Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors
Abstract
:1. Introduction
2. Demand Flexibility
3. Residential Demand Flexibility
4. Industrial Demand Flexibility
5. Commercial Demand Flexibility
6. Agricultural Demand Flexibility
7. Challenges and Future Insights
- (1)
- Regulatory barriers, e.g., lack of regulation or tax issues for flexible industries;
- (2)
- Financial incentives for flexible consumers;
- (3)
- Lack of motivation and widespread adoption of DRPs;
- (4)
- Technological challenges, e.g., lack of IoT and data storage/processing facilities.
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakučionytė-Skodienė, M.; Liobikienė, G. Climate change concern, personal responsibility and actions related to climate change mitigation in EU countries: Cross-cultural analysis. J. Clean. Prod. 2021, 281, 125189. [Google Scholar] [CrossRef]
- Li, M.; Virguez, E.; Shan, R.; Tian, J.; Gao, S.; Patiño-Echeverri, D. High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system. Appl. Energy 2022, 306, 117996. [Google Scholar] [CrossRef]
- Erenoğlu, A.K.; Şengör, İ.; Erdinç, O.; Taşcıkaraoğlu, A.; Catalão, J.P.S. Optimal energy management system for microgrids considering energy storage, demand response and renewable power generation. Int. J. Electr. Power Energy Syst. 2022, 136, 107714. [Google Scholar] [CrossRef]
- Sasaki, K.; Aki, H.; Ikegami, T. Application of model predictive control to grid flexibility provision by distributed energy resources in residential dwellings under uncertainty. Energy 2022, 239, 122183. [Google Scholar] [CrossRef]
- Panuschka, S.; Hofmann, R. Impact of thermal storage capacity, electricity and emission certificate costs on the optimal operation of an industrial energy system. Energy Convers. Manag. 2019, 185, 622–635. [Google Scholar] [CrossRef]
- Van Zoest, V.; El Gohary, F.; Ngai, E.C.H.; Bartusch, C. Demand charges and user flexibility—Exploring differences in electricity consumer types and load patterns within the Swedish commercial sector. Appl. Energy 2021, 302, 117543. [Google Scholar] [CrossRef]
- Pamučar, D.; Behzad, M.; Božanić, D.; Behzad, M. Decision making to support sustainable energy policies corresponding to agriculture sector: Case study in Iran’s Caspian Sea coastline. J. Clean. Prod. 2021, 292, 125302. [Google Scholar] [CrossRef]
- Bahramara, S. Robust Optimization of the Flexibility-constrained Energy Management Problem for a Smart Home with Rooftop Photovoltaic and an Energy Storage. J. Energy Storage 2021, 36, 102358. [Google Scholar] [CrossRef]
- Vellei, M.; Le Dréau, J.; Abdelouadoud, S.Y. Predicting the demand flexibility of wet appliances at national level: The case of France. Energy Build. 2020, 214, 109900. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Sæle, H.; Degefa, M.Z. Electric water heater flexibility potential and activation impact in system operator perspective—Norwegian scenario case study. Energy 2021, 236, 121490. [Google Scholar] [CrossRef]
- Zehir, M.A.; Bagriyanik, M. Demand Side Management by controlling refrigerators and its effects on consumers. Energy Convers. Manag. 2012, 64, 238–244. [Google Scholar] [CrossRef]
- Javaid, N.; Ahmed, F.; Ullah, I.; Abid, S.; Abdul, W.; Alamri, A.; Almogren, A.S. Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid. Energies 2017, 10, 1546. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.; Cipriano, J.; Grillone, B.; Amblard, F.; Menon, R.P.; Page, J.; Brennenstuhl, M.; Pietruschka, D.; Baumer, R.; Eicker, U. Operation and energy flexibility evaluation of direct load controlled buildings equipped with heat pumps. Energy Build. 2021, 253, 111484. [Google Scholar] [CrossRef]
- Cañigueral, M.; Meléndez, J. Flexibility management of electric vehicles based on user profiles: The Arnhem case study. Int. J. Electr. Power Energy Syst. 2021, 133, 107195. [Google Scholar] [CrossRef]
- Lee, E.; Baek, K.; Kim, J. Evaluation of Demand Response Potential Flexibility in the Industry Based on a Data-Driven Approach. Energies 2020, 13, 6355. [Google Scholar] [CrossRef]
- Cuvelier, T. Embedding reservoirs in industrial models to exploit their flexibility. SN Appl. Sci. 2020, 2, 2171. [Google Scholar] [CrossRef]
- Marton, S.; Langner, C.; Svensson, E.; Harvey, S. Costs vs. Flexibility of Process Heat Recovery Solutions Considering Short-Term Process Variability and Uncertain Long-Term Development. Front. Chem. Eng. 2021, 3, 25. [Google Scholar] [CrossRef]
