.14 | |
110 | 30.83 | 63.40 | 1.33 | 391.26 | 110 | 17.74 | 23.35 | 1.07 | 130.57 |
Variables | Mixed Regression Model | Fixed-Effects Regression Model | |||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
0.0389 ** | 0.0473 *** | 0.0248 * | 0.0289 ** | 0.0706 ** | |
(0.0168) | (0.0174) | (0.0140) | (0.0145) | (0.0343) | |
−0.0781 * | |||||
(0.0412) | |||||
−0.0620 * | |||||
(0.0356) | |||||
0.0143 | 0.0652 * | 0.0710 * | |||
(0.0401) | (0.0383) | (0.0388) | |||
−0.0210 | −0.0085 | −0.0312 | |||
(0.0551) | (0.0596) | (0.0618) | |||
0.0393 *** | 0.0235 *** | 0.0225 *** | |||
(0.0114) | (0.0083) | (0.0085) | |||
−0.0086 | −0.0126 | −0.0127 | |||
(0.0158) | (0.0118) | (0.0116) | |||
−0.0194 | −0.0796 ** | −0.0945 *** | |||
(0.0525) | (0.0340) | (0.0356) | |||
Constant | −0.8567 *** | −1.2232 *** | −0.5762 *** | −1.3096 *** | −0.9194 *** |
(0.1568) | (0.3454) | (0.1340) | (0.3041) | (0.3282) | |
Observation | 308 | 308 | 308 | 308 | 308 |
R2 | 0.0173 | 0.0739 | 0.3665 | 0.3978 | 0.4096 |
Variables | The Full Sample | The Circum−Changsha−Zhuzhou− Xiangtan Urban Agglomeration | The Wuhan Urban Agglomeration | The Poyang Lake Urban Agglomeration | ||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
0.0269 * | 0.0322 ** | 0.0671 *** | 0.2510 | −0.0151 | 0.0224 *** | |
(0.0141) | (0.0150) | (0.0259) | (0.1410) | (0.0590) | (0.0036) | |
−0.2281 ** | −0.2475 ** | −0.3200 * | −0.0757 *** | −0.0158 * | ||
(0.1021) | (0.1062) | (0.1520) | (0.0176) | (0.0084) | ||
2.1815 ** | 2.3163 ** | 3.1930 * | 1.2870 *** | −0.0206 | ||
(0.9624) | (1.0074) | (1.5140) | (0.2800) | (0.0220) | ||
−0.0682 ** | ||||||
(0.0306) | ||||||
0.0665 * | 0.0593 | 0.0909 | 0.1310 | 0.0803 ** | ||
(0.0377) | (0.0392) | (0.1120) | (0.1610) | (0.0310) | ||
−0.0320 | −0.0281 | −0.3640 | −0.1520 | −0.0736 | ||
(0.0570) | (0.0589) | (0.4300) | (0.1010) | (0.0700) | ||
0.0242 *** | 0.0265 *** | 0.0092 | −0.0038 | −0.0071 | ||
(0.0085) | (0.0083) | (0.0269) | (0.0672) | (0.0057) | ||
−0.0095 | −0.0128 | 0.0545 | −0.0337 | −0.0009 | ||
(0.0116) | (0.0117) | (0.1990) | (0.1140) | (0.0165) | ||
−0.0779 ** | −0.0830 ** | −0.0885 | −0.0426 | 0.0033 | ||
(0.0331) | (0.0342) | (0.0638) | (0.0717) | (0.0097) | ||
Constant | −0.5999 *** | −1.2861 *** | −1.5754 *** | −2.6370 | −2.1890 | −1.1840 *** |
(0.1350) | (0.3168) | (0.3764) | (1.4630) | (2.0320) | (0.2190) | |
Observation | 308 | 308 | 308 | 88 | 110 | 110 |
R2 | 0.3861 | 0.4160 | 0.4201 | 0.2237 | 0.0958 | 0.3091 |
Variables | (1) Estimation Coefficient | (2) Direct Effect | (3) Indirect Effect | (4) Total Effect |
---|---|---|---|---|
0.0447 ** | 0.5379 *** | 0.5825 *** | ||
(0.0223) | (0.1577) | (0.1696) | ||
−0.0909 | −1.1402 *** | −1.2312 *** | ||
(0.0555) | (0.3522) | (0.3742) | ||
0.3194 *** | ||||
(0.0899) | ||||
−0.6900 *** | ||||
(0.1967) | ||||
0.4031 *** | ||||
(0.1022) | ||||
Control variables | Yes | Yes | Yes | Yes |
Observation | 308 | 308 | 308 | 308 |
R2 | 0.0300 | 0.0300 | 0.0300 | 0.0300 |
Variables | Effects | The Circum−Changsha−Zhuzhou− Xiangtan Urban Agglomeration | The Wuhan Urban Agglomeration | The Poyang Lake Urban Agglomeration |
---|---|---|---|---|
Direct Effect | 0.0791 * | 0.0872 * | 0.0104 ** | |
(0.0431) | (0.0495) | (0.0052) | ||
Indirect Effect | 0.0339 *** | 0.1150 | 0.0039 * | |
(0.0123) | (0.0829) | (0.0021) | ||
