
Citation: Golding, V.P.; Gharineiat,

Z.; Munawar, H.S.; Ullah, F. Crack

Detection in Concrete Structures

Using Deep Learning. Sustainability

2022, 14, 8117. https://doi.org/

10.3390/su14138117

Academic Editors: JeongWook Son,

Byungjoo Choi and Sungjoo Hwang

Received: 1 June 2022

Accepted: 30 June 2022

Published: 2 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Crack Detection in Concrete Structures Using Deep Learning
Vaughn Peter Golding, Zahra Gharineiat , Hafiz Suliman Munawar * and Fahim Ullah

School of Surveying and Built Environment, University of Southern Queensland, Springfield Central,
QLD 4300, Australia; vaughn.golding@gmail.com (V.P.G.); zahra.gharineiat@usq.edu.au (Z.G.);
fahim.ullah@usq.edu.au (F.U.)
* Correspondence: hafizsuliman.munawar@usq.edu.au

Abstract: Infrastructure, such as buildings, bridges, pavement, etc., needs to be examined periodically
to maintain its reliability and structural health. Visual signs of cracks and depressions indicate stress
and wear and tear over time, leading to failure/collapse if these cracks are located at critical locations,
such as in load-bearing joints. Manual inspection is carried out by experienced inspectors who require
long inspection times and rely on their empirical and subjective knowledge. This lengthy process
results in delays that further compromise the infrastructure’s structural integrity. To address this
limitation, this study proposes a deep learning (DL)-based autonomous crack detection method using
the convolutional neural network (CNN) technique. To improve the CNN classification performance
for enhanced pixel segmentation, 40,000 RGB images were processed before training a pretrained
VGG16 architecture to create different CNN models. The chosen methods (grayscale, thresholding,
and edge detection) have been used in image processing (IP) for crack detection, but not in DL. The
study found that the grayscale models (F1 score for 10 epochs: 99.331%, 20 epochs: 99.549%) had a
similar performance to the RGB models (F1 score for 10 epochs: 99.432%, 20 epochs: 99.533%), with
the performance increasing at a greater rate with more training (grayscale: +2 TP, +11 TN images;
RGB: +2 TP, +4 TN images). The thresholding and edge-detection models had reduced performance
compared to the RGB models (20-epoch F1 score to RGB: thresholding −0.723%, edge detection
−0.402%). This suggests that DL crack detection does not rely on colour. Hence, the model has
implications for the automated crack detection of concrete infrastructures and the enhanced reliability
of the gathered information.

Keywords: crack detection; convolutional neural network; image processing; deep learning; dam-
age detection

1. Introduction

Cracks in concrete structures are a common phenomenon associated with corrosion,
chemical deterioration, and the application of adverse loading. The appearance of these
cracks is a sign of stress, weakness, and wear and tear within the structure, leading to
possible failure/collapse [1,2]. The significance of a crack depends on its length, width,
depth, and location. Therefore, monitoring the structural health, reliability, and perfor-
mance is essential for the long-term serviceability of the infrastructure. Visual inspection is
the prevalent form of crack detection, which is a slow, labour-intensive task. The results
of these inspections rely on the skill, experience, and subjectivity of the inspector [3,4].
Further, such methods are time-consuming and often result in late assessments of cracks
near the unrepairable zone. To address this, modern methods aim to speed up the pro-
cess by replacing manual processes with more sophisticated, automated crack detection.
Accordingly, DL methods and computer vision approaches are being widely applied to
automate crack detection. One of the key approaches used for such automation is image
processing (IP) or aerial imagery. Automated crack detection using imagery reduces costs
and assessment time and increases the safety and objectivity of concrete inspections [5,6].

Sustainability 2022, 14, 8117. https://doi.org/10.3390/su14138117 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14138117
https://doi.org/10.3390/su14138117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0913-151X
https://orcid.org/0000-0001-8492-0274
https://orcid.org/0000-0002-6221-1175
https://doi.org/10.3390/su14138117
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14138117?type=check_update&version=1

Sustainability 2022, 14, 8117 2 of 25

The cracking phenomenon in concrete is complex, and it depends on a number of
factors such as rate of drying, amount of drying, tensile strength and strain, elasticity,
drying shrinkage, and degree of restraint. Concrete contains more water than needed for
hydration; therefore, shrinkage begins when concrete starts to dry. No cracks are developed
when concrete is unrestrained, but it is not possible to support structures without restraints.
Different types of crack are observed in concrete structures, such as plastic-shrinkage
cracking, map cracking, hairline cracking, pop-outs, scaling, spalling, D-cracking, offset
cracking, and diagonal corner cracking. The structural stability and durability are not
affected by most types of cracking; however, in extreme cases, it may be affected.

Researchers have explored automated crack detection in concrete infrastructures, em-
phasizing crack identification, categorization, crack length, and width measurement. The
most used methods of crack detection are image-based (thresholding, filtering, morpholog-
ical, skeletonization, etc.) [5] and machine learning (ML) (convolutional neural network
(CNN), fully convolutional network (FCN), random forest, etc.) [7,8]. However, not much
work is being carried out to investigate the impact of low-quality images on crack detection
or how the preprocessing of images can facilitate overcoming these impacts. Hence, this
research was carried out to investigate the effect of preprocessing images on pretrained
CNN models.

The two main methods of automatic crack detection have achieved varying degrees
of success. The DL methods of ML have demonstrated classification results above 90%,
while IP methods have achieved less than 80% [9,10]. This difference in accuracy has led to
DL methods becoming more common [7]. DL segmentation is the current trend in crack
detection, allowing the identification of pixels as cracks and therefore allowing for crack
size measurement [7]. Dung and Anh (2019) suggested that segmentation needs to be more
robust, and the impact of noisy crack-like features need to be reduced in order to increase
the measurement accuracy above 90%.

Improved DL methods have focused on new techniques, such as pretrained models
with smaller datasets, to achieve greater accuracy [10,11]. Many DL models, such as
CNN, use larger datasets to improve their results, while some researchers have proposed
other methods, such as NLP and RNN. Enhancing the relevant features and removing
redundant information can increase DL classification performance [12]. Bui et al. (2016)
found images converted to grayscale increased the performance of a CNN with object
recognition. Similarly, Xie and Richmond (2018) found that grayscale images improved the
performance of a CNN in lung disease classification. For crack detection, Shahriar and Li
(2020) proposed preprocessing the data to determine the image quality and improve results
by enhancing the imagery [13]. The following are the possible causes of cracks in concrete
structures, such as moisture, temperature, and the permeability of concrete, as shown in
Figure 1, below.

Sustainability 2022, 14, x FOR PEER REVIEW 2 of 27

The cracking phenomenon in concrete is complex, and it depends on a number of
factors such as rate of drying, amount of drying, tensile strength and strain, elasticity,
drying shrinkage, and degree of restraint. Concrete contains more water than needed for
hydration; therefore, shrinkage begins when concrete starts to dry. No cracks are devel-
oped when concrete is unrestrained, but it is not possible to support structures without
restraints. Different types of crack are observed in concrete structures, such as plastic-
shrinkage cracking, map cracking, hairline cracking, pop-outs, scaling, spalling, D-crack-
ing, offset cracking, and diagonal corner cracking. The structural stability and durability
are not affected by most types of cracking; however, in extreme cases, it may be affected.