- Hovgaard, T.G.; Larsen, L.F.S.; Jørgensen, J.B. Flexible and cost efficient power consumption using economic MPC a supermarket refrigeration benchmark. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 848–854. [Google Scholar] [CrossRef]
- Yin, R.; Kara, E.C.; Li, Y.; DeForest, N.; Wang, K.; Yong, T.; Stadler, M. Quantifying flexibility of commercial and residential loads for demand response using setpoint changes. Appl. Energy 2016, 177, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Babic, J.; Carvalho, A.; Ketter, W.; Podobnik, V. A data-driven approach to managing electric vehicle charging infrastructure in parking lots. Transp. Res. Part D Transp. Environ. 2022, 105, 103198. [Google Scholar] [CrossRef]
- Pardo Picazo, M.Á.; Juárez, J.M.; García-Márquez, D. Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System. Sustainability 2018, 10, 4203. [Google Scholar] [CrossRef] [Green Version]
- Muralidhar, K.; Rajasekar, N. A review of various components of solar water-pumping system: Configuration, characteristics, and performance. Int. Trans. Electr. Energy Syst. 2021, 31, e13002. [Google Scholar] [CrossRef]
- Chou, S.K.; Chua, K.J.; Ho, J.C.; Ooi, C.L. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Appl. Energy 2004, 77, 355–373. [Google Scholar] [CrossRef]
- Byrne, P.S.; Carton, J.G.; Corcoran, B. Investigating the Suitability of a Heat Pump Water-Heater as a Method to Reduce Agricultural Emissions in Dairy Farms. Sustainability 2021, 13, 5736. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Tang, K.-T. Frequency Support by Demand Response—Review and Analysis. Energy Procedia 2019, 156, 327–331. [Google Scholar] [CrossRef]
- Singh, V.P.; Samuel, P.; Kishor, N. Impact of demand response for frequency regulation in two-area thermal power system. Int. Trans. Electr. Energy Syst. 2017, 27, e2246. [Google Scholar] [CrossRef]
- Chassin, D.P.; Behboodi, S.; Shi, Y.; Djilali, N. H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables. Appl. Energy 2017, 205, 304–315. [Google Scholar] [CrossRef]
- Xie, Q.; Hui, H.; Ding, Y.; Ye, C.; Lin, Z.; Wang, P.; Song, Y.; Ji, L.; Chen, R. Use of demand response for voltage regulation in power distribution systems with flexible resources. IET Gener. Transm. Distrib. 2020, 14, 883–892. [Google Scholar] [CrossRef]
- Mimica, M.; Sinovčić, Z.; Jokić, A.; Krajačić, G. The role of the energy storage and the demand response in the robust reserve and network-constrained joint electricity and reserve market. Electr. Power Syst. Res. 2022, 204, 107716. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Ramezani, M.; Bashian, A.; Falaghi, H. Risk-based maintenance scheduling of generating units in the deregulated environment considering transmission network congestion. J. Mod. Power Syst. Clean Energy 2014, 2, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Aravinthan, V. Strategies of residential peak shaving with integration of demand response and V2H. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 8–11 December 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Misconel, S.; Zöphel, C.; Möst, D. Assessing the value of demand response in a decarbonized energy system—A large-scale model application. Appl. Energy 2021, 299, 117326. [Google Scholar] [CrossRef]
- McPherson, M.; Stoll, B. Demand response for variable renewable energy integration: A proposed approach and its impacts. Energy 2020, 197, 117205. [Google Scholar] [CrossRef]
- Davarzani, S.; Pisica, I.; Taylor, G.A.; Munisami, K.J. Residential Demand Response Strategies and Applications in Active Distribution Network Management. Renew. Sustain. Energy Rev. 2021, 138, 110567. [Google Scholar] [CrossRef]
- Golmohamadi, H. Demand-side management in industrial sector: A review of heavy industries. Renew. Sustain. Energy Rev. 2022, 156, 111963. [Google Scholar] [CrossRef]
- Golmohamadi, H. Agricultural Demand Response Aggregators in Electricity Markets: Structure, Challenges and Practical Solutions- a Tutorial for Energy Experts. Technol. Econ. Smart Grids Sustain. Energy 2020, 5, 17. [Google Scholar] [CrossRef]