Total Effect | 0.0453 *** | 0.2020 * | 0.0143 ** | |
(0.0133) | (0.1120) | (0.0071) | ||
Direct Effect | −0.1480 * | −0.1400 ** | −0.0027 * | |
(0.0774) | (0.0663) | (0.0014) | ||
Indirect Effect | −0.0626 *** | −0.1700 | 0.0010 | |
(0.0201) | (0.1490) | (0.0034) | ||
Total Effect | −0.0852 *** | −0.3100 ** | 0.0037 | |
(0.0263) | (0.1570) | (0.0114) | ||
Control variables | Yes | Yes | Yes | |
Observation | 88 | 110 | 110 | |
R2 | 0.2101 | 0.1707 | 0.0050 |
Variables | (1) Endogeneity Test | (2) Introducing Lagged Explanatory Variable | (3) Replacing Control Variables | (4) Replacing Control Variables |
---|---|---|---|---|
0.0939 ** | 0.0339 ** | 0.0282 * | 0.0322 ** | |
(0.0457) | (0.0157) | (0.0145) | (0.0152) | |
0.0640 * | 0.0301 | 0.0365 | 0.0398 | |
(0.0333) | (0.0420) | (0.0368) | (0.0366) | |
−0.0090 | 0.0554 | −0.0010 | −0.0223 | |
(0.0461) | (0.0601) | (0.0619) | (0.0589) | |
0.0292 *** | 0.0240 *** | 0.0163 * | 0.0178 * | |
(0.0102) | (0.0090) | (0.0098) | (0.0102) | |
−0.0293 * | −0.0065 | −0.0158 | −0.0137 | |
(0.0171) | (0.0131) | (0.0123) | (0.0121) | |
−0.0479 | −0.0832 ** | |||
(0.0503) | (0.0366) | |||
0.1393 | −0.1441 | |||
(0.5646) | (0.5765) | |||
0.0109 | 0.0121 | |||
(0.0122) | (0.0122) | |||
2.3648 ** | ||||
(1.0457) | ||||
−0.2529 ** | ||||
(0.1104) | ||||
Constant | −1.8886 *** | −1.2823 *** | −1.7151 | −0.6419 |
(0.4800) | (0.3377) | (2.1939) | (2.2228) | |
Observation | 308 | 308 | 308 | 308 |
R2 | 0.3554 | 0.3899 | 0.3931 | 0.4116 |
Variables | (1) Estimation Coefficient | (2) Direct Effect | (3) Indirect Effect | (4) Total Effect |
---|---|---|---|---|
0.0408 * | 0.3715 *** | 0.4123 *** | ||
(0.0217) | (0.1320) | (0.1427) | ||
−0.0688 | −0.7869 *** | −0.8557 *** | ||
(0.0538) | (0.2765) | (0.2951) | ||
0.2660 *** | ||||
(0.0928) | ||||
−0.5927 *** | ||||
(0.2000) | ||||
0.2398 ** | ||||
(0.1188) | ||||
Control variables | Yes | Yes | Yes | Yes |
Observation | 308 | 308 | 308 | 308 |
R2 | 0.0550 | 0.0550 | 0.0550 | 0.0550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.; Qin, Y.; Ahmad, N. Relationship between Environmental Pollution, Environmental Regulation and Resident Health in the Urban Agglomeration in the Middle Reaches of Yangtze River, China: Spatial Effect and Regulating Effect. Sustainability 2022, 14, 7801. https://doi.org/10.3390/su14137801
Deng Q, Qin Y, Ahmad N. Relationship between Environmental Pollution, Environmental Regulation and Resident Health in the Urban Agglomeration in the Middle Reaches of Yangtze River, China: Spatial Effect and Regulating Effect. Sustainability. 2022; 14(13):7801. https://doi.org/10.3390/su14137801
Chicago/Turabian StyleDeng, Qizhong, Yansi Qin, and Najid Ahmad. 2022. "Relationship between Environmental Pollution, Environmental Regulation and Resident Health in the Urban Agglomeration in the Middle Reaches of Yangtze River, China: Spatial Effect and Regulating Effect" Sustainability 14, no. 13: 7801. https://doi.org/10.3390/su14137801
APA StyleDeng, Q., Qin, Y., & Ahmad, N. (2022). Relationship between Environmental Pollution, Environmental Regulation and Resident Health in the Urban Agglomeration in the Middle Reaches of Yangtze River, China: Spatial Effect and Regulating Effect. Sustainability, 14(13), 7801. https://doi.org/10.3390/su14137801