Researchers have explored automated crack detection in concrete infrastructures,
emphasizing crack identification, categorization, crack length, and width measurement.
The most used methods of crack detection are image-based (thresholding, filtering, mor-
phological, skeletonization, etc.) [5] and machine learning (ML) (convolutional neural net-
work (CNN), fully convolutional network (FCN), random forest, etc.) [7,8]. However, not
much work is being carried out to investigate the impact of low-quality images on crack
detection or how the preprocessing of images can facilitate overcoming these impacts.
Hence, this research was carried out to investigate the effect of preprocessing images on
pretrained CNN models.

The two main methods of automatic crack detection have achieved varying degrees
of success. The DL methods of ML have demonstrated classification results above 90%,
while IP methods have achieved less than 80% [9,10]. This difference in accuracy has led
to DL methods becoming more common [7]. DL segmentation is the current trend in crack
detection, allowing the identification of pixels as cracks and therefore allowing for crack
size measurement [7]. Dung and Anh (2019) suggested that segmentation needs to be
more robust, and the impact of noisy crack-like features need to be reduced in order to
increase the measurement accuracy above 90%.

Improved DL methods have focused on new techniques, such as pretrained models
with smaller datasets, to achieve greater accuracy [10,11]. Many DL models, such as CNN,
use larger datasets to improve their results, while some researchers have proposed other
methods, such as NLP and RNN. Enhancing the relevant features and removing redun-
dant information can increase DL classification performance [12]. Bui et al. (2016) found
images converted to grayscale increased the performance of a CNN with object recogni-
tion. Similarly, Xie and Richmond (2018) found that grayscale images improved the per-
formance of a CNN in lung disease classification. For crack detection, Shahriar and Li
(2020) proposed preprocessing the data to determine the image quality and improve re-
sults by enhancing the imagery [13]. The following are the possible causes of cracks in
concrete structures, such as moisture, temperature, and the permeability of concrete, as
shown in Figure 1, below.

Figure 1. Possible causes of cracks in concrete structures. Figure 1. Possible causes of cracks in concrete structures.

Prano et al. (2022) developed an improved fracture approach to analyse the degra-
dation of vibration characteristics for reinforced concrete beams under progressive dam-
age [14]. The proposed framework was found to be consistent in the identification of

Sustainability 2022, 14, 8117 3 of 25

damage at increasing damage levels that were simulated by the proposed model. The
availability of mathematical models that can accurately detect damage, along with the
availability of consistent data, will help to assess damage detection techniques. Similarly,
De Maio et al. (2022) proposed an interelement fracture model based on the cohesive ap-
proach to simulate and investigate cracking behaviour in RC members exposed to tension
and flexural loads [15]. The proposed method was able to accurately predict crack width
and spacing.

IP techniques have been used to improve the performance of crack detection algo-
rithms. The most common of these techniques are thresholding and edge detection [5].
Preprocessing images can reduce noise and complex features or highlight features used in
DL models [5,14]. Therefore, the current study aims to determine if preprocessing images
can improve the performance of DL for crack detection. Preprocessed RGB crack images
with different IP techniques (grayscale, thresholding, and edge detection) were evaluated to
estimate if the techniques could improve CNN classification performance in crack detection
and gain valuable insights on the effects of processed imagery datasets on DL algorithms.

The objectives of the study are:

(i) To develop and validate a CNN suitable for crack detection;
(ii) To train the developed CNN using processed or unprocessed images, creating

different models;
(iii) To analyse relative performance between the trained models in crack detection.

The rest of the study is organized as follows. In Section 2, the background literature is
reviewed, and gaps are identified. The methodology for testing the preprocessing effects
on DL is elaborated in Section 3. The results obtained are summarized in Section 4 and
discussed in Section 5. Finally, Section 6 concludes the findings and recommends a future
research direction to investigate the effects of preprocessing on DL crack detection.

2. Background Literature

IP methods routinely used preprocessing techniques to increase the accuracy. These
include grayscaling, thresholding (binarization), smoothing, edge detection, and image
normalization. Many of these preprocessing techniques are standard IP techniques that
have been used to enhance crack identification methods [5]. The ML performance of
trained models and DL methods has recently become popular. However, these methods
have focused on increasing the data size to enhance performance instead of improving
IP [12,15]. Hence, this study focused on different IP methods and the impact of the quality
of images that can enhance the detection of cracks.

2.1. Literature Retrieval

A systematic method of literature retrieval was followed in this study. To retrieve
articles related to DL/ML technologies applied to crack detection, we first consulted the
primary sources: the official websites of journals and conferences. The websites chosen for
the study were PubMed, MedRxiv, MDPI, Elsevier, ScienceDirect, Scopus, Google Scholar,
WOS, and SSRN. The relevant articles were downloaded as PDFs and the corresponding
information was entered into Excel sheets. The VOSviewer software (Version 1.6.18, Centre
for Science and Technology Studies, Leiden University, Leiden, The Netherlands) tool
was used to visualize the bibliometric networks from different databases. Search phrases
to be used in the search engines of these websites were carefully designed to exhaust
the database of each website and retrieve a maximum number of relevant articles (see
Figure 2). For instance, the search phrases formulated for Category 1 (Cat-1) included
phrases like “cracks,” “concrete,” and “visual inspection.” The idea was to use various
sequences of keywords related to each category. Similarly, for Cat-2, the search phrases
included “automated crack detection,” “image processing,” and “deep learning.” For Cat-3,
we used specific keywords for each subcategory. These included “Machine learning,”
“CNN,” “grayscale”, “RGB”, “Otsu method”, and “Sobel filter.” As these research articles
were collected from numerous resources published in varying years, it was crucial to

Sustainability 2022, 14, 8117 4 of 25

define some screening criteria according to which the articles were retained so that only
recent and authentic articles were included in the study (Figure 3). For this purpose,
we defined a timeframe for the articles, ensured the uniqueness of each article, specified
authentic websites for their retrieval, and narrowed down the type of research article that
was required for the study. More precisely, we defined the following assessment criteria
for screening:

1. Published between 2010 and 2020;
2. English language only;
3. Article type must be a research article, review, or book chapter (letters, abstracts, and

comments were not required);
4. No duplicates.

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 27

phrases included “automated crack detection,” “image processing,” and “deep learning.”
For Cat-3, we used specific keywords for each subcategory. These included “Machine
learning,” “CNN,” “grayscale”, “RGB”, “Otsu method”, and “Sobel filter.” As these re-
search articles were collected from numerous resources published in varying years, it was
crucial to define some screening criteria according to which the articles were retained so
that only recent and authentic articles were included in the study (Figure 3). For this pur-
pose, we defined a timeframe for the articles, ensured the uniqueness of each article, spec-
ified authentic websites for their retrieval, and narrowed down the type of research article
that was required for the study. More precisely, we defined the following assessment cri-
teria for screening:
1. Published between 2010 and 2020;
2. English language only;
3. Article type must be a research article, review, or book chapter (letters, abstracts, and

comments were not required);
4. No duplicates.

Figure 2. Keywords found in the literature related to crack detection through advanced techniques. Figure 2. Keywords found in the literature related to crack detection through advanced techniques.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 27

Figure 3. Article screening methodology.

2.2. Image Processing Methods
IP is one of the main methods of automatic crack detection. The IP methods are reliant

on the pixel size of the images. Image-based crack detection commonly has four steps: (1)
image acquisition, (2) preprocessing techniques, (3) IP technique (filter, morphological
processing, binarization), and (4) crack quantification [1]. The architecture of this process
is shown below (Figure 4).

Figure 4. Image processing-based crack detection architecture.