- Darwazeh, D.; Duquette, J.; Gunay, B.; Wilton, I.; Shillinglaw, S. Review of peak load management strategies in commercial buildings. Sustain. Cities Soc. 2022, 77, 103493. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Niasati, M. Composite System Maintenance Coordination in a Smart Grid Considering Demand Response. Technol. Econ. Smart Grids Sustain. Energy 2016, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Hassanpour, A.; Davoudi, M. Optimization of green energy portfolio in retail market using stochastic programming. In Proceedings of the 2015 North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R. Application of Robust Optimization Approach to Determine Optimal Retail Electricity Price in Presence of Intermittent and Conventional Distributed Generation Considering Demand Response. J. Control. Autom. Electr. Syst. 2017, 28, 664–678. [Google Scholar] [CrossRef]
- Jin, M.; Feng, W.; Marnay, C.; Spanos, C. Microgrid to enable optimal distributed energy retail and end-user demand response. Appl. Energy 2018, 210, 1321–1335. [Google Scholar] [CrossRef] [Green Version]
- Metwaly, M.K.; Teh, J. Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability. IEEE Access 2020, 8, 181547–181559. [Google Scholar] [CrossRef]
- Hui, H.; Ding, Y.; Song, Y. Adaptive time-delay control of flexible loads in power systems facing accidental outages. Appl. Energy 2020, 275, 115321. [Google Scholar] [CrossRef]
- McKenna, K.; Keane, A. Residential Load Modeling of Price-Based Demand Response for Network Impact Studies. IEEE Trans. Smart Grid 2016, 7, 2285–2294. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Sun, Y.; Li, B.; Qi, B.; Shi, K.; Li, Y.; Tu, X. Incentive-Based Integrated Demand Response for Multiple Energy Carriers Considering Behavioral Coupling Effect of Consumers. IEEE Trans. Smart Grid 2020, 11, 3231–3245. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R. Stochastic optimization for retailers with distributed wind generation considering demand response. J. Mod. Power Syst. Clean Energy 2018, 6, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Qiu, J.; Chai, Q. Customized Critical Peak Rebate Pricing Mechanism for Virtual Power Plants. IEEE Trans. Sustain. Energy 2021, 12, 2169–2183. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, H.; Zhang, H.; Goh, H.H.; Liu, H.; Wu, T. Multi-Objective Optimization for Smart Integrated Energy System Considering Demand Responses and Dynamic Prices. IEEE Trans. Smart Grid 2022, 13, 1100–1112. [Google Scholar] [CrossRef]
- Golmohamadi, H. Virtual Storage Plants in Parking Lots of Electric Vehicles Providing Local/Global Power System Supports. Energy Storage 2021, 43, 103249. [Google Scholar] [CrossRef]
- Engels, J.; Claessens, B.; Deconinck, G. Grid-Constrained Distributed Optimization for Frequency Control With Low-Voltage Flexibility. IEEE Trans. Smart Grid 2020, 11, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jing, S.; Sun, Y.; Liu, J.; Niu, Y.; Zeng, D.; Cui, C. Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation. Energy 2019, 169, 988–999. [Google Scholar] [CrossRef]
- Khatami, R.; Parvania, M.; Narayan, A. Flexibility Reserve in Power Systems: Definition and Stochastic Multi-Fidelity Optimization. IEEE Trans. Smart Grid 2020, 11, 644–654. [Google Scholar] [CrossRef]
- Guo, N.; Wang, Y.; Yan, G. A double-sided non-cooperative game in electricity market with demand response and parameterization of supply functions. Int. J. Electr. Power Energy Syst. 2021, 126, 106565. [Google Scholar] [CrossRef]
- Hamedi, K.; Sadeghi, S.; Esfandi, S.; Azimian, M.; Golmohamadi, H. Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies. Sustainability 2021, 13, 4681. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Dong, F.; Qin, Y.; Ma, Z.; Ma, Y.; Li, J. Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy. Appl. Energy 2021, 300, 117358. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Li, Z.; Shao, C.; Liu, X. Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches. Renew. Sustain. Energy Rev. 2018, 93, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Ndawula, M.B.; Hernando-Gil, I.; Li, R.; Gu, C.; De Paola, A. Model order reduction for reliability assessment of flexible power networks. Int. J. Electr. Power Energy Syst. 2021, 127, 106623. [Google Scholar] [CrossRef]
- Fonteijn, R.; Nguyen, P.H.; Morren, J.; Slootweg, J.G. Demonstrating a generic four-step approach for applying flexibility for congestion management in daily operation. Sustain. Energy Grids Netw. 2020, 23, 100378. [Google Scholar] [CrossRef]
