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Abstract: Fintech innovation has greatly improved the operation efficiency of the financial industry
and promoted the sustainable development of the real economy. On the other hand, fintech also brings
the problem of risk spillover. Through a time series analysis, vector auto-regression with the Granger
causality test is conducted to analyze the interaction between fintech and the real economy. To deal
with the nonlinear relationship and overcome the high-dimensional-dependent structure faced by
Copula, this paper establishes a GARCH–Vine–Copula model to study the tail risk and dynamic
dependency between fintech and industries of the real economy in China, and then analyzes the risk
spillover by calculating the CoVaR. The results show that there is a positive dynamic correlation
between fintech and the real economy, and this increases when facing risk impact; fintech is located
in the leading position of R-vine-dependent structure, and has a high correlation coefficient with the
upper and lower tail of various industries. The results of CoVaR show that the extreme risk events
in fintech and various industries have different degrees of negative impact on each other; the risk
events in fintech have an extreme impact on industry in a short time.

Keywords: fintech; real economy; risk spillover; R-vine; copula; CoVaR

1. Introduction

In terms of financial technology (fintech), the concept of fintech has not formed a
unified definition. The accepted definition is that financial innovation is mainly driven
by new cutting-edge technologies, such as big data, blockchain, cloud computing and
artificial intelligence, and has a significant impact on the financial market and the supply of
financial services.

Under the trend and background of economic globalization and financial market
integration, the economic ties between different countries, regions and industries have
become closer, and the financial information, financial resources and financial markets
have been continuously integrated [1]. Industry 4.0, the fourth industrial revolution, has
attracted much attention in the past decades. It is closely related to the Internet of Things
(IoT), information and communications technology (ICT), Cyber Physical System (CPS),
Enterprise Architecture (EA), Enterprise Integration (EI), and so on. At the same time,
financial technology has also developed rapidly with industry 4.0 [2].

In recent years, with the growing maturity and wide application of cloud computing,
artificial intelligence, blockchain, big data and other technologies, financial technology has
become the core driving force to promote modern financial innovation. The traditional
financial mode has undergone disruptive changes, and the financial industry has begun
to show some new risk characteristics. Specifically, the innovation of financial products,
the change of financing mode and the change of financial business model brought by
fintech have greatly promoted the operational efficiency of the financial industry. Excessive
innovation in the financial market has led to a significant increase in the complexity of
financial products and financial transactions. Various financial institutions, including non-
financial institutions, have become increasingly close to each other in terms of equity and
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debt, business cooperation and penetration, forming a complex financial network structure,
and the contagion characteristics of the systematic financial risk network have become
more and more obvious [3].

Real economic risks are also transmitted to the financial system. In the age of opti-
mization and upgrading of industrial structure and economic transformation, the demand
for traditional products is sluggish, and the market demand for technological innova-
tion products is in the cultivation period. The common pressure of domestic and foreign
markets has significantly reduced the profitability of enterprises. In order to maintain
business operations, the high loan interest has increased the financial burden of the real
economy, and the long-term “borrowing the new to repay the old” has intensified the risks
of fintech [4].

2. Literature Review

In the study of the impact of fintech development on economy growth, the multivari-
ate regression approach is commonly used. For example, Chen et al. [5,6] investigated how
fintech affects the digital economy and if the digital economy can promote fintech devel-
opment. Shin and Choi [7] studied the feasibility of the fintech industry as an innovation
platform for sustainable economic growth in Korea. Tian, Li and Yang [8] made an empirical
analysis of the impact of fintech on the development of the real economy and found that
there is an interaction between them. Sun and Zhang [9] explained the internal mechanism
of fintech innovation affecting economic growth and found that financial innovation in
promoting economic growth through technological progress is significant. Thorsten, Tao
and Chen [10] assessed the relationship between fintech and the development of a real
economy, and found that the net effect is positive. Lee and Yong [11] evaluated fintech
innovation and argued that its effect will cause output changes to the whole financial and
economic ecosystem, which will lead to new challenges in investment decision making.

In the study of risk caused by fintech development, scholars such as Rafal and
Daniel [12] revealed that the development of fintech not only improves financial effi-
ciency, but also changes the existing form and transmission path of the original financial
risk, which makes the transmission of traditional financial risk more hidden, complex
and infectious under the load of emerging technologies, and breeds new financial risks.
When extreme risk events occur in fintech, industries in real economies may be affected
by their risk spillover, threatening the healthy development of the real economy. Vucinic
and Luburic [13] examined the latest developments in the area of fintech and outlined
the potential benefits and associated risks, and highlighted the cyber risk in the fintech
landscape as the latest and potentially greatest threat springing from these turbulent and
uncertain times. Chen et al. [14] investigated the spillovers between internet finance and
traditional finance, and found that the linkage relationships and spillover effect are robust
to the method and market index applied. Namchoochai et al. [15] adopted the principles of
sustainable risk management for both providers and users who demand to use fintech with
high security. The results indicate that the risks are relevant, and the difference in the level
of risk depends on the details of each fintech type and the part of the business with which
technologies are associated.

In the modeling of risk spillover, the most popular method is Copula–CoVaR. For
example, Saraji et al. [16] developed a Fermatean fuzzy critic–copula method to identify
the challenges for the adoption of Industry 4.0 in fintech companies, and to evaluate the
performance of companies concerning the weighted challenges based on three decision
experts’ support. The results indicate that “difficulty in coordination and collaboration” is
the most significant challenge to the adoption of Industry 4.0. Yu and Wang [17] constructed
the quality index system of economic growth in the new era by using the TOPSIS–copula
method. The research found that when the matching degree between fintech and the
real economy is low, it destroys financial stability. On the contrary, fintech achieves high
quality economic growth by improving enterprise innovation ability and industry technical
efficiency. Lin and Zhao [18] discussed the risk spillover effect between markets based on
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the time-varying Copula–CoVaR model, and the results showed that the risk effect is a
two-way interaction. Karimalis and Nokimos [19] used the Copula–CoVaR approach to
measure the systemic risk of European banks and believed that there was a significant risk
spillover problem in financial innovation.

Since multivariate copula has parameter constraints and lacks the flexibility of de-
pendency in modeling, scholars such as Joe, Sriboonchitta, Alanazi, Bedford, Zhu, Schep-
smeier et al. [20–25] tried to improve the standard copula by integrating the vine approach.
In the application of the vine–copula, Kim et al. [26] used the mixture of D-vine copulas for
modeling dependence. Nikoloulopoulos and Karakas et al. [27,28] used the vine–copula
form to model asymmetric tail dependence in stock markets. Autchariyapanitkul et al. [29]
used C-vine and D-vine copulas to exhibit portfolio risk structure in the content of asset
allocation. Czado, Schepsmeier and Min [30] created a flexible class of mixed C-vine copula
models which allows the variables to be ordered according to their influence. Zhang [31]
studied the price correlation structure of domestic urban real estate from a macro perspec-
tive based on the C-Vine Copula model. Reboredo and Ugolini [32] used a vine copula
model and found that the dependence structure differed across precious metals, all of
which displayed different average and tail dependence features. Guo [33] described the
linkage relationship of China’s stock market with the vine copula GJR SKT model and
concludes that the goodness-of-fit with the D-vine copula model is better. Zhang, Yan and
Tsopanakis [34] utilized an R-vine copula method to explore tail dependence between the
Financial Stress Indices of 11 countries in the euro area.