The methods of IP are classified into different categories: integrated algorithm, mor-
phological approach, percolation-based method, and practical technique [5,16]. The inte-
grated algorithm method uses a preprocessing step to remove noise and enhance crack
features. It uses threshold segmentation for crack identification. The morphological ap-
proach method uses mathematical morphology and curvature evaluation to detect crack
structures. The percolation-based method determines if a focal pixel is part of a crack us-
ing the neighbourhood pixels to determine crack extents. While the practical technique
uses the manual identification of the endpoints of the crack, in which the automatic route-
finder algorithm determines the length and width of the cracks [15,16]. All the IP methods
preprocess images as the first step to improve the performance of the crack detection al-
gorithm.

The accuracy of these IP methods has been extensively studied. Most studies focus
on non-invasive methods such as thresholding and feature extraction. However, it has
been noted that there is very little consistency in specific IP methods [5]. Thresholding, for

Figure 3. Article screening methodology.

Sustainability 2022, 14, 8117 5 of 25

2.2. Image Processing Methods

IP is one of the main methods of automatic crack detection. The IP methods are reliant
on the pixel size of the images. Image-based crack detection commonly has four steps:
(1) image acquisition, (2) preprocessing techniques, (3) IP technique (filter, morphological
processing, binarization), and (4) crack quantification [1]. The architecture of this process is
shown below (Figure 4).

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 27

Figure 3. Article screening methodology.

2.2. Image Processing Methods
IP is one of the main methods of automatic crack detection. The IP methods are reliant

on the pixel size of the images. Image-based crack detection commonly has four steps: (1)
image acquisition, (2) preprocessing techniques, (3) IP technique (filter, morphological
processing, binarization), and (4) crack quantification [1]. The architecture of this process
is shown below (Figure 4).

Figure 4. Image processing-based crack detection architecture.

The methods of IP are classified into different categories: integrated algorithm, mor-
phological approach, percolation-based method, and practical technique [5,16]. The inte-
grated algorithm method uses a preprocessing step to remove noise and enhance crack
features. It uses threshold segmentation for crack identification. The morphological ap-
proach method uses mathematical morphology and curvature evaluation to detect crack
structures. The percolation-based method determines if a focal pixel is part of a crack us-
ing the neighbourhood pixels to determine crack extents. While the practical technique
uses the manual identification of the endpoints of the crack, in which the automatic route-
finder algorithm determines the length and width of the cracks [15,16]. All the IP methods
preprocess images as the first step to improve the performance of the crack detection al-
gorithm.

The accuracy of these IP methods has been extensively studied. Most studies focus
on non-invasive methods such as thresholding and feature extraction. However, it has
been noted that there is very little consistency in specific IP methods [5]. Thresholding, for

Figure 4. Image processing-based crack detection architecture.

The methods of IP are classified into different categories: integrated algorithm, mor-
phological approach, percolation-based method, and practical technique [5,16]. The inte-
grated algorithm method uses a preprocessing step to remove noise and enhance crack
features. It uses threshold segmentation for crack identification. The morphological ap-
proach method uses mathematical morphology and curvature evaluation to detect crack
structures. The percolation-based method determines if a focal pixel is part of a crack using
the neighbourhood pixels to determine crack extents. While the practical technique uses
the manual identification of the endpoints of the crack, in which the automatic route-finder
algorithm determines the length and width of the cracks [15,16]. All the IP methods prepro-
cess images as the first step to improve the performance of the crack detection algorithm.

The accuracy of these IP methods has been extensively studied. Most studies focus
on non-invasive methods such as thresholding and feature extraction. However, it has
been noted that there is very little consistency in specific IP methods [5]. Thresholding,
for example, has used very simple methods, such as being fixed to 0.5 or halving the
maximum image brightness; this varies in more advanced methods, such as Otsu and
Niblack [5,17,18].

2.2.1. Grayscaling and Thresholding

Thresholding is the most common method used in IP for crack detection [5,19,20].
Thresholding converts a grayscale image to black and white. Grayscale images have
values/brightness ranging from 0 (black) to 255 (white). Each pixel brightness is compared
to a threshold value. The pixel is converted to black if the brightness is below the threshold
and white if it is above the threshold (see Figure 5) [17,21]. The grayscale conversion method
varies in different studies, but the common methods used are the average, luma, and
luminance [22]. Thresholding is used to distinguish cracks from other background defects.

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 27

example, has used very simple methods, such as being fixed to 0.5 or halving the maxi-
mum image brightness; this varies in more advanced methods, such as Otsu and Niblack
[5,17,18].

2.2.1. Grayscaling and Thresholding
Thresholding is the most common method used in IP for crack detection [5,19,20].

Thresholding converts a grayscale image to black and white. Grayscale images have val-
ues/brightness ranging from 0 (black) to 255 (white). Each pixel brightness is compared to
a threshold value. The pixel is converted to black if the brightness is below the threshold
and white if it is above the threshold (see Figure 5) [17,21]. The grayscale conversion
method varies in different studies, but the common methods used are the average, luma,
and luminance [22]. Thresholding is used to distinguish cracks from other background
defects.

Figure 5. Schematic demonstration of image binarization using 3 × 3 windows.

2.2.2. Edge Detection
Edge detection methods are based on filters in an IP algorithm to enhance or detect

edges. Cracks within a two-dimensional image are defined as edges or a discontinuity in
the grayscale intensity field [9]. A comparison of different edge detectors, their opera-
tional method, and advantages, along with limitations, is provided in Table 1, below.

Table 1. Advantages and limitations of edge detection methods.

Edge Detector Method Advantages Limitations References
Roberts

Gradient-Based

- Easy and simple computa-
tion.

- Edges are detected along
with their orientation.

- More sensitive to noise.
- Detection of edges is inaccu-

rate.
- Less reliable.

[23] Sobel

Prewitt

Canny Gaussian-Based
- Improved signal-to-noise ra-

tio.
- Slow and complex.
- False zero-crossing. [16]

Figure 5. Schematic demonstration of image binarization using 3 × 3 windows.

Sustainability 2022, 14, 8117 6 of 25

2.2.2. Edge Detection

Edge detection methods are based on filters in an IP algorithm to enhance or detect
edges. Cracks within a two-dimensional image are defined as edges or a discontinuity in
the grayscale intensity field [9]. A comparison of different edge detectors, their operational
method, and advantages, along with limitations, is provided in Table 1, below.

Table 1. Advantages and limitations of edge detection methods.

Edge Detector Method Advantages Limitations Reference

Roberts
Gradient-Based

- Easy and simple computation.
- Edges are detected along with

their orientation.

- More sensitive to noise.
- Detection of edges is inaccurate.
- Less reliable.

[23]
Sobel

Prewitt

Canny Gaussian-Based

- Improved signal-to-noise ratio.
- Suitable for noisy images, i.e., more sensitive

to noisy pixels.
- Accurate.

- Slow and complex.
- False zero-crossing. [16]

LoG Gradient-Based

- The detection of edges and their orientation is
simple due to the approximation of gradient
magnitude is simple.

- The characteristics are fixed in all directions.
- Testing wide area around the pixel is possible.

- Malfunctioning at the corners,
curves, and where the gray level
intensity function varies.

- The magnitude of edges degrades
as noise increases.

[9]

DWT Wavelet-Based
- More accurate than other methods.
- Less computation.

- Application-oriented.
- Complicated as compared to

traditional methods.
[24]

Watershed Gradient-Based

- Closed contours.
- Less computation time.
- Fast, simple, and intuitive.
- Produces a complete division of the image in

separated regions.