- Bashian, A.; Hojat, M.; Javidi, M.H.; Golmohamadi, H. Security-Based Tariff for Wheeling Contracts Considering Fair Congestion Cost Allocation. J. Control. Autom. Electr. Syst. 2014, 25, 368–380. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wei, M.; Ji, H.; Xi, W.; Yu, H.; Wu, J.; Yao, H.; Chen, J. Deep Reinforcement Learning-Based Adaptive Voltage Control of Active Distribution Networks with Multi-terminal Soft Open Point. Int. J. Electr. Power Energy Syst. 2022, 141, 108138. [Google Scholar] [CrossRef]
- Jangdoost, A.; Keypour, R.; Golmohamadi, H. Optimization of distribution network reconfiguration by a novel RCA integrated with genetic algorithm. Energy Syst. 2020, 12, 801–833. [Google Scholar] [CrossRef]
- Alshehri, J.; Khalid, M. Power Quality Improvement in Microgrids Under Critical Disturbances Using an Intelligent Decoupled Control Strategy Based on Battery Energy Storage System. IEEE Access 2019, 7, 147314–147326. [Google Scholar] [CrossRef]
- McKenna, R.; Pfenninger, S.; Heinrichs, H.; Schmidt, J.; Staffell, I.; Bauer, C.; Gruber, K.; Hahmann, A.N.; Jansen, M.; Klingler, M.; et al. High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renew. Energy 2022, 182, 659–684. [Google Scholar] [CrossRef]
- Sward, J.A.; Siff, J.; Gu, J.; Zhang, K.M. Strategic planning for utility-scale solar photovoltaic development—Historical peak events revisited. Appl. Energy 2019, 250, 1292–1301. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Opportunity and challenges in large-scale geothermal energy exploitation in China. Crit. Rev. Environ. Sci. Technol. 2021, 1–22. [Google Scholar] [CrossRef]
- Bakken, T.H.; Sundt, H.; Ruud, A.; Harby, A. Development of Small Versus Large Hydropower in Norway– Comparison of Environmental Impacts. Energy Procedia 2012, 20, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Venus, T.E.; Hinzmann, M.; Bakken, T.H.; Gerdes, H.; Godinho, F.N.; Hansen, B.; Pinheiro, A.; Sauer, J. The public’s perception of run-of-the-river hydropower across Europe. Energy Policy 2020, 140, 111422. [Google Scholar] [CrossRef]
- Kalair, A.R.; Abas, N.; Hasan, Q.U.; Seyedmahmoudian, M.; Khan, N. Demand side management in hybrid rooftop photovoltaic integrated smart nano grid. J. Clean. Prod. 2020, 258, 120747. [Google Scholar] [CrossRef]
- Odou, O.D.T.; Bhandari, R.; Adamou, R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew. Energy 2020, 145, 1266–1279. [Google Scholar] [CrossRef]
- Thopil, M.S.; Bansal, R.C.; Zhang, L.; Sharma, G. A review of grid connected distributed generation using renewable energy sources in South Africa. Energy Strategy Rev. 2018, 21, 88–97. [Google Scholar] [CrossRef]
- Tuomela, S.; de Castro Tomé, M.; Iivari, N.; Svento, R. Impacts of home energy management systems on electricity consumption. Appl. Energy 2021, 299, 117310. [Google Scholar] [CrossRef]
- Olawale, O.W.; Gilbert, B.; Reyna, J. Residential Demand Flexibility: Modeling Occupant Behavior using Sociodemographic Predictors. Energy Build. 2022, 262, 111973. [Google Scholar] [CrossRef]
- D’hulst, R.; Labeeuw, W.; Beusen, B.; Claessens, S.; Deconinck, G.; Vanthournout, K. Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium. Appl. Energy 2015, 155, 79–90. [Google Scholar] [CrossRef]
- Stamminger, R.; Schmitz, A. Load profiles and flexibility in operation of washing machines and dishwashers in Europe. Int. J. Consum. Stud. 2017, 41, 178–187. [Google Scholar] [CrossRef]
- Dortans, C.; Jack, M.W.; Anderson, B.; Stephenson, J. Lightening the load: Quantifying the potential for energy-efficient lighting to reduce peaks in electricity demand. Energy Effic. 2020, 13, 1105–1118. [Google Scholar] [CrossRef]
- Utama, C.; Troitzsch, S.; Thakur, J. Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings. Appl. Energy 2021, 285, 116418. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, Q.; Sun, H. Impacts of optimization interval on home energy scheduling for thermostatically controlled appliances. CSEE J. Power Energy Syst. 2015, 1, 90–100. [Google Scholar] [CrossRef]
- Pied, M.; Anjos, M.F.; Malhamé, R.P. A flexibility product for electric water heater aggregators on electricity markets. Appl. Energy 2020, 280, 115168. [Google Scholar] [CrossRef]
- Aduda, K.O.; Labeodan, T.; Zeiler, W. Towards critical performance considerations for using office buildings as a power flexibility resource-a survey. Energy Build. 2018, 159, 164–178. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Radhakrishna Pillai, J. Optimization of household energy consumption towards day-ahead retail electricity price in home energy management systems. Sustain. Cities Soc. 2019, 47, 101468. [Google Scholar] [CrossRef]