From the previous literature review, we mainly focus on fintech development and its
driving effect on economy growth, the risk transmission mechanism and the quantitative
analysis method. In the study of fintech’s promotion of the economy, many scholars have
adopted exploratory factor analysis, confirmatory factor analysis, DEA and so on. Obvi-
ously, these methods are not suitable for risk analysis. Instead, the time series approach and
CoVaR method are commonly used. When the relationship between variables is nonlinear,
it is not reliable to measure the relationship with a correlation coefficient. Therefore, the
copula approach can be used to model the tail risk for time series, however, the Copula also
faces great challenges in dealing with high-dimensional problems because the standard
multivariate copula’s structure is inflexible. A vine–copula can overcome such a limitation
and is able to decompose the complex dependency patterns into multiple bivariate copulas.

Based on the existing research results, this paper intends to make the following
marginal contributions. Firstly, we focus the research perspective on the dependent struc-
tural relationship between fintech and the real economy based on the industries’ stock
index. The fintech index and the real economy index are constructed by imitating the
s&p500 and CSI300 index; they are used to represent the fintech and the real economy in
this study, respectively. Secondly, through a time series analysis, vector auto-regression
with a Granger causality test is conducted to analyze the interaction between fintech and
the real economy. Thirdly, to make up the deficiency of the copula model, which was
applied to two-dimensional scenarios, we develop a GARCH–Vine–Copula–CoVaR model
to make it more suitable for this study, and a case study is conducted. Fourthly, we select
the R-vine copula model with strong flexibility to fit each standardized residual sequence
after probability integral transformation, and estimate the parameters after obtaining the
optimal pair–copula function through the AIC information criterion. According to the
estimation results and the Kendall τ of the copula function, the values are sorted and the
dependent tree of R-vine analyzes the relationship and tail dependence of various variables
in detail. Finally, CoVaR, ∆CoVaR and %∆CoVaR are calculated to study the two-way risk
spillover relationship between fintech and industries in the real economy.
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3. Methodology
3.1. SVAR and Granger Causality Test

In order to judge the promotion between fintech (X) and the real economy (Y), this
paper introduces the Granger causality test for analysis. Its principle is structural vector
auto-regression (SVAR) for time series:

yt = ∑
q
i=1 aixt−i + ∑

q
j=1 bjyt−j + u1t

xt = ∑s
i=1 Φixt−i + ∑s

j=1ωjyt−j + u2t
(1)

where u1t and u2t are white noise; q and s both are the lagging periods.
If the past information of X and Y is included, the prediction effect of variable Y is

better than that of Y alone, that is, variable X is helpful to explain the change of variable Y.
Therefore, variable X is considered to be the Granger cause of variable Y. The test results
are divided into the following four cases: (1) There is a one-way causal relationship from Y
to X; (2) There is a one-way causal relationship from X to Y; (3) X and Y are cause and effect;
(4) There is no causal relationship between X and Y

The Granger causality test is usually conducted by the constrained F test. If the
calculated F value is greater than the critical value Fα(q, n− k) under the given significance
level α of F distribution, then reject the original hypothesis, where n is the sample size and
k is the number of variables to be evaluated.

3.2. GARCH Model

To better fit the residual tail characteristics of time series, the GARCH model is applied
in this study as discussed by Heston and Nandi [35] and Ji, Wang and Liseo [36]. The
modeling process of the GARCH model is divided into two parts: conditional mean
regression and conditional heteroscedasticity regression. The equation form of GARCH (p,
q) is as follows.

yt = c + ρ1yt−1 + ρ2yt−2 + · · ·+ ρnyt−n + µt

µt ∼ N
(

0, δ2
t

) (2)

The variance equation is

δ2
t = α0 + ∑p

i=1 αiµ
2
t−i + ∑q

j=1 βjδ
2
t−j (3)

where p is the lag order in the arch term and q is the lag order in the GARCH; β is proposed
to reflect the persistent impact of the variance change in the lag period on the current
variance; µt is the error term.

3.3. Conditional Copula Function

Patton [37] proposed the conditional Copula model, which is specifically defined
as [33]: W is the conditional variable of variables X and Y, and FXY|W is the joint distribution
function of conditional variable W; FX|W is the conditional distribution function of variable
X when W is known; Hypothesis FXY|W is smooth and FX|W and FY|W are a continuous
function; fW is the unconditional probability density function of W, then

FX|W(x|w) = FXY|W(x, ∞|w), FY|W(y|w) = FXY|W(∞, y|w) (4)

If C(·, ·| ·) satisfies the following conditions, it is a two-dimensional conditional
Copula function:

Condition 1. C(u, 0|w) = C(0, v|w) = 0, C(u, 1|w) = u, C(1, v|w) = v; where u, v ε I.
Condition 2. u1, u2, v1, v2 are arbitrary variables of type I respectively, u1 ≤ u2, v1 ≥ v2,

and C(u2, v2|w) – C(u2, v1|w) − C(u1, v2|w) + C(u1, v1|w) ≥ 0.
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According to the Copula theory proposed by Skar [38], for a given n-dimensional
random vector X = [x1, · · · , xn], the edge distribution is F1(x1), · · · , Fn(xn), and the copula
density function c1,2,··· ,n(F1(x1), · · · , Fn(xn)) can be determined as follows:

f(x|v) = cx,y|v−k
(F(x|v−k), F(vk|v−k))f(x|v−k) (5)

where vk is a component of vector v; v−k is a (n − 2)-dimensional component after vk
removed from v. The expression of the conditional distribution function F(x|v) is

F(x|v) =
∂Cxvk|v−k

(F(x|v−k), F(vk|v−k))

∂F(vk|v−k)
(6)

The common motion of the upper tail or lower tail extreme value between two vari-
ables is expressed by the tail dependence coefficient, which depends on the joint distribution
function of the two variables. The definition of the tail dependence coefficient is that the
variables X and Y are continuous random variables, their edge distributions are F1 and F2,
respectively, and they have connection functions C(u1, u2). The correlation coefficients of
upper tail and lower tail are defined as

λU = lim
u→1−

P
{

Y > F−1
1 (u)|X >F−1

2 (u)
}
= lim

u→1−
C̃(1−u,1−u)

1−u

= lim
u→1−

1−2u+C(u,u)
1−u = lim

u→1−
C(u,u)

1−u

(7)

λL = lim
u→0+

P
{

Y< F−1
1 (u)

∣∣∣X < F−1
2 (u)

}
= lim

u→0+

C(u, u)
u

(8)

where C̃(u1, u2) is the survival copula function of variables X and Y, C(u1, u2) is the
survival function of the connection function, if λU or λL is 0, then X and Y are independent
of each other.