- Over segmentation.
- Under segmentation. [25]

2.3. Traditional Machine Learning (ML) Methods

Traditional ML methods use a predefined feature extraction stage before training the
models. The most common traditional ML methods are support vector machines (SVM),
artificial neural networks (ANN), random forest, clustering, Bayesian probability, and
naive Bayes fusion [7,25]. Traditional ML methods have been used for both crack detection
and IP with optimal parameters. These are also commonly used for predefined feature
extraction [7]. However, they cannot deal with large quantities of datasets. The limitation
of traditional ML methods is that they cannot learn more complex features and cannot deal
with the complex information within images, such as background pavement with different
lighting [7,26].

2.4. Deep Learning-Convolutional Neural Network (CNN)

The most common method of DL for crack detection is CNN. CNNs have been
shown to outperform edge detection and ML classifiers [9] (Table 2). Pretrained CNNs
have previously demonstrated an accuracy of over 98% for crack/non-crack detection.
However, the CNN can only identify the image with the crack, not the crack as a pixel or
feature [27,28].

Yang et al. (2019) added thermal images of heated sheet metal to a CNN to deter-mine
any improvement in crack detection. It was noted that red–green–blue (RGB) could not
detect steel cracks covered in pollutants or internal cracks. However, the comparison
with the traditional visual method was not carried out to measure the effectiveness of
the thermal data. Bui et al. (2016) compared the output of grayscale images to RGB with
different ML classifiers (CNN, SVM, and random forest). It was found that the grayscale
CNN outperformed other artificial intelligence classifiers. It was also shown the grayscale
CNN had a similar accuracy, using 128 to 300 filters. Zhang et al. (2017) demonstrated

Sustainability 2022, 14, 8117 7 of 25

the feasibility of CrackNet (a form of CNN). The CrackNet CNN is different than other
CNNs, as it uses line filters to enhance the contrast between cracks and the background for
preprocessing. The CrackNet also has no pooling layers to remove the downsampling. The
study verified that the CrackNet CNN is more effective than SVM and non-ML methods.
Further, the pooling layers may not assist in crack detection. However, a comparison
of CrackNet CNN to a competing CNN method to demonstrate improvement was not
carried out.

Table 2. Comparison of CNN with other methods.

Factors CNN NLP RNN

Parameter-Sharing Yes No Yes
Recurrent Connections No No Yes

Data Image Data Tabular Data Sequence Data (Timeseries, Text, Audio)
Vanishing and Exploding Gradient Yes Yes Yes

Spatial Relationship Yes No No

Fang et al. (2020) combined two CNNs and Bayesian probability to investigate the
reduction in the signal-to-noise ratio (SNR). This increased the crack detection but reduced
the recall. Simple thresholding (0.5) used in the Bayesian probability was identified as a
source of problems. Hence, there is a lack of direct comparison to improve CNNs using
preprocessing methods. The comparison of CNN with other methods is demonstrated in
Table 2. On comparison with other techniques, it is evident that CNN has parameter-sharing
and spatial relationships, along with vanishing and exploding gradients. The exploding
and disappearing gradient issues often arise when gradient-based learning methods are
used. To address these problems, different approaches, such as ReLU, are used.

2.5. Evaluating Classification

Different evaluation metrics have been used for crack detection. Some examples of this
are shown in Table 3. The F1 score and accuracy are the most used methods of evaluating
the classification systems for crack detection [7].

Accuracy is the number of correctly predicted instances over the total instances and
is a favoured performance metric. However, unbalanced dataset accuracy can still be
used as a useful metric, but it can become an unreliable measure of model performance.
Many machine learning models are designed around the assumption of balanced class
distribution and always predict the majority class. For example, a class with a much larger
sample will produce an overoptimistic estimation of the majority class. An unbalanced
dataset makes accuracy an unreliable metric [29,30]. Therefore, for imbalanced datasets, it
is better to use alternative metrics to summarize model performance.

The F1 score is one of the most widely used metrics in ML studies. This includes both
binary and multiclass classification. It is defined as the harmonic mean of precision and re-
call. The F1 score ranges from zero to one. The minimum value is reached when no positive
samples are classified, and the maximum value is reached when there are no false negatives
or positives. The F1 score is independent of true negative results [29–32]. Therefore, the
true negatives will have a lesser impact on the viability of a crack detection model.

Table 3. Previous studies’ methods of crack detection and measurement.

Error Method Type Preprocessing Reference

1~2%
(Crack length/width) CNN Deep learning (R-CNN) None [1]

<11% length NiBlack, Sauvola, Wolf, NICK, Bernsen Image processing Grayscale [17]

<10% width Global analysis + binarization Image processing Terrestrial laser scanning
(TLS), orthorectification [3]

mAP 95.54% CNN Deep learning (R-CNN) Thermally excited
infrared images [33]

Sustainability 2022, 14, 8117 8 of 25

Table 3. Cont.

Error Method Type Preprocessing Reference

Sensitivity: 93% Random forest Traditional machine learning Binarization [34]

F1:73–99% CNN (7 pretrained CNNs) Deep learning None [35]

F1: 91.9% FCN crack segmentation Deep learning (VGG16 pretrained) None [36]

False discovery
rate: 3.86% Template matching and threshold Image processing Convert to 3D with fast

average reconstruction [37]

F1: >87% CNN (multiscale fusion) Deep learning (SegNet pretrained) None [38]

AUC: 96.8% Naive Bayes data fusion scheme CNN Deep learning and traditional
machine learning None [39]

F1: >80% CNN Deep learning (AlexNet pretrained) Edge detection [9]

F1: >0.79, length
range: 221.82% FCN crack segmentation Deep learning (VGG19 pretrained) None [33]

F1: 91.7% FCN pixel detection Deep learning (VGG16 pretrained) Pixels annotated (crack) [27]

F1: 90% FCN Deep learning (U-Net pretrained) Crack-labelled,
Adam optimization [40]

Best F1: 92.6%,
others: >72.3%

Faster R-CNN, DCNN, and
Bayesian probability

Deep learning (VGG16 and ResNet101)
and traditional machine learning

Semiautomatic crack
annotation [41]

F1: 88.86% CNN Deep learning (CrackNet CNN) Line filters
(“feature extractor”) [42]

ACC: >87.9% CNN Deep learning (deep CNN) Image annotation [43]

Realization of
automated system Agglomerative hierarchical clustering Traditional machine learning Removal of

distortion, thresholding [44]

F1: >89%, Pr: >91%, CNN Deep learning Increase ratio of sample (1:3) [45]

Distance Error:
7.5%–8.5% Gaussian colour distribution Traditional machine learning Particle filtering [46]

F1: 97%,
Pr: 95.5%

Various parametric, nonparametric,
clustering, one-class classifiers

Traditional machine learning and
image processing

Smoothing, white lane line
detection, image

normalization, saturation
[18]

The existing research has investigated and established how these preprocessing meth-
ods affect IP for crack detection, but not as much on DL. Studies have been focused on
novel approaches and combining IP methods to measure the cracks. Studies have rarely
determined if preprocessing image methods influence DL classification performance. These
methods were explored to improve IP crack detection techniques to minimize noise and
complex features and reduce computational cost. This gap was identified by Shahriar and
Li (2020) [13,47], who proposed a preprocessing method. The paper proposed using a PAS-
CAL Visual Object Classes Challenge (PASCAL VOC) dataset to determine the appropriate
preprocessing method, focusing on denoising. The current study aims to investigate the
general preprocessing methods to determine if there is a tangible impact on CNN outputs.

3. Methodology

The method adopted in the current study can be categorized into four stages: study
dataset collection, IP, transfer learning, and model analysis. Figure 6 shows the overview
of the method used for the study, which is explained subsequently.

Sustainability 2022, 14, 8117 9 of 25

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 27

Figure 6. Flowchart of the methodology.