- Kuboth, S.; Heberle, F.; Weith, T.; Welzl, M.; König-Haagen, A.; Brüggemann, D. Experimental short-term investigation of model predictive heat pump control in residential buildings. Energy Build. 2019, 204, 109444. [Google Scholar] [CrossRef]
- Golmohamadi, H. Stochastic energy optimization of residential heat pumps in uncertain electricity markets. Appl. Energy 2021, 303, 117629. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Hierarchical flexibility potentials of residential buildings with responsive heat pumps: A case study of Denmark. J. Build. Eng. 2021, 41, 102425. [Google Scholar] [CrossRef]
- Emhofer, J.; Marx, K.; Sporr, A.; Barz, T.; Nitsch, B.; Wiesflecker, M.; Pink, W. Experimental demonstration of an air-source heat pump application using an integrated phase change material storage as a desuperheater for domestic hot water generation. Appl. Energy 2022, 305, 117890. [Google Scholar] [CrossRef]
- Li, H.; Hou, J.; Tian, Z.; Hong, T.; Nord, N.; Rohde, D. Optimize heat prosumers’ economic performance under current heating price models by using water tank thermal energy storage. Energy 2022, 239, 122103. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Guldstrand Larsen, K.; Gjøl Jensen, P.; Riaz Hasrat, I. Optimization of power-to-heat flexibility for residential buildings in response to day-ahead electricity price. Energy Build. 2021, 232, 110665. [Google Scholar] [CrossRef]
- Ahmed, A.; Qayoum, A.; Mir, F.Q. Spectroscopic studies of renewable insulation materials for energy saving in building sector. J. Build. Eng. 2021, 44, 103300. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G. Economic heat control of mixing loop for residential buildings supplied by low-temperature district heating. J. Build. Eng. 2021, 46, 103286. [Google Scholar] [CrossRef]
- Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives. Energies 2022, 15, 1328. [Google Scholar] [CrossRef]
- Brastein, O.M.; Ghaderi, A.; Pfeiffer, C.F.; Skeie, N.-O. Analysing uncertainty in parameter estimation and prediction for grey-box building thermal behaviour models. Energy Build. 2020, 224, 110236. [Google Scholar] [CrossRef]
- Killian, M.; Mayer, B.; Kozek, M. Effective fuzzy black-box modeling for building heating dynamics. Energy Build. 2015, 96, 175–186. [Google Scholar] [CrossRef]
- Golmohamadi, H. Data-Driven Approach to Forecast Heat Consumption of Buildings with High-Priority Weather Data. Buildings 2022, 12, 289. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X. Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm. Energy Convers. Manag. 2006, 47, 1927–1941. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, L.; Zhang, J.; Niu, B.; Luo, M.; Zhou, G.; Zhang, X. Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database. Energy Build. 2020, 211, 109795. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Integration of flexibility potentials of district heating systems into electricity markets: A review. Renew. Sustain. Energy Rev. 2022, 159, 112200. [Google Scholar] [CrossRef]
- Halvgaard, R.; Poulsen, N.K.; Madsen, H.; Jørgensen, J.B. Economic Model Predictive Control for building climate control in a Smart Grid. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Clauß, J.; Stinner, S.; Sartori, I.; Georges, L. Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating. Appl. Energy 2019, 237, 500–518. [Google Scholar] [CrossRef]
- Marijanovic, Z.; Theile, P.; Czock, B. Value of short-term heating system flexibility—A case study for residential heat pumps on the German intraday market. Energy 2022, 249, 123664. [Google Scholar] [CrossRef]
- Abokersh, M.H.; Saikia, K.; Cabeza, L.F.; Boer, D.; Vallès, M. Flexible heat pump integration to improve sustainable transition toward 4th generation district heating. Energy Convers. Manag. 2020, 225, 113379. [Google Scholar] [CrossRef]
- Harild Rasmussen, T.B.; Wu, Q.; Zhang, M. Primary frequency support from local control of large-scale heat pumps. Int. J. Electr. Power Energy Syst. 2021, 133, 107270. [Google Scholar] [CrossRef]
- Yu, T.; Kim, D.S.; Son, S.-Y. Optimization of scheduling for home appliances in conjunction with renewable and energy storage resources. Int. J. Smart Home 2013, 7, 261–272. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883259313&partnerID=40&md5=6e48e1b22ff77efacfe8f401d2068a14 (accessed on 2 June 2022).