3.4. R-Vine Copula Model

As discussed by Hernandez et al. [39] and He and Li [40], the idea of the vine–copula
is to decompose the traditional multivariate copula into multiple pair copulas in the form
of vine graphic structure, making the model fit more simple and feasible, improving the
fitting accuracy, and making the model dispose of the limitation of only one copula function
in describing the dependent structure.

Before giving the definition of the vine, the tree is defined as a graph in which every
two nodes are connected by different edges. Based on this, the vine can be called a vine on
an n-dimensional variable when the following conditions are satisfied:

Condition 1: Vine = (T1, . . . , Tm).
Condition 2: T1 is a tree with N1 nodes and E1 edges on the vine structure. N1 = {1, 2, . . . , n}

is all nodes on the tree. The connection between nodes is the edge, and E1 represents
the set of all edges on the first layer tree.

Condition 3: Ti (i = 2, . . . , m) represents the ith tree on the vine except T1, and N1 is the
node on T1, which meets Ni ∈ N1 ∪ E1 ∪ E2 ∪ E3 ∪ · · · ∪ Ei−1.

The vine structure of an n-dimensional variable consists of n − 1 trees. The ith tree
has n − i + 1 nodes and n − i edges, and the edge of one tree is used as a new node in the
next tree. Using the idea of rattan structure, high dimensional Copula functions can be
decomposed in different two-dimensional Copula to form different correlation structures,
in which R-vine is described as the actual dependency state between variables.

The R-vine structure of an n-dimensional variable can be composed of n − 1 tree Ti
(i = 1, . . . , n − 1). Assuming that there are n − i + 1 nodes and n − i edges on T1, for the
remaining n − 2 trees, the edges on Ti are transformed into new nodes of Ti+1.
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The probability density function of the R-vine Copula is

f(X) = ∏n
k=1 fk(xk)·∏n−1

i=1 ∏eεEi
cj(e),k(e)|D(e)

(
F
(

xj(e)

∣∣∣xD(e)

)
, F
(

xk(e)

∣∣∣xD(e)

))
(9)

where Ei is the set of all edges on each layer of the tree, e = j(e), k(e)|D(e) is one of the
edges, j(e), k(e) are the condition nodes at both ends of the edge, D(e) is the condition set,
and cj(e),k(e)|D(e)(·, ·) is the connection function between the two nodes.

Figure 1 shows an example of a six-dimensional R-vine Copula tree structure. In this
study, the R-vine Copula model is used to describe the dynamic dependency structure
between industries in the real economy and Fintech. The steps are as follows.
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Step 1: Determine the breakdown structure

Based on R-vine matrices (RVM) proposed by Dißmann et al. [41], the R-vine decom-
position structure is determined when RVM satisfies

LM(i) ⊂ LM(j), 1 ≤ j < i ≤ n
mi,i /∈ LM(i + 1), i = 1, 2, · · · , n− 1,

(mk,i, {mk+1,i, mk+2,i, · · · , mn,i}) /∈ BM(i + 1) ∪ BM(i + 2) ∪ · · · ∪ BM(n− 1)∪
B̂M(i + 1) ∪ B̂M(i + 2) ∪ · · · ∪ B̂M(n− 1), i = 1, 2, · · · , n− 1, k = i + 1 · · · , n− 1

(10)

For the n-dimensional R-vine model, there are 2n – 1 RVMs that meet the conditions. To
improve the efficiency of RVM, we also integrate the maximum spanning tree (MST) method
proposed by Brechmann and Schepsmeier [42], and then determine the decomposition
structure of the R-vine.

Step 2: Select two-dimensional copula function

Each edge in the R-vine copula represents a set of variable dependencies. When the
structure is determined, different copula functions can be selected to describe the dependen-
cies between nodes, respectively. The optimal copula function between nodes is selected
from a variety of copula functions according to the Akaike information criterion (AIC).
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Step 3: Parameter estimation

After determining the two-dimensional copula function between nodes, the maximum
likelihood estimation (MLE) method is used to estimate all parameters.

Based on the data sample, the edge distribution of each sequence is developed to
obtain the edge distribution function, and the two-dimensional copula parameter value in
T1 of the obtained sequence is estimated.

Calculate the observed value of T2 by using the estimation result in step 1 combined
with the function and Equation (5).

Using the observation value of T2 to calculate its copula parameter value, repeat the
steps until the parameter estimation of the last layer tree is completed.

3.5. CoVaR Model

As discussed by Karimalis et al. [19] and Jiang et al. [43], assuming that there are time
series XA and XB, and the joint density function is f(xA, xB), and the edge density function
is f(xA) and f(xB), and c is the copula connection function between two nodes, then the
conditional density function of time series X is

FA|B(xA

∣∣∣∣xB) =
∫ xA

−∞
c(FA(XA)FB(XB))fA(xA)dxA (11)

Through the R-vine Copula model, we can obtain the joint distribution of the return
series of the Fintech index and various real economy industries. Based on the obtained
joint distribution, we can measure the systemic risk between Fintech and industries. The
specific methods are as follows:

CoVaRA|B
α is the risk faced by the relevant market A under market B with VaRB

α,
CoVaRA|B

α = FA|B
−1 (α|VaRB

α), then solve the equation∫ xA

−∞
c
(

FA(XA)FB

(
VARB

α

))
fA(xA)dxA = α (12)

The obtained xA is the desired CoVaRA|B
α .

To better measure the risk spillover effect between A and B, ∆CoVaRA|B
α is further

proposed to indicate the change of VaR in market A when market B is in extreme risk
condition. The specific expression is

∆CoVaRA|B
α = CoVaRA|B

α −VaRA
α (13)

To remove the influence of dimension, it is necessary to standardize ∆CoVaRA|B
α to

obtain the accurate value of spillover risk more clearly and accurately, as follows.

%∆CoVaRA|B
α =

(
∆CoVaRA|B

α /VaRA
α

)
× 100% (14)

4. Results
4.1. Sample and Data Processing

To fit the residual tail characteristics of time series, the sample selection of this paper
involves two aspects: a real economy industry index and a fintech index. The index
compilation of fintech refers to another index compilation and adopts the weighted average
method with the widest application range. The weights are based on the different status of
the sample stock in the market, that is, the weight with important status is large, and the
weight with secondary status is small. The price of each sample stock is multiplied by its
weight and summed, and then divided by the total weight to obtain the average stock price
of the reporting period and the base period calculated by the weighted average method.