3.1. Dataset Collection
The dataset size and content greatly affect the performance of the models. Smaller

images reduce the data size, increasing the training speed. On the other hand, images that
are too small do not contain enough data. VGG16 architecture has a default input size of
224 × 224, but can accommodate slightly larger images. The publicly available “Concrete
Crack Images for Classification” dataset [48,49] was used for this study. This dataset con-
tains 40,000 images with RGB channels at 227 × 227 pixels. The images were arranged into
positive (crack) and negative (non-crack) categories. Each category contains 20,000 im-
ages. [35] The Özgenel (2019) dataset images (jpeg) were generated by cropping patches
(227 × 227 pixels) from 458 (4032 × 3024 pixels) images of the Middle East Technical Uni-
versity buildings, Turkey.

The images were taken perpendicular to the surface at a one-meter distance. The im-
ages contain a variety of surface finishes and illumination conditions. The original dataset
was randomly split into training (70%: 28,000), validation (15%: 6000), and test (15%: 6000)
datasets, following Özgenela and Sorguç (2018). The training dataset was used to train the
model and the validation dataset was used during training to monitor the model learning
curve. The test dataset was used to evaluate the model’s performance [35]. A balanced
number of images was retained in each category. The ratio of positive to negative images
has been shown to influence training results. The data need to be evened to reduce the
bias towards non-cracks. This occurs as the CNN obtains high accuracy with the one
value. With a natural ratio (e.g., 1:65), the network will overestimate the non-crack images.
The general ratio was 1:3 (crack:non-crack) [45].

Figure 6. Flowchart of the methodology.

3.1. Dataset Collection

The dataset size and content greatly affect the performance of the models. Smaller
images reduce the data size, increasing the training speed. On the other hand, images
that are too small do not contain enough data. VGG16 architecture has a default input
size of 224 × 224, but can accommodate slightly larger images. The publicly available
“Concrete Crack Images for Classification” dataset [48,49] was used for this study. This
dataset contains 40,000 images with RGB channels at 227 × 227 pixels. The images were
arranged into positive (crack) and negative (non-crack) categories. Each category contains
20,000 images. [35] The Özgenel (2019) dataset images (jpeg) were generated by cropping
patches (227× 227 pixels) from 458 (4032× 3024 pixels) images of the Middle East Technical
University buildings, Turkey.

The images were taken perpendicular to the surface at a one-meter distance. The
im-ages contain a variety of surface finishes and illumination conditions. The original
dataset was randomly split into training (70%: 28,000), validation (15%: 6000), and test
(15%: 6000) datasets, following Özgenela and Sorguç (2018). The training dataset was used
to train the model and the validation dataset was used during training to monitor the model
learning curve. The test dataset was used to evaluate the model’s performance [35]. A
balanced number of images was retained in each category. The ratio of positive to negative
images has been shown to influence training results. The data need to be evened to reduce
the bias towards non-cracks. This occurs as the CNN obtains high accuracy with the one
value. With a natural ratio (e.g., 1:65), the network will overestimate the non-crack images.
The general ratio was 1:3 (crack:non-crack) [45].

3.2. Image Processing

The images were processed separately once imported using TensorFlow and were
converted from images to a sequence of elements. Next, the images were processed using
the SciKit Image package in Python 3.8 using a separate code. Crack detection through

Sustainability 2022, 14, 8117 10 of 25

IP methods uses various image preprocessing techniques to enhance crack features. This
is achieved by simplifying the data (grayscale, thresholding) or removing errant data
(smoothing to reduce noise).

DL methods do not typically use image preprocessing techniques, as these reduce
the amount of data for the algorithm to learn [12]. The images were processed to obtain
four datasets: RGB (control), grayscale (luminance), edge detection (Sobel filter), and
binarization (Otsu’s method). Figure 7 demonstrates the effect of the IP methods used on
crack images.

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 27

3.2. Image Processing
The images were processed separately once imported using TensorFlow and were

converted from images to a sequence of elements. Next, the images were processed using
the SciKit Image package in Python 3.8 using a separate code. Crack detection through IP
methods uses various image preprocessing techniques to enhance crack features. This is
achieved by simplifying the data (grayscale, thresholding) or removing errant data
(smoothing to reduce noise).

DL methods do not typically use image preprocessing techniques, as these reduce
the amount of data for the algorithm to learn [12]. The images were processed to obtain
four datasets: RGB (control), grayscale (luminance), edge detection (Sobel filter), and bi-
narization (Otsu’s method). Figure 7 demonstrates the effect of the IP methods used on
crack images.

Figure 7. Comparison of IP methods (RGB, grayscale, Otsu method, and Sobel filter) used on a crack
image.

3.2.1. Control (RGB)
Standard colour images were used in CNN image categorization. These images fea-

tured values for each of the primary colours on the spectrum: red, green, and blue, also
known as 3-channels (control RGB). A combination of these three can produce all possible
colour pallets. The image is made up of multiple pixels, with every pixel consisting of
three different values for the RGB channels. The values of these channels and the channels
of the surrounding pixels were used to identify cracks.

3.2.2. Grayscale (Luminance)
Grayscale is the conversion of an RGB image into a brightness scale. This method

reduces the amount of data in each image by a third by combining the 3-channels into 1-

Figure 7. Comparison of IP methods (RGB, grayscale, Otsu method, and Sobel filter) used on a
crack image.

3.2.1. Control (RGB)

Standard colour images were used in CNN image categorization. These images
featured values for each of the primary colours on the spectrum: red, green, and blue, also
known as 3-channels (control RGB). A combination of these three can produce all possible
colour pallets. The image is made up of multiple pixels, with every pixel consisting of three
different values for the RGB channels. The values of these channels and the channels of the
surrounding pixels were used to identify cracks.

3.2.2. Grayscale (Luminance)

Grayscale is the conversion of an RGB image into a brightness scale. This method
reduces the amount of data in each image by a third by combining the 3-channels into
1-channel, thereby reducing the image size. This reduction in image size allows for faster
training for the algorithm and identification of the cracks in images. The luminous efficiency
of each colour (red, green, and blue) is different. Green appears brightest, and blue appears
darkest. Poynton (1997) defines the weights to compute true Commission international de

Sustainability 2022, 14, 8117 11 of 25

l’éclairage (CIE) luminance (Y) on contemporary monitors from linear red (R), green (G),
and blue (B) values using Equation (1):

Y = 0.2125R + 0.7154G + 0.0721B (1)

3.2.3. Edge Detection (Sobel Filter)

The Sobel filter is one of the most widely used IP methods for crack detection [1,9,33,46].
It is a gradient-based method that looks for strong changes in the first derivative of an
image. The Sobel edge detector uses a pair of 3 × 3 convolution masks, one estimating the
gradient in the x-direction and the other in the y-direction. It is commonly used for both
edge detection and eliminating residual noise in IP-based crack detection [5]. The Sobel
filter is described using Equations (2)–(4) [9]:

Ei,j =
m

∑
k=1

n

∑
L=1

I(i + k− 1, j + L− 1) K(k,L) (2)

where

Ei,j = sum of the element by element products as a convoluted image

Ei,j dimensions are (M−m + 1)× (N − n + 1)

I = image intensity (dimension M× N)

K =
kernel
f ilter

(dimension m× n)

KSx =

−1 0 1
−2 0 2
−1 0 1

 (3)