- Stadler, M.; Krause, W.; Sonnenschein, M.; Vogel, U. Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices. Environ. Model. Softw. 2009, 24, 285–295. [Google Scholar] [CrossRef]
- Adika, C.O.; Wang, L. Smart charging and appliance scheduling approaches to demand side management. Int. J. Electr. Power Energy Syst. 2014, 57, 232–240. [Google Scholar] [CrossRef]
- Gottwalt, S.; Ketter, W.; Block, C.; Collins, J.; Weinhardt, C. Demand side management—A simulation of household behavior under variable prices. Energy Policy 2011, 39, 8163–8174. [Google Scholar] [CrossRef]
- Shen, G.; Lee, Z.E.; Amadeh, A.; Zhang, K.M. A data-driven electric water heater scheduling and control system. Energy Build. 2021, 242, 110924. [Google Scholar] [CrossRef]
- Tejero-Gómez, J.A.; Bayod-Rújula, A.A. Energy management system design oriented for energy cost optimization in electric water heaters. Energy Build. 2021, 243, 111012. [Google Scholar] [CrossRef]
- Kapsalis, V.; Hadellis, L. Optimal operation scheduling of electric water heaters under dynamic pricing. Sustain. Cities Soc. 2017, 31, 109–121. [Google Scholar] [CrossRef]
- Pereira, T.C.; Amaral Lopes, R.; Martins, J. Exploring the Energy Flexibility of Electric Water Heaters. Energies 2020, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Finn, P.; O’Connell, M.; Fitzpatrick, C. Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction. Appl. Energy 2013, 101, 678–685. [Google Scholar] [CrossRef]
- Ladenburg, J.; Jensen, K.L.; Lodahl, C.; Keles, D. Testing for non-linear willingness to accept compensation for controlled electricity switch-offs using choice experiments. Energy 2022, 238, 121749. [Google Scholar] [CrossRef]
- Azizi, E.; Ahmadiahangar, R.; Rosin, A.; Martins, J.; Lopes, R.A.; Beheshti, M.T.H.; Bolouki, S. Residential energy flexibility characterization using non-intrusive load monitoring. Sustain. Cities Soc. 2021, 75, 103321. [Google Scholar] [CrossRef]
- Costanzo, G.T.; Zhu, G.; Anjos, M.F.; Savard, G. A System Architecture for Autonomous Demand Side Load Management in Smart Buildings. IEEE Trans. Smart Grid 2012, 3, 2157–2165. [Google Scholar] [CrossRef]
- Bozchalui, M.C.; Hashmi, S.A.; Hassen, H.; Canizares, C.A.; Bhattacharya, K. Optimal Operation of Residential Energy Hubs in Smart Grids. IEEE Trans. Smart Grid 2012, 3, 1755–1766. [Google Scholar] [CrossRef]
- Hassan, N.U.; Pasha, M.A.; Yuen, C.; Huang, S.; Wang, X. Impact of Scheduling Flexibility on Demand Profile Flatness and User Inconvenience in Residential Smart Grid System. Energies 2013, 6, 6608. [Google Scholar] [CrossRef] [Green Version]
- Babaei, M.; Abazari, A.; Soleymani, M.M.; Ghafouri, M.; Muyeen, S.M.; Beheshti, M.T.H. A data-mining based optimal demand response program for smart home with energy storages and electric vehicles. J. Energy Storage 2021, 36, 102407. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; León-Japa, R.S.; Jurado, F. Optimal electrification of off-grid smart homes considering flexible demand and vehicle-to-home capabilities. Appl. Energy 2021, 298, 117184. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Icaza, D.; Açıkkalp, E.; Amaris, H. Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share. Energy 2021, 237, 121608. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Pillai, J.R.; Khooban, M.H. Robust Self-Scheduling of Operational Processes for Industrial Demand Response Aggregators. IEEE Trans. Ind. Electron. 2020, 67, 1387–1395. [Google Scholar] [CrossRef] [Green Version]
- Aras Nejad, M.; Golmohamadi, H.; Bashian, A.; Mahmoodi, H.; Hammami, M. Application of Demand Response Programs to Heavy Industries: A Case Study on a Regional Electric Company. Int. J. Smart Electr. Eng. 2017, 6, 93–99. Available online: http://ijsee.iauctb.ac.ir/article_537456.html (accessed on 2 June 2022).
- Yao, M.; Hu, Z.; Zhang, N.; Duan, W.; Zhang, J. Low-carbon benefits analysis of energy-intensive industrial demand response resources for ancillary services. J. Mod. Power Syst. Clean Energy 2015, 3, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hug, G.; Harjunkoski, I. Cost-Effective Scheduling of Steel Plants With Flexible EAFs. IEEE Trans. Smart Grid 2017, 8, 239–249. [Google Scholar] [CrossRef]
- Alarfaj, O.; Bhattacharya, K. Material Flow Based Power Demand Modeling of an Oil Refinery Process for Optimal Energy Management. IEEE Trans. Power Syst. 2019, 34, 2312–2321. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Asadi, A. Integration of Joint Power-Heat Flexibility of Oil Refinery Industries to Uncertain Energy Markets. Energies 2020, 13, 4874. [Google Scholar] [CrossRef]
- Summerbell, D.L.; Khripko, D.; Barlow, C.; Hesselbach, J. Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant. Appl. Energy 2017, 197, 100–113. [Google Scholar] [CrossRef]
- Ramin, D.; Spinelli, S.; Brusaferri, A. Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process. Appl. Energy 2018, 225, 622–636. [Google Scholar] [CrossRef]