The index compilation in this paper imitates the s&p500 and CSI300 index (China
Securities Index). The compilation criteria of the index are: (1) correlation; (2) Representa-
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tiveness; (3) Stability. The financial innovation index only selects Internet finance, financial
technology and other related enterprises with high relevance, while the real economy
index covers agriculture, the manufacturing and processing industry, mining industry,
medical and pharmaceutical industry, high-tech industry and other industries with high
relevance. Ensure that the vast majority of sample stocks remain stable during the investi-
gation period, and that the financial innovation index is comparable long-term with the
real economy index.

This paper selects the daily closing price data of fintech-related stocks from January
2012 to December 2021 in the A-share market in China, uses the share capital as the weight,
takes 1 January 2018 as the base period, and constructs the comprehensive index, with the
base point of the comprehensive index as 1000 points. The Fintech index is prepared by the
weighted average method, with its total share capital as the weight. According to the index
compilation criteria descripted above, we choose 306 from 950 listed companies in fintech
related fields, such as internet finance, supply chain finance and so on, among which the
top ten heavy weights are PingAn Technology (19.263%), Dongfang Fortune (6.995%), CICC
(3.962%), UFIDA Network (3.032%), Huayou Cobalt (2.826%), Huatai Securities (2.765%),
360-Security (2.513%), Shenwa Hongyuan (2.301%), Hang Seng Electronics (2.293%) and
GF Security (2.056%).

The real economy industry index is represented by nine types of CSI industry indexes
other than the CSI financial index. These nine types of CSI industry indexes are the
energy, material, information technology, manufacturing, medical, telecom, consumer
goods, selective consumer and public utilities industries. Similarly, the daily closing price
of the Real Economy Industry index from January 2012 to December 2021 is also selected
as the sample data. The return is calculated as:

ri,t = 100(lnPi,t − lnPi,t−1) (15)

where Pt is the closing price at time t.

4.2. Result of Time Series Analysis
4.2.1. ADF Test

According to the constructed fintech index and the obtained CSI industry index,
the time series of return is calculated. Figures 2 and 3 are the sequence diagrams of the
return series of fintech and the real economy, respectively. It can be seen that the return
mainly fluctuates between −4 and 4, with obvious fluctuation aggregation characteristics.
The change characteristic shows that Fintech does not conform to the characteristics of
normal distribution.
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Figure 2. Return series of Fintech index.
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Figure 3. Return series of Real Economy index.

Figure 4 is the return series of the real economy industries index. Most industry
indexes have the same variation as the Fintech index, but the fluctuation range is smaller,
between −2.5 and 2.5. The return series of selected real economy industries have the
characteristics of volatility aggregation, which also shows that the real economy industries
index does not accord with the characteristics of normal distribution.
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Observing Figures 2–4, we can also find that the return series of the Fintech index and
the various real economy industry indexes fluctuate around the mean. The fluctuation
of the return series is uneven; there are multiple peaks, and the positions of the peaks
are relatively consistent. Especially in the period of 2015–2017, the abnormal fluctuations
are particularly obvious for all industries as well. The reason can be explained by policy
reform. During this period, China brought all the financial businesses of P2P Internet
loan platforms under supervision, launched a special action to combat the crime of illegal
fundraising, and investigated and dealt with more than 10,000 illegal cases, which led to
great fluctuations in financial innovation services. At the same time, China also adjusted
its industrial structure and encouraged scientific and technological innovation. A large
number of entity enterprises made major changes in their strategic planning, resulting in
the business performance fluctuating greatly. On the other hand, it can also be roughly
inferred that there is a certain degree of correlation between Fintech and various real
economy industries.

Due to the errors in graphical observation, it is necessary to understand the character-
istics and stationarity of return series through descriptive statistical analysis and the ADF
test before empirical research. The test results are shown in Table 1.

Table 1. Results of descriptive statistics and ADF test.

Variable Min Max Mean Stdev Skew Kurtosis J-B Test ADF Stable

Fintech −9.41 7.57 0.00 1.64 −0.41 6.75 450.28 *** −26.32 * Yes
Real Econ. −8.04 6.10 0.02 1.47 −0.40 6.14 478.13 *** −26.09 * Yes

Energy −8.05 6.07 −0.04 1.39 −0.44 6.68 437.33 *** −26.37 * Yes
Material −9.51 5.65 0.01 1.54 −0.57 6.69 455.71 *** −26.37 * Yes

Selective consumer −9.34 4.73 0.04 1.52 −0.62 6.02 324.89 *** −26.54 * Yes
Consumer goods −8.17 5.82 0.02 1.72 −0.31 5.20 160.24 *** −27.23 * Yes

IT −9.84 6.58 0.04 2.06 −0.40 4.79 117.45 *** −26.84 * Yes
Medical −7.05 4.78 0.05 1.63 −0.28 3.76 27.33 *** −26.94 * Yes
Telecom −10.20 6.77 −0.04 2.06 −0.33 5.90 270.09 *** −25.91 * Yes

Public Uti. −8.06 4.05 −0.02 1.01 −0.95 10.59 1867.48 *** −28.08 * Yes
Manufact. −9.54 5.09 0.02 1.40 −0.66 8.09 843.01 *** −26.79 * Yes

Note: *, *** denote significant at confidence level of 1% and 10%, respectively; J-B stands for Jarque Bera statistics.

As shown in Table 1, the skewness of all the index series is negative and all the kurtosis
values are greater than 3.0, indicating that the index series have the characteristics of asym-
metry, and peak and thick tail. The values of J-B are far greater than 0, the null hypothesis of
normal distribution is rejected, so all the index series do not obey the normal distribution.

At the confidence level of 1%, the absolute values of the ADF statistics are far greater
than their critical values, rejecting the null hypothesis that there are unit roots. Therefore,
all the index series have no unit root and are stable.

4.2.2. Granger Causality Test

After the index time series has passed the ADF stability test, we can judge the impact
relationship between Fintech and the real economy through the Granger causality test.
In order to draw a more accurate conclusion, we selected the lag periods from 1 to 8 for
testing, and the test results are shown in Table 2.

From the perspective of statistical causality, it is found that the Granger causality
between fintech and the real economy under daily data is significantly bidirectional. That is,
fintech is the Granger cause of the real economy, and the real economy is also the Granger
cause of fintech at the confidence level 5%. This shows that there is a relationship of mutual
influence and promotion between the two.
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Table 2. Granger causality test of Fintech index and Real Economy index.