KSy =

 1 2 1
0 0 0
−1 2 −1

 (4)

where
KSx = Sobel f ilter in x direction

KSy = Sobel f ilter in y direction

3.2.4. Thresholding/Binarization (Otsu Method)

Otsu’s method is a common thresholding technique used in many IP methods [5,34]. It
is a form of automatic image thresholding. This method is based on the idea that an image
has two groups: the background image and the target. The Otsu method determines these
two groups using a between-class variance. The variance in the brightness distribution is a
measure of homogeneity. This determines the threshold value. Thresholding is a method
used to enhance crack features for morphological algorithms in IP crack detection [5].
Talab et al. (2016) define the algorithm for Otsu’s method using Equation (5) [50]:

σ2
b = Arg Max0≤t≤m−1

[
ω0(t)(µ0(t)− µ)2 + ω1(t)(µ1(t)− µ)2

]
(5)

where
σ2

b = Between class variance

µ = Total mean = ω0(t)µ0(t) + ω1(t)µ1(t)

t = gray value threshold

ω0 = Target pixel ratio in image

Sustainability 2022, 14, 8117 12 of 25

µ0 = Target mean

ω1 = Background pixel ratio in image

µ1 = Background mean

3.3. The Proposed CNN Model

The current study was performed using pretrained CNN architecture. Transfer learn-
ing with pretrained architecture has proven to increase the efficiency and accuracy of crack
classifiers [9]. Furthermore, VGG16 is the most widely used pretrained architecture in crack
detection and on ImageNet [36,51].

The proposed CNN architecture consists of convolutional blocks and a fully connected
layer (see Figure 8). Each convolutional block consists of a convolutional layer, activation
unit, and pooling layer. The convolutional layer performs a convolution operation on
the output of the previous layer using kernels/filters [36,52,53]. The kernel is a matrix of
weights used across the image to extract classification features. In a CNN model, the data
have the spatial structure Xl ∈ (Hl ×Wl × Cl). This is a 3D array or tensor. The spatial
dimensions are height (H) and width (W). The third dimension (C) is the number of
feature channels. (x) is an im2row operator extracting W ′ × H′ patches from map x, storing
them as rows of (H “W”) × (H′W ′D). Vedaldi et al. (2015) provide the convolutional
matrix formula using Equation (6):

vec y = vec (φ(x)F),
dz
dF

= φ(x)T dz
dY

,
dz
dX

= φ

(
dz
dX

FT
)

(6)

where
F ∈ R(H′W ′D)×K

Y ∈ R(H “W”)×K

F ∈ R(HW)×D

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 27

𝑀𝑎𝑡𝑟𝑖𝑥 𝑆(𝑥) ∈ ሼ0,1ሽ(ு “ௐ”)௫(ுௐ)
The final sections are a fully connected layer and a softmax layer. The fully connected

layer is connected to all previous layers’ activations. The activations are computed with
matrix multiplication, followed by a bias offset [54]. The loss function is a method to cor-
rect the difference between the predicted and true outcomes in training. The most com-
mon loss function is Softmax [55]. Vedaldi et al., (2015) define the softmax function using
Equation (9): 𝑑𝑧𝑑𝑋 = 𝑌 ⊙ ൬𝑑𝑧𝑑𝑌 − ൬𝑑𝑧𝑑𝑌 ⊙ Y൰ 11்൰ (9)

Figure 8. Original network architecture of VGG16 for image classification.

3.3.1. Model Development
The computing was performed on a laptop (RAM: 16GB, CPU: AMD Ryzen 7 4800H

with Radeon Graphics 2.90 GHz, GPU: NVIDIA GeForce GTX 1650 Ti, 64-bit operating
system) to develop the model. The code was programmed using Anaconda Spyder 4.1.5
(Python 3.8) with Keras 2.4 and TensorFlow 2.5 python packages. This allowed any system
with Python and the appropriate PIPs or Python Notebook to run the CNN.

The Keras package contains many DL architectures. The Keras VGG16 model is based
on the model proposed by Simonyan and Zisserman (2014) [56]. Max pooling was used to
achieve the best results in crack detection [57]. The model was trained using an Adam
optimizer and binary cross-entropy for loss [35]. The training epochs were also deter-
mined. One epoch trained the model on all images, with each step being one batch. The
recommended batch size of 32 images was used. Two training epochs were used: 10-
epochs has previously approached convergence with RGB images [35], and 20-epochs to
allow more time to compensate for single-channel images.

The model contained several layers, as shown in Figure 9. The input layer defined
the input parameters for the model: location, labels, number of channels, the dataset’s
name, and size (pixels). The sequential layer provided the data augmentation. The data
were augmented using a rotation (0.2/2π) and horizontal and vertical flipping to increase
data size and remove directional bias. Finally, the normalization layer normalized the data
(from 0–255) to allow the use of ImageNet weights. The ImageNet weights used for pre-
training were from −1 to +1. The VGG16 architecture was then used in pretraining.

Figure 8. Original network architecture of VGG16 for image classification.

The activation unit is a function that determines if the block will be activated. The
most common function used is the rectified linear unit (ReLU). Vedaldi et al. (2015)’s guide
to CNNs in matrices states the ReLU function using Equation (7):

vec y = diag s vec x,
dz

d vec x
= diag s

dz
d vec y

(7)

Sustainability 2022, 14, 8117 13 of 25

where
s = [vec x > 0] ∈ {0, 1}HWD (indicator vector)

The pooling layer reduces the number of parameters and computation through down-
sampling. There are two methods used for pooling: max pooling and average pooling. Max
pooling is more commonly presented in Equation (8) (Vedaldi et al. (2015)):

vec y = S(x) vecx,
dz

d vec x
= S(x)T dz

d vec y
(8)

where
Matrix S(x) ∈ {0, 1}(H “W” D)x(HWD)

The final sections are a fully connected layer and a softmax layer. The fully connected
layer is connected to all previous layers’ activations. The activations are computed with
matrix multiplication, followed by a bias offset [54]. The loss function is a method to
correct the difference between the predicted and true outcomes in training. The most
common loss function is Softmax [55]. Vedaldi et al., (2015) define the softmax function
using Equation (9):

dz
dX

= Y �
(

dz
dY
−
(

dz
dY
� Y

)
11T
)

(9)

3.3.1. Model Development

The computing was performed on a laptop (RAM: 16GB, CPU: AMD Ryzen 7 4800H
with Radeon Graphics 2.90 GHz, GPU: NVIDIA GeForce GTX 1650 Ti, 64-bit operating
system) to develop the model. The code was programmed using Anaconda Spyder 4.1.5
(Python 3.8) with Keras 2.4 and TensorFlow 2.5 python packages. This allowed any system
with Python and the appropriate PIPs or Python Notebook to run the CNN.

The Keras package contains many DL architectures. The Keras VGG16 model is
based on the model proposed by Simonyan and Zisserman (2014) [56]. Max pooling was
used to achieve the best results in crack detection [57]. The model was trained using an
Adam optimizer and binary cross-entropy for loss [35]. The training epochs were also
determined. One epoch trained the model on all images, with each step being one batch.
The recommended batch size of 32 images was used. Two training epochs were used:
10-epochs has previously approached convergence with RGB images [35], and 20-epochs to
allow more time to compensate for single-channel images.

The model contained several layers, as shown in Figure 9. The input layer defined the
input parameters for the model: location, labels, number of channels, the dataset’s name,
and size (pixels). The sequential layer provided the data augmentation. The data were
augmented using a rotation (0.2/2π) and horizontal and vertical flipping to increase data
size and remove directional bias. Finally, the normalization layer normalized the data (from
0–255) to allow the use of ImageNet weights. The ImageNet weights used for pretraining
were from −1 to +1. The VGG16 architecture was then used in pretraining.