- Helin, K.; Käki, A.; Zakeri, B.; Lahdelma, R.; Syri, S. Economic potential of industrial demand side management in pulp and paper industry. Energy 2017, 141, 1681–1694. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L. A review of energy use and energy efficiency technologies for the textile industry. Renew. Sustain. Energy Rev. 2012, 16, 3648–3665. [Google Scholar] [CrossRef] [Green Version]
- Seck, G.S.; Guerassimoff, G.; Maïzi, N. Heat recovery using heat pumps in non-energy intensive industry: Are Energy Saving Certificates a solution for the food and drink industry in France? Appl. Energy 2015, 156, 374–389. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Liu, Y.; Yang, H.; Lv, J.; Ren, S. Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 2020, 274, 123155. [Google Scholar] [CrossRef]
- Otashu, J.I.; Baldea, M. Grid-level “battery” operation of chemical processes and demand-side participation in short-term electricity markets. Appl. Energy 2018, 220, 562–575. [Google Scholar] [CrossRef]
- Gholian, A.; Mohsenian-Rad, H.; Hua, Y.; Qin, J. Optimal industrial load control in smart grid: A case study for oil refineries. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Seo, K.; Edgar, T.F.; Baldea, M. Optimal demand response operation of electric boosting glass furnaces. Appl. Energy 2020, 269, 115077. [Google Scholar] [CrossRef]
- Wierman, A.; Liu, Z.; Liu, I.; Mohsenian-Rad, H. Opportunities and challenges for data center demand response. In Proceedings of the International Green Computing Conference, Dallas, TX, USA, 3–5 November 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, D.; Huang, X.; Lou, B.; Liu, D. Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response. Appl. Energy 2020, 275, 115407. [Google Scholar] [CrossRef]
- Pedersen, R.; Schwensen, J.; Biegel, B.; Green, T.; Stoustrup, J. Improving Demand Response Potential of a Supermarket Refrigeration System: A Food Temperature Estimation Approach. IEEE Trans. Control Syst. Technol. 2017, 25, 855–863. [Google Scholar] [CrossRef]
- Wohlfarth, K.; Klobasa, M.; Gutknecht, R. Demand response in the service sector—Theoretical, technical and practical potentials. Appl. Energy 2020, 258, 114089. [Google Scholar] [CrossRef]
- Meschede, H. Analysis on the demand response potential in hotels with varying probabilistic influencing time-series for the Canary Islands. Renew. Energy 2020, 160, 1480–1491. [Google Scholar] [CrossRef]
- Akerma, M.; Hoang, H.M.; Leducq, D.; Flinois, C.; Clain, P.; Delahaye, A. Demand response in refrigerated warehouse. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, F.; Zou, Y.; Yang, X. Quantifying the flexibility of lighting systems by optimal control in commercial buildings: Insight from a case study. Energy Build. 2020, 225, 110310. [Google Scholar] [CrossRef]
- Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators. Appl. Energy 2020, 279, 115751. [Google Scholar] [CrossRef]
- Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles. Appl. Energy 2021, 290, 116802. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Asadi, A. A multi-stage stochastic energy management of responsive irrigation pumps in dynamic electricity markets. Appl. Energy 2020, 265, 114804. [Google Scholar] [CrossRef]
- Raza, F.; Tamoor, M.; Miran, S.; Arif, W.; Kiren, T.; Amjad, W.; Hussain, M.I.; Lee, G.-H. The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study. Energies 2022, 15, 1198. [Google Scholar] [CrossRef]
- Golmohamadi, H. Operational scheduling of responsive prosumer farms for day-ahead peak shaving by agricultural demand response aggregators. Int. J. Energy Res. 2021, 45, 938–960. [Google Scholar] [CrossRef]
- Aghajanzadeh, A.; Therkelsen, P. Agricultural demand response for decarbonizing the electricity grid. J. Clean. Prod. 2019, 220, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.; Baik, Y.-K.; Kim, D.D. Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming. Energies 2020, 13, 3863. [Google Scholar] [CrossRef]
- Tong, Y.; Kozai, T.; Nishioka, N.; Ohyama, K. Reductions in Energy Consumption and CO2 Emissions for Greenhouses Heated with Heat Pumps. Appl. Eng. Agric. 2012, 28, 401–406. [Google Scholar] [CrossRef]
- Chiriboga, G.; Capelo, S.; Bunces, P.; Guzmán, C.; Cepeda, J.; Gordillo, G.; Montesdeoca, D.E.; Carvajal, C.G. Harnessing of geothermal energy for a greenhouse in Ecuador employing a heat pump: Design, construction, and feasibility assessment. Heliyon 2021, 7, e08608. [Google Scholar] [CrossRef] [PubMed]
- Zeyad, M.; Ahmed, S.M.M.; Hossain, E.; Anubhove, M.S.T.; Hasan, S.; Mahmud, D.M.; Islam, S. Optimization of a Solar PV Power Plant with Poultry Demand Side Management (PoDSM) for Poultry Farm. In Proceedings of the 2021 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 1–3 December 2021; pp. 73–78. [Google Scholar] [CrossRef]
- Dew, J.J.W.; Jack, M.W.; Stephenson, J.; Walton, S. Reducing electricity demand peaks on large-scale dairy farms. Sustain. Prod. Consum. 2021, 25, 248–258. [Google Scholar] [CrossRef]