Null Hypothesis Lags F-Statistic Prob. Result

Fintech does not Granger cause RE 1 6.7582 0.0094 * Reject
RE does not Granger cause Fintech 1 9.1337 0.0025 * Reject
Fintech does not Granger cause RE 2 4.3756 0.0127 ** Reject
RE does not Granger cause Fintech 2 5.2415 0.0054 * Reject
Fintech does not Granger cause RE 3 7.1633 9 × 10−5 * Reject
RE does not Granger cause Fintech 3 4.2180 0.0055 * Reject
Fintech does not Granger cause RE 4 6.2489 5 × 10−5 * Reject
RE does not Granger cause Fintech 4 3.2788 0.0109 ** Reject
Fintech does not Granger cause RE 5 5.0928 0.0001 * Reject
RE does not Granger cause Fintech 5 3.0986 0.0086 * Reject
Fintech does not Granger cause RE 6 5.1886 3 × 10−5 * Reject
RE does not Granger cause Fintech 6 2.7154 0.0125 ** Reject
Fintech does not Granger cause RE 7 5.5768 2 × 10−6 * Reject
RE does not Granger cause Fintech 7 2.36461 0.0208 ** Reject
Fintech does not Granger cause RE 8 4.7075 1 × 10−5 * Reject
RE does not Granger cause Fintech 8 1.9797 0.0453 ** Reject

Note: *, ** denote significant at the confidence level 1% and 5%, respectively.

4.2.3. ARCH Effect Test

The Ljung–BoxQ statistic is used to investigate whether there is auto-correlation in
Fintech, Real Economy, and CSI industries index series. The results of fintech return square
series and the CSI industries index return square series are shown in Table 3.

Table 3. Auto-correlation test.

Variable Q(6) Q2(6) Q(36) Q2(36)

Fintech 13.028 ** 7.043 42.082 ** 36.218
Real Economy 7.331 19.652 *** 36.149 51.165 **

Energy 8.072 24.140 *** 22.969 36.025
Material 9.659 *** 13.930 ** 41.542 *** 53.176 **

Selective consumer 8.214 19.576 *** 29.039 52.037
Consumer goods 4.235 31.335 *** 28.525 59.509 ***

IT 7.812 15.009 ** 41.590 58.534 ***
Medicine 0.538 43.541 *** 23.969 87.534 ***
Telecom 4.854 15.760 ** 53.274 ** 55.960 **

Public utilities 11.184 * 4.336 49.727 * 10.268
Manufacture 11.412 * 9.247 34.707 47.446 *

Note: Q(k) and Q2(k) represent whether the auto-correlation coefficients of return series and return square series
lag 1–36 orders are combined to 0, respectively. *, **, *** denote significant at the confidence level 1%, 5% and
10%, respectively.

The Q(k) statistic shows that there is a certain weak auto-correlation between the
Fintech return series and the CSI index return series, and the Q2(k) statistic shows that the
Fintech return series and the CSI index return series have conditional heteroscedasticity.

In order to eliminate the auto-correlation and heteroscedasticity of model estimation,
the GARCH model is selected to fit the edge distribution. The ARCH effect of each return
series is tested to judge whether the GARCH model can be applied.

The results in Table 4 show that both the Fintech return series and CSI industries index
return series have a significant ARCH effect at the confidence level of 1%, which shows
that it is applicable to use the GARCH model to fit the edge distribution.
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Table 4. ARCH effect test.

Variable ARCH-LM(2) ARCH-LM(4)

Fintech 3.892 *** 2.922 ***
Real Economy 19.122 *** 11.826 ***

Energy 8.122 *** 6.386 ***
Material 24.558 *** 12.663 ***

Selective consumer 68.744 *** 35.605 ***
Consumer goods 19.916 *** 15.528 ***

IT 15.637 *** 8.132 ***
Medicine 13.529 *** 13.879 ***
Telecom 9.791 *** 6.852 ***

Public Utilities 4.458 *** 3.394 ***
Manufacture 6.66 *** 4.054 ***

*** denote significant at the confidence level 10%.

4.3. Result of Edge Distribution

Through the ADF test and the ARCH effect test, we also found that the return series
of Fintech and real economy industries do not obey the normal distribution and have the
characteristics of peak and thick tail. Based on this, in order to better characterize the
properties of time series, this paper constructs a GARCH (1,1) model under t distribution.

In Table 5, α1 represents the coefficient of the ARCH term, namely the square lag term
of residual error. β1 represents the GARCH term, that is, the coefficient of the lag term of
the conditional variance itself.

Table 5. Parameter estimation results of GARCH (1,1).

Variable α0 α1 β1 α1+β1

Fintech 0.123 * 0.05 ** 0.911 *** 0.961
Energy 0.153 * 0.059 ** 0.869 *** 0.928

Material 0.11 ** 0.073 *** 0.888 *** 0.961
Selective consumer 0.125 ** 0.068 ** 0.883 *** 0.951
Consumer goods 0.172 * 0.06 ** 0.884 *** 0.944

IT 0.219 * 0.05 ** 0.9 *** 0.95
Medicine 0.077 ** 0.054 *** 0.919 *** 0.973
Telecom 0.148 ** 0.056 *** 0.915 *** 0.971

Public Utilities 0.038 ** 0.047 ** 0.917 *** 0.964
Manufacture Ind. 0.092 ** 0.054 ** 0.903 *** 0.957

*, **, *** denote significant at the confidence level 1%, 5% and 10%, respectively.

It can also be observed that all parameters of GARCH (1,1) are significant at the 10%
confidence level, and the estimated values of each parameter are significantly positive,
meeting the requirements of non-negative conditional heteroscedasticity. From the perspec-
tive of estimating the value of parameters, the α value represents the impact of external
shocks on the fluctuation of the return series, and the β value represents the impact of
early-stage fluctuation of the return series on later-stage fluctuation. Therefore, it can be
found that the fluctuation of the return series of fintech and real economy industries is
relatively less affected by external factors, and the fluctuation of the return series is closely
related to its own early performance. The relationship between Fintech and the return
series of various industries in the real economy α1 + β1 is close to 1, indicating that the
volatility of return has strong sustainability. In addition, the ARCH term and GARCH term
coefficients of each return series are significantly positive at the 95% confidence level, and
α1 + β1 is less than 1, meeting the requirements of model stability.

4.4. Results of Dependent Structure by R-Vine Copula Model

To more intuitively and comprehensively express the dependent structural relation-
ship between Fintech and various industries of the real economy, this paper analyzes the
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first four trees of the R-vine model. The standardized residual sequences after proba-
bility integral transformation are firstly fitted, the R-vine model is constructed and the
parameters are estimated to judge the dependency relationship and dependency structure
between Fintech and various industries of the real economy. After selecting the optimal
Pair copula function based on AIC and BIC information criteria, the tail dependence among
industries is analyzed. The strength of the dependence is compared by the Kendall τ of the
Copula function.