The pooling layer converted the base model output shape to vectors. The dropout
function dropped out filters during training to regulate the results. Finally, the dense
classifier layer combined the models’ values into a binary result. This result was used to
predict the label of the crack. A non-crack was labelled 0, while a crack was labelled 1. The
program rounded down to predict a crack; a function was created to convert numbers ≥0.5
to 1. This allowed the program to determine if an image was a crack or not.

Sustainability 2022, 14, 8117 14 of 25
Sustainability 2022, 14, x FOR PEER REVIEW 15 of 27

Figure 9. RGB model used as displayed by Python; the VGG16 model layer has been expanded to
show the CNN.

The pooling layer converted the base model output shape to vectors. The dropout
function dropped out filters during training to regulate the results. Finally, the dense clas-
sifier layer combined the models’ values into a binary result. This result was used to pre-
dict the label of the crack. A non-crack was labelled 0, while a crack was labelled 1. The
program rounded down to predict a crack; a function was created to convert numbers ≥0.5
to 1. This allowed the program to determine if an image was a crack or not.

3.3.2. Model Analysis

Figure 9. RGB model used as displayed by Python; the VGG16 model layer has been expanded to
show the CNN.

3.3.2. Model Analysis

In analysing the model, the classifiers were evaluated on their ability to predict
classes. In each instance, the data had a class label, either positive or negative (p, n). The
classification model predicted a class as yes or no (Y, N). A classifier with two discrete classes
produced four results for each instance. These results are summarized on a confusion matrix
(see Figure 10a) [58].

Sustainability 2022, 14, 8117 15 of 25

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 27

In analysing the model, the classifiers were evaluated on their ability to predict clas-
ses. In each instance, the data had a class label, either positive or negative (p, n). The clas-
sification model predicted a class as yes or no (Y, N). A classifier with two discrete classes
produced four results for each instance. These results are summarized on a confusion ma-
trix (see Figure 10a) [58].

(a)

(b)

Figure 10. (a) Confusion matrix. (b) Comparison of four approaches with ROC curves.

Whereas a false positive relates to values incorrectly predicted an actual positive, i.e.,
negative values predicted as positive, false negatives relate to positive values predicted as
negative, while true positive and true negative are values that are predicted correctly. The
classification performance was evaluated using five evaluation criteria: accuracy (𝐴𝐶𝐶),
true positive rate (𝑇𝑃𝑅), true negative rate (𝑇𝑁𝑅), positive predictive value (𝑃𝑃𝑉), nega-
tive predictive value (𝑁𝑃𝑉), and F1 score. The F1 score is the harmonic mean of the data.
Dorafshan et al. (2018) state the formula to evaluate the classification based on the men-
tioned criteria using Equations (10)–(15): 𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (10)

𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (11)

𝑇𝑁𝑅 = 𝑇𝑁𝐹𝑃 + 𝑇𝑁 (12)

𝑃𝑃𝑉 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (13)

Figure 10. (a) Confusion matrix. (b) Comparison of four approaches with ROC curves.

Whereas a false positive relates to values incorrectly predicted an actual positive, i.e.,
negative values predicted as positive, false negatives relate to positive values predicted
as negative, while true positive and true negative are values that are predicted correctly.
The classification performance was evaluated using five evaluation criteria: accuracy
(ACC), true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV),
negative predictive value (NPV), and F1 score. The F1 score is the harmonic mean of the
data. Dorafshan et al. (2018) state the formula to evaluate the classification based on the
mentioned criteria using Equations (10)–(15):

ACC =
TP + TN

TP + FP + TN + FN
(10)

TPR =
TP

TP + FN
(11)

TNR =
TN

FP + TN
(12)

PPV =
TP

TP + FP
(13)

NPV =
TN

TN + FN
(14)

F1 =
2TP

2TP + FN + FP
(15)

Sustainability 2022, 14, 8117 16 of 25

The formulas were all created using the same four values: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) [23]. This allowed the CNN to
be properly evaluated based on the classifications.

Recall (TPR and TNR) is the ability of the CNN to find all relevant category cases
within the data. Precision (PPV and NPV) is the ability of the CNN to identify only the
correct category. The F1 score is preferred, as it reduces the effect of extreme results in
either precision or recall, being the harmonic mean of both. The results of all models were
compared to the control (RGB) to determine if there was any improvement, as subsequently
presented. Figure 10b shows the difference between ROC curves in four approaches. The
ROC curve of the grayscale method was higher than the others.

4. Results

Different CNN models were created using transfer learning to generate eight models
(four types of images at two training times). The models produced confusion matrices,
allowing the performance to be compared and evaluated. The results of the confusion
matrices generated using the test data (6000 sample images) and the derived metrics
are explained in this section. The validation data were used to train the model. The
model training accuracy was plotted at each epoch to visualize the training progress and
depict the model improvement during training (see Figure 11). The models showed stark
improvement in the first two epochs, followed by smaller increments.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 27

𝑁𝑃𝑉 = 𝑇𝑁𝑇𝑁 + 𝐹𝑁 (14)

F1 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (15)

The formulas were all created using the same four values: true positive (𝑇𝑃), true
negative (𝑇𝑁), false positive (𝐹𝑃), and false negative (𝐹𝑁) [23]. This allowed the CNN to
be properly evaluated based on the classifications.

Recall (𝑇𝑃𝑅 and 𝑇𝑁𝑅) is the ability of the CNN to find all relevant category cases
within the data. Precision (𝑃𝑃𝑉 and 𝑁𝑃𝑉) is the ability of the CNN to identify only the
correct category. The F1 score is preferred, as it reduces the effect of extreme results in
either precision or recall, being the harmonic mean of both. The results of all models were
compared to the control (RGB) to determine if there was any improvement, as subse-
quently presented. Figure 10b shows the difference between ROC curves in four ap-
proaches. The ROC curve of the grayscale method was higher than the others.

4. Results
Different CNN models were created using transfer learning to generate eight models

(four types of images at two training times). The models produced confusion matrices,
allowing the performance to be compared and evaluated. The results of the confusion ma-
trices generated using the test data (6000 sample images) and the derived metrics are ex-
plained in this section. The validation data were used to train the model. The model train-
ing accuracy was plotted at each epoch to visualize the training progress and depict the
model improvement during training (see Figure 11). The models showed stark improve-
ment in the first two epochs, followed by smaller increments.

Figure 11. (a–d): The 10-epoch model training accuracy at each epoch demonstrates model accuracy
at each training epoch.

Figure 11. (a–d): The 10-epoch model training accuracy at each epoch demonstrates model accuracy
at each training epoch.

The RGB data were selected as the control for testing purposes. However, the pre-
trained VGG16 model only had access to pretrained RGB weights. This was exaggerated as

Sustainability 2022, 14, 8117 17 of 25

the RGB weights were designed for three channels (red, green, blue), while the processed
images had only one (brightness). Therefore, the RGB results were expected to improve
performance, depending on the model’s reliance on colour.

4.1. 10-Epoch Training

The initial objective of the study was to determine if processing images could improve
the performance of DL. For this purpose, the initial test was performed using 10 epochs of
training. It was decided to train the data for 10 epochs as this is sufficient for convergence
with many pretrained networks [35].

The confusion matrices (see Figure 12) provide a full picture of the four models’
performance. The results showed high performance with an accuracy greater than 98% in
all tests. The largest individual error in the results was 49 out of 3000 (1.63% Otsu method
crack imagery) incorrectly labelled images. The best individual result was 10 out of 3000
(0.33% grayscale non-crack imagery) incorrectly labelled images. In general, the results
showed that the model had over twice as many incorrect predictions for the crack images
compared to the non-crack images.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 27

The RGB data were selected as the control for testing purposes. However, the pre-
trained VGG16 model only had access to pretrained RGB weights. This was exaggerated
as the RGB weights were designed for three channels (red, green, blue), while the pro-
cessed images had only one (brightness). Therefore, the RGB results were expected to im-
prove performance, depending on the model’s reliance on colour.