- Theofanous, E.; Kythreotou, N.; Panayiotou, G.; Florides, G.; Vyrides, I. Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus. Renew. Energy 2014, 71, 263–270. [Google Scholar] [CrossRef]
- Jeong, M.G.; Rathnayake, D.; Mun, H.S.; Dilawar, M.A.; Park, K.W.; Lee, S.R.; Yang, C.J. Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm. Sustainability 2020, 12, 9772. [Google Scholar] [CrossRef]
Household Appliances | Flexibility Targets | Ref. | |
---|---|---|---|
Thermostatically Controlled Appliances TCAs | Heat Pump | (1) Reduction of energy costs for heating of household buildings (2) Reduction of annual emission (CO2) (3) Reduction of energy consumption for heating system during peak hours | [98] |
Maximizing profit of buildings through trading flexibility in intraday markets | [99] | ||
(1) Minimization of life cycle cost (2) Reduction of environmental impacts of heat pumps and district heating | [100] | ||
Improving power system frequency control | [101] | ||
Refrigerator | (1) Minimization of household electricity bill (2) Reduction of peak load | [102] | |
Load shifting of electrical demand using cooling devices | [103] | ||
(1) Minimize electricity consumption cost of households (2) Regulation of peak demand in power systems | [104] | ||
(1) Cost saving of smart household appliances (2) Providing residential load for shifting to help balance demand and supply | [105] | ||
Electric Water Heater | (1) Minimization of electricity cost under TOU (2) Satisfying the comfort water temperature within the predefined bound | [106] | |
Minimization of cost function under Spanish electricity price tariff | [107] | ||
(1) Minimization of energy cost under day-ahead and real-time pricing (2) Maximization of residents’ comfort | [108] | ||
Cost saving for household to remote control electric water heater | [109] | ||
Non-Thermostatically Controlled Appliances Non-TCAs | Wet Appliances | (1) Minimization of energy cost (2) Maximization of renewable energy demand (3) Minimization of carbon emission | [110] |
Proposing compensation contract to increase flexibility of wet appliances | [111] | ||
Harness energy flexibility of buildings to flatten demand consumption | [112] | ||
Providing load balancing for power system and minimizing the energy cost | [113] | ||
(1) Minimizing energy consumption (2) Reduction of emission and environmental impacts (3) Reduction of peak demand | [114] | ||
(1) Flattening of peak demand (2) Meeting residents’ convenience | [115] | ||
Private Parking | Vehicle-to-Home (V2H) | (1) Increase energy efficiency of homes (2) Improvement of energy consumption pattern (3) Shift of peak demand | [116] |
(1) Increase electrification of off-grid smart homes (2) Reduction of investment cost on the electronification | [117] | ||
(1) Reduction of building peak demand (2) Increase profit of household (3) Reduction of emission production | [118] |
Industry | Key Objective(s) | Ref. |
---|---|---|
Cement Manufacturing | (1) Cost reduction (2) Emission reduction (3) Reduction of electricity cost | [125] |
Metal Smelting Industry | (1) Providing reserve for electricity market (2) Minimization of operation cost (3) Integration of flexibility into capacity market | [126] |
Pulp and Paper | Providing up-regulation for power markets | [127] |
Textile Industry | Energy- and cost-saving measures in industrial processes | [128] |
Food/Drink Industry | (1) Reduction of energy consumption (2) Reduction of emission production (3) Facilitate use of heat pumps in the industry | [129] |
Ceramics Industry | (1) Optimize energy cost (2) Increase energy efficiency (3) The industrial DRPs benefit the environment, economy, society | [130] |
Chemical Industry | (1) Improving grid operation, e.g., reliability, resilience (2) Making profit in the industry | [131] |
Oil Refinery Industries | Providing industrial load control in smart-grid operation | [132] |
Glass Manufacturing | (1) Making balance for power and gas (2) Reduction of energy consumption cost (3) Reduction of strain on power grids | [133] |
Data Centers | (1) Facilitate the integration of renewable energies to power grids (2) Providing peak-load shaving | [134] |
Industrial Parks and Zones | (1) Optimization of investment cost on industrial parks (2) Prevent imbalance of energy shifting | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golmohamadi, H. Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability 2022, 14, 7916. https://doi.org/10.3390/su14137916
Golmohamadi H. Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability. 2022; 14(13):7916. https://doi.org/10.3390/su14137916
Chicago/Turabian StyleGolmohamadi, Hessam. 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors" Sustainability 14, no. 13: 7916. https://doi.org/10.3390/su14137916
APA StyleGolmohamadi, H. (2022). Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability, 14(13), 7916. https://doi.org/10.3390/su14137916