Figures 5–8 show the first four trees of the R-vine. The abbreviations in the box are the
industries, where FC represents financial technology, CO represents consumer industry,
Ma represents material industry, EN represents energy industry, ME represents medical
industry, PUB represents public utility industry, Ind represents manufacturing industry,
Inf represents information industry, Tele represents telecommunications industry and
SE represents other selective consumer industry. The connection between the box and
the middle of the box shows the form of multivariate Copula function, and the value in
parentheses is the Kendall τ of the two markets.
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It can be seen from the figures that Fintech is located in the center of overall network
connection and has a certain degree of correlation with various industries, which shows
that the financial industry has established extensive correlation with industries such as
materials and information technology. It not only shows that financial technology products
and services can help the development of real economy industry, but also makes the
spread of financial risks more complex and hidden. In addition, the core position of
financial technology also shows that financial technology is an important medium for
transmitting risks.
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The R-vine estimation results show that Fintech has a strong correlation with the
manufacturing, material, public utilities and selective consumer industries. Among them,
Fintech has the highest correlation with the manufacturing industry, whose Kendall τ value
is 0.71, followed by the material industry, selective consumer industry and public industry.
The medical and consumer industries are not closely connected with Fintech and are far
away from the central node.

In the first tree in Figure 5, the telecommunication, public utilities, medical and energy
industries constitute four separate branches, indicating that when extreme risks occur in
these industries, they are often transmitted to other industries through Fintech products
and services. In the second tree, Fintech and the manufacturing industry are located in the
center, indicating that the manufacturing industry has a wide correlation. Compared with
other real economy industries, the impact of the manufacturing industry is more profound.
In addition, after adding industry, it can be found that Fintech and the information industry
also have a strong correlation. Then the material and information industries were added
to the center of the dependent structure, and the addition of material changed the basic
form of the tree structure, so that the tree shape no longer shows the characteristics of four
branches, but produces a sub center including the manufacturing industry, Fintech and
information industry, showing that the information industry is highly related to public
utilities, telecommunication and other industries. After the information industry is added
to the center of the fourth tree, the tree shape returns to the four-branch structure similar
to the first two trees. On the whole, there is a wide connection between Fintech and
various industries of the real economy. Among them, Fintech, the manufacturing industry,
the material industry and the information industry are highly related to other industries,
and the dependent structure between them is more significant, while the manufacturing
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industry association relationship to the medical and other industries is relatively simple,
showing the characteristics of strong independency.

The existence of tail dependence and the strength of the dependent relationship can
judge whether there is extreme risk of infection among industries. The estimation of the first
four trees of the R-vine is shown in Table 6. There are 30 groups of correlations in total. In
the column Type, t represents the two-dimensional t-Copula function, n represents the two-
dimensional normal Copula function, G represents the two-dimensional Gumbel Copula
function, SG represents the two-dimensional Gumble Copula function corresponding to
180 degrees of rotation, C represents the two-dimensional Clayton Copula function, f
represents the Frank Copula function and j represents the Joe Copula function. The number
after the letter represents the rotation angle. For example, G270 represents the Gumbel
Copula function rotating 270 degrees. par is the parameter estimated by the pair–Copula
function corresponding to each group of correlation, par2 is the degree of freedom of
the pair–Copula function, Kendall’s τ is the rank correlation coefficient, and λU and λL
represent the upper and lower tail correlation coefficients, respectively.

Table 6. Estimation results of R-vine Copula model.

R-Vine Tree Structure Type Par Par2 Kendall’s Tau λU λL

First tree

Ma,EN t 0.80 6.20 0.60 0.41 0.41
FC,Pub t 0.79 3.04 0.58 0.52 0.52
Inf,Tele t 0.89 6.26 0.70 0.53 0.53
Ind,Inf t 0.87 8.00 0.67 0.45 0.45
FC,Ma t 0.88 3.92 0.69 0.60 0.60
FC,Ind t 0.90 4.02 0.71 0.63 0.63
FC,SE t 0.87 6.50 0.67 0.49 0.49
SE,Co t 0.78 12.12 0.57 0.23 0.23
Co,Me t 0.75 9.66 0.54 0.24 0.24

Second tree

FC,EN|Ma SG 1.12 0.00 0.10 - 0.14
Ind,Pub|FC SJ 1.21 0.00 0.11 - 0.23
Ind,Tele|Inf SJ 1.20 0.00 0.10 - 0.22
FC,Inf|Ind t 0.25 6.79 0.16 0.06 0.06
Ind,Ma|FC SG 1.17 0.00 0.15 - 0.19
SE,Ind|FC SG 1.18 0.00 0.15 - 0.20
Co,FC|SE SC 0.08 0.00 0.04 0.00 -
Me,SE|Co F 2.52 0.00 0.26 - -

Third tree

Ind,EN|FC,Ma SG 1.06 0.00 0.05 - 0.07
Inf,Pub|Ind,FC N −0.16 0.00 −0.10 - -
FC,Tele|Ind,Inf SJ 1.09 0.00 0.05 - 0.11
Ma,Inf|FC,Ind G270 −1.13 0.00 −0.11 - -
SE,Ma|Ind,FC t 0.09 10.37 0.06 0.01 0.01
Co,Ind|SE,FC J270 −1.02 0.00 −0.01 - -
Me,FC|Co,SE F 1.23 0.00 0.13 - -

Fourth tree

Inf,EN|Ind,FC,Ma t −0.28 7.29 −0.18 0.00 0.00
Ma,Pub|Inf,Ind,FC SC 0.08 0.00 0.04 0.00 -
Ma,Tele|FC,Ind,Inf C 0.00 0.00 0.05 - 0.00
SE,Inf|Ma,FC,Ind C 0.08 0.00 0.04 - 0.00
Co,Ma|SE,Ind,FC SC 0.10 0.00 0.05 0.00 -
Me,Ind|Co,SE,FC F 0.51 0.00 0.06 - -

According to the estimation results of the R-vine copula model in Table 6, it can also
be found that there is a general positive linkage between industries in the real economy,
and this result is also consistent with the conclusion in the previous discussion.

In addition, in the estimation results of the R-vine Copula model, we observed a
positive conditional dependence between Fintech, the medical industry and the consumer
industry, which reflects that the medical industry and the consumer industry is relatively
weak; they are not independent of each other, and extreme risk events in the field of Fintech
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can also have a negative impact on the medical industry and consumer industry through
transmission between markets.

The model estimation results also show that there is a nonlinear dependence between
Fintech and real economy industries. The Copula function forms of the first tree in the
table are symmetrical t-Copula functions. Kendall’s τ value represents the unconditioned
correlation coefficient between industries. It can be found that the upper and lower tail
correlation coefficients show symmetrical characteristics, while the model forms of the
second tree to the fourth tree are more diversified.

In the first tree, there is a significant positive correlation between Fintech and the
manufacturing industry, material industry, public utility industry and selective industry,
in which the rank correlation coefficient is above 0.5. Generally speaking, the higher
the upper and lower tail correlation coefficient, the greater the possibility of market rise
and fall synchronization, so the higher the possibility of risk spillover. Among them, the
upper and lower tail correlation coefficient of Fintech and the manufacturing industry is
the largest, indicating that the correlation between the two markets is high, and extreme
risk is easily transmitted between the two markets. The upper and lower tail correlation
coefficient of the selective industry and the consumer industry is the smallest; it shows that
the industry relevance of the two industries is weak and the ability to resist extreme risks is
relatively strong.

It can be observed that the correlation coefficient between the information technology
and the telecommunication industry is high, which indicates that when extreme risks occur
in Fintech and overflow to the information technology industry, it may also be transmitted
to other industries. On the whole, the correlation coefficients between Fintech and various
industries of the real economy are above 0.2, which shows that the real economy industry
has weak awareness and ability to resist external extreme risks. When extreme risk events
occur in Fintech or other real economy industries, it is easy to have a negative impact
on other relevant industries. This feature also reflects the sensitivity and vulnerability of
Fintech itself. When the real economy industry is impacted by extreme risk events, it has
varying degrees of negative impact on the capital market and even whole financial markets.

The second tree in Figure 6 represents the conditional dependence with an industry as
the conditional variable. The estimation results show that the correlation between industries
is significantly weakened after introducing an industry as a conditional variable. There
is a weak positive correlation between Fintech and the energy industry, IT industry and
consumer industry, after excluding the influence of the manufacturing industry, material
industry and selective industry, respectively. At the same time, the correlation between real
economy industries is also weakened after excluding the influence of Fintech.

The rank correlation coefficient and upper and lower tail correlation coefficient of the
third tree in Figure 7 and the fourth tree in Figure 8 tend to 0, which indicates that the
more conditional industries are introduced, the weaker the correlation between industries.
When extreme risks occur in an industry, risk transmission tends to spread among the three
closely related industries; although the risks cannot be completely dispersed, its impact on
other industries is limited.

It can be seen from the R-vine Copula model trees that Fintech occupies the central
position of the dependent structure, which proves that Fintech has established a broad
and profound correlation with the market, and the real economy industries with weak
correlation are also linked by Fintech products and services. However, the improvement
of the degree of correlation not only enhances the availability of financial products and
services, but also has new risk threats that are difficult to prevent by the traditional risk
prevention and control system. The establishment of this dependent structure provides a
way for the spread of potential risks. While accelerating the spread of extreme risks, the
degree of harm is further deepened. The tail risk estimation in the estimation results of
the R-vine Copula model also shows this problem. The upper and lower tail correlation
coefficient is significantly positive, indicating that the extreme risk of one industry increases
the risk level of other industries.
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In the R-vine Copula model, the correlation between Fintech and industries with large
capital demand and relatively slow turnover speed, such as the manufacturing industry, IT
industry and material industry, is higher, which further confirms that enterprises with a
long capital chain and large capital demand are more closely related to the financial system;
such enterprises are more sensitive to Fintech products and services than enterprises with
a short capital chain. Fintech and the medical industry have developed in the fields of
integration of medicine and medical resources, innovation of medical insurance products
and financial services, but it has a low correlation with Fintech, so the impact of financial
risk on the medical industry is also relatively limited. From a macro perspective, Fintech in
the medical industry may help to reduce medical costs, optimize the allocation of medical
resources and supplement the shortcomings of the existing social security and medical
insurance systems. However, how Fintech products and services adapt to the market
demand in the medical industry still needs to be further explored.

4.5. Result of Risk Spillover Effect

From the research results of the R-vine copula, it can be found that the dependences
between Fintech and various industries of the real economy are different, but they have
formed a wide range of correlation, indicating a strong risk transmission effect. VaR, CoVaR,
∆CoVaR and % ∆CoVaR are calculated to measure the two-way risk spillover effect. The
CoVaR value is generally greater than 4, ∆ Covar is greater than 3 and the% ∆ Covar value
is also more than 60%, which indicates that when extreme risks occur in Fintech, it is very
likely to have a different degree of negative impact on industries of the real economy, and
the risk spillover level is higher than the risk level of the real economy industry itself.
Table 7 shows the degree of risk spillover to various industries of the real economy when
extreme risks occur in the Fintech industry at the 95% confidence level.

Table 7. Fintech risk spillover to industries in real economy.

Risk Spillover VaR CoVaR ∆CoVaR %∆CoVaR

Fintech→ Energy 3.68 4.42 3.25 88.09%
Fintech→Material 3.48 4.08 3.00 86.23%

Fintech→ Selective consume 3.58 4.21 2.25 62.87%
Fintech→ Consume 3.09 3.86 3.08 99.53%

Fintech→ IT 3.30 4.15 3.45 104.79%
Fintech→Medicine 3.66 4.34 3.49 95.31%
Fintech→ Telecom 4.24 5.10 3.57 84.05%

Fintech→ Public Uti. 3.52 4.17 2.55 72.51%
Fintech→Manufacture 4.19 4.98 3.52 83.96%

The estimation result is consistent with the correlation result of the R-vine Copula.
Compared with other industries, Fintech has the strongest risk spillover level to the man-
ufacturing industry, public utilities industry and selective industries. According to the
empirical analysis results, it can be seen that there is a high correlation between the manufac-
turing industry and Fintech. Although the public utilities industry and selective industries
have a weak relationship with Fintech, they are also vulnerable to extreme risk spillovers
in Fintech due to their weak financial risk prevention ability.

Table 8 shows the Risk Spillover degree to all industries of the real economy when
extreme risks occur in the Fintech industries at the 95% confidence level. It can be seen
that the CoVaR value is greater than 3, the ∆CoVaR value is above 2 and the % ∆CoVaR
value is also greater than 50%, which indicates that various industries of the real economy
are likely to have different degrees of negative impact on Fintech in the event of extreme
risks, and the risk overflow level is higher than the risk level of Fintech itself. Compared
with other industries, the telecommunication industry and IT industry have the strongest
risk spillover effect on Fintech. This characteristic shows that Fintech is highly dependent
on modern information technologies such as big data and cloud platforms. Risk events in
related industries have a great negative effect on Fintech.
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Table 8. Risk spillover of industries in real economy to Fintech.

Risk Spillover VaR CoVaR ∆CoVaR %∆CoVaR

Energy→ Fintech 3.04 3.94 2.04 67.20%
Material→ Fintech 3.07 3.96 2.48 80.71%

Selective consumer→ Fintech 4.29 5.50 4.25 99.06%
Consumer→ Fintech 2.73 3.28 2.14 78.45%

IT→ Fintech 2.31 2.83 1.31 56.78%
Medicine→ Fintech 3.11 4.11 2.45 78.73%
Telecom→ Fintech 3.55 4.79 2.44 68.83%
Pub Uti. → Fintech 3.96 5.13 4.08 103.08%

Manuf. Ind. → Fintech 3.62 4.91 2.59 71.52%

Figures 9–11 show the comparisons of the risk spillover degree by CoVAR, ∆CoVaR
and %∆CoVaR, respectively.
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From the figures it can be seen that the risk spillover effect of extreme risks in Fintech on
most industries of the real economy is relatively strong, while the CoVaR results of various
industries of the real economy are relatively small, which has a slightly smaller impact
than that caused by extreme risks in Fintech. This can also reflect that the concealment
and harmfulness of financial risk contagion are strong, and the risk prevention ability and
awareness of Fintech are also better than those of the real economy.

5. Discussion
5.1. Rationality of Methodology
5.1.1. Time Series Approach

Time series analysis is used to determine the long-term trend, periodic change, cyclic
fluctuation and irregular change in the time series. According to the characteristics of risk
spillover, it is obvious that the time series method is more appropriate in this paper, because
the tail residual perturbation term of the time series equation can reflect the influence of
factors changing with time.

The Granger causality test is conducted to judge the impact relationship between
financial innovation and the real economy; the result shows that this is a positive relation-
ship, which is consistent with the conclusions of other scholars such as Shin and choi [7]
and Tian, Li, and Yang [8].

The GARCH model is used to get the tail conditional variance for the edge disruption
in the Copula, because the time series of the Fintech index and real economy index have
an ARCH effect with characteristics of peak and thick tail, and GARCH can interpret this
phenomenon and the asymmetry well.

5.1.2. Deficiency of Copula

Copula is a function connecting multi-dimensional joint distribution and its edge
distribution. It can completely describe the correlation structure between variables, and
can also separate the edge distribution from the correlation structure. In addition, one of
the two can be selected independently, which greatly reduces the difficulty of obtaining the
multivariable joint distribution function. Saraji, Karimalis et al. [16,19] indicated that the
correlation structure between financial markets is closely related to risk management.

Although the copula function is very convenient in investigating correlation and edge
distribution, it faces great challenges in dealing with high-dimensional structures. There-
fore, the vine copula method came into being by scholars such as Joe, Li, Nikoloulopou-
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los, Sriboonchitta, Kosheleva, Nguyen, Alanazi, Bedford, Daneshkhah, Wilson, Zhu,
Kurowicha, and so on [20–24].

5.1.3. Advantages of R-Vine Copula

The vine copula is a multivariate dependence model, which is composed of a collection
of bivariate copulas consisting of specific underlying graphical structure. The most often
used are the C-vine copula, D-vine copula and R-vine copula. We use the R-vine copula for
this study, because it is not only practical for decomposing a high dimension copula into
multiple bivariate copulas, but also has the flexibility to describe the conditional dispersion
effect of nodes according to the dependence intensity of the market [21,24,25].

In modeling of the R-vine, the choice of vine structure is to construct a continuous tree
by capturing the largest correlation in the underlying tree. However, this does not guarantee
that the best vine structure is generated. This paper intends to improve the RVM with
reference to the maximum spanning tree (MST) method proposed by Brechmann et al. [42],
and then determine the decomposition structure of the R-vine model. The algorithm is
appropriately improved according to the sampling sequence. The idea is to search an
R-vine–copula from an initial vine structure, which better represents the rattan data with
two common sampling sequences, making the R-vine-copula model more suitable for the
data dependency structure.

After obtaining the optimized copula function, given a certain confidence level, the
cumulative probability of CoVaR can be obtained according to the AIC principle. Next,
the cumulative probability is inversely substituted into the edge distribution function,
then the risk spillover CoVaR can be obtained by solving the inverse edge distribution
function [19,43].

Therefore, it can be concluded from the above discussion that the combined R-vine–
Copula model that we have constructed is reasonable.

5.2. Managerial Implication

With the development of economic integration, the relevance to all walks of life is
becoming higher and higher. Therefore, fintech has a greater impact on the entire economic
system. From the analysis of the copula edge distribution and R-vine dependent structure,
it is found that fintech and the real economy promote each other; risks also spread across
them and spillover effects occur. The contribution of different industries to the systematic
risk of the market is significantly different with the characteristics of asymmetry.

Therefore, this study provides an important reference for how to diversify the systemic
fintech risks, so as to prevent them from having an impact on the real economy. It is of
great practical significance to further explore the impact of fintech innovation on systematic
financial risks, make rational use of financial technology to promote long-term healthy
economic development, and pay attention to the possible spillover risk caused by excessive
innovation of financial technology.

5.3. Limitation and Future Work

In the study, we found that there are extreme risks in the time series, but the existence
of the extreme risk effect and its impact on the whole system were not taken into account
in our model construction. In order to make the model more comprehensively reveal the
complex structure of various industries, we will add an extreme value effect in future
research, so as to analyze the risk transmission path and dispersion effect under extreme
risk conditions, making the model more accurate in describing the risk.

6. Conclusions

The correlation structure of the R-vine Copula model shows that there is a positive
correlation between Fintech and various industries of the real economy, and there is also
a general positive linkage. The Fintech industry is located in the central position of the
dependent structure. The Fintech industry has the highest rank correlation coefficient
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with the manufacturing industry and material industry. In addition, we have observed
that there is a positive conditional dependence between the Fintech industry, medical
industry and consumer industry, which reflects that the correlation is relatively weak.
Extreme risk events in Fintech can also have a negative impact on the medical industry and
consumer industry.

The estimation results of the R-vine Copula model reflect that there is a nonlinear
dependence between Fintech and the real economy. The upper and lower tail correlation
coefficients of the first tree show the symmetrical characteristics, indicating that there is the
possibility of simultaneous rise and fall between Fintech and the real economy industries.

CoVaR analysis shows that extreme risk events in Fintech and various industries of the
real economy have different degrees of negative impact on each other, and the risk spillover
level is relatively high. When extreme risks occur in Fintech, the manufacturing industry
is also subject to a high degree of risk impact. Although the public utilities industry and
selective industries have a weak relationship with Fintech, they are also vulnerable to
extreme risk spillovers from Fintech due to their weak financial risk prevention ability.

Based on the above conclusions, this paper believes that under the trend of the increas-
ingly extensive application of Fintech products and services, the dominant position of the
real economy needs to be further strengthened. In order to give full play to the real value
of Fintech, we must strengthen the dominance of the real economy and realize the goal of
Fintech to serve the development of the real economy. In addition, the ability of the real
economy industry to prevent and resolve financial risks needs to be improved. Before the
outbreak of financial risks, it can effectively identify and respond to risks, not only making
full use of the value brought by Fintech products and services, but also effectively avoiding
risk accumulation and risk infection.
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