4.1. 10-Epoch Training
The initial objective of the study was to determine if processing images could im-

prove the performance of DL. For this purpose, the initial test was performed using 10
epochs of training. It was decided to train the data for 10 epochs as this is sufficient for
convergence with many pretrained networks [35].

The confusion matrices (see Figure 12) provide a full picture of the four models’ per-
formance. The results showed high performance with an accuracy greater than 98% in all
tests. The largest individual error in the results was 49 out of 3000 (1.63% Otsu method
crack imagery) incorrectly labelled images. The best individual result was 10 out of 3000
(0.33% grayscale non-crack imagery) incorrectly labelled images. In general, the results
showed that the model had over twice as many incorrect predictions for the crack images
compared to the non-crack images.

Figure 12. Confusion matrix results of the model for each image processing method run for 10
epochs.

The grayscale results were similar to the RGB, with a minor increase in false negative
results. The Sobel filter returned a comparable number of false positives (12:11) but nearly
double the false negatives (44:23) of the control (RGB). The Otsu method returned nearly
double the false positives (20:11) and over double the false negatives (49:23) compared to
RGB. Overall, as shown in Figure 12, the RGB and grayscale were similar, with the Sobel

Non-
Crack Crack Non-

Crack Crack

Non-
Crack 2989 11 Non-

Crack 2990 10

Crack 23 2977 Crack 30 2970

Non-
Crack Crack Non-

Crack Crack

Non-
Crack 2980 20 Non-

Crack 2988 12

Crack 49 2951 Crack 44 2956

Predicted Predicted

RGB Grayscale

Tr
ue

Tr
ue

Predicted Predicted

Tr
ue

Tr
ue

Otsu method Sobel filter

Figure 12. Confusion matrix results of the model for each image processing method run for 10 epochs.

The grayscale results were similar to the RGB, with a minor increase in false negative
results. The Sobel filter returned a comparable number of false positives (12:11) but nearly
double the false negatives (44:23) of the control (RGB). The Otsu method returned nearly
double the false positives (20:11) and over double the false negatives (49:23) compared to
RGB. Overall, as shown in Figure 12, the RGB and grayscale were similar, with the Sobel
filter increasing the number of false negatives, and the Otsu method reducing performance
in all areas.

Table 4 depicts that the control RGB performed the best, achieving over 99% in all
metrics. This was expected, as the pretrained weights were created using an RGB dataset.
The accuracy of the models for each IP method varied from 98.85% to 99.43%. This showed

Sustainability 2022, 14, 8117 18 of 25

only a minor reduction in any IP method compared to the control. The grayscale model
was the best-processed image (−0.10% from RGB). The F1 score was used to evaluate the
model’s accuracy in predicting a crack. The RGB image model performed best, while the
grayscale model’s F1 score was slightly lower (−0.10%). Overall, the RGB and grayscale
models achieved similar results, while the Otsu method returned the worst performance of
all metrics, though the difference was minor.

Table 4. Metrics using confusion matrix results for each image processing method run for 10 epochs.

Metric
10-Epoch Pretrained Difference to RGB

RGB Grayscale Otsu Method Sobel Filter Grayscale Otsu Method Sobel Filter

ACC 99.433% 99.333% 98.850% 99.067% −0.100% −0.583% −0.367%
TRP 99.233% 99.000% 98.367% 98.533% −0.233% −0.867% −0.700%
TNR 99.633% 99.667% 99.333% 99.600% 0.033% −0.300% −0.033%
PPV 99.632% 99.664% 99.327% 99.596% 0.033% −0.305% −0.036%
NPV 99.236% 99.007% 98.382% 98.549% −0.230% −0.854% −0.688%

F1 99.432% 99.331% 98.844% 99.062% −0.101% −0.588% −0.371%

The grayscale model outperformed the RGB model in TNR and precision/PPV. The
grayscale model was best at finding all non-crack images. The grayscale model also re-
turned the highest percentage (99.664%) of true cracks out of all predicted cracks. The
differences between RGB and grayscale were minor, suggesting that colour is not critical in
crack detection.

4.2. 20-Epoch Training

The 20-epoch training was performed to determine if greater training would allow the
model to improve its compensation for single-channel images (see Figure 13).

Sustainability 2022, 14, x FOR PEER REVIEW 20 of 27

Figure 13. Confusion matrix test results of the model for each image processing method run for 20
epochs.

The confusion matrix results (see Table 5) illustrate that the 20-epoch models had
increased performance across all models. The grayscale and RGB were nearly identical
(one-image difference). The grayscale model at 20 epochs had the best performance. The
RGB model differed from the grayscale by incorrectly labelling one more image as a crack.
This indicates that the grayscale model and RGB model evaluated cracks similarly.

The Otsu method had the worst performance in this test as well. The Otsu method
had 17 more incorrect non-crack labels than the Sobel filter model and 35 more than the
RGB or grayscale models. The Sobel filter model, for comparison, had 37 incorrect non-
crack labels. The Sobel filter and Otsu method models showed a comparable number of
incorrect crack labels. This suggests that the models may have struggled to label the same
non-crack images.

Table 5. Metrics using confusion matrix test results for each image processing method run for 20
epochs.

Metric
20-Epoch Pretrained Difference to RGB

RGB Grayscale Otsu Method Sobel Filter Grayscale
Otsu

Method Sobel Filter

ACC 99.533% 99.550% 98.817% 99.133% 0.017% −0.717% −0.400%
TRP 99.367% 99.367% 98.200% 98.767% 0.000% −1.167% −0.600%
TNR 99.700% 99.733% 99.433% 99.500% 0.033% −0.267% −0.200%
PPV 99.699% 99.732% 99.426% 99.496% 0.033% −0.273 −0.203%
NPV 99.369% 99.369% 98.222% 98.776% 0.000% −1.147% −0.593%

F1 99.533% 99.549% 98.809% 99.130% 0.017% −0.723% −0.402%

The grayscale model outperformed the RGB control in all metrics by less than 0.1%
(see Table 5). The remaining IP models performed worse than the RGB control. The worst-
performing model was the Otsu method, with an accuracy of 98.817% and an F1 score of

Non-
Crack Crack Non-

Crack Crack

Non-
Crack 2991 9 Non-

Crack 2992 8

Crack 19 2981 Crack 19 2981

Non-
Crack Crack Non-

Crack Crack

Non-
Crack 2983 17 Non-

Crack 2985 15

Crack 54 2946 Crack 37 2963

Sobel filterOtsu method

GrayscaleRGB

Predicted

Tr
ue

Tr
ue

Predicted

Tr
ue

Predicted

Predicted

Tr
ue

Figure 13. Confusion matrix test results of the model for each image processing method run for
20 epochs.

Sustainability 2022, 14, 8117 19 of 25

The confusion matrix results (see Table 5) illustrate that the 20-epoch models had
increased performance across all models. The grayscale and RGB were nearly identical
(one-image difference). The grayscale model at 20 epochs had the best performance. The
RGB model differed from the grayscale by incorrectly labelling one more image as a crack.
This indicates that the grayscale model and RGB model evaluated cracks similarly.

Table 5. Metrics using confusion matrix test results for each image processing method run for
20 epochs.

Metric
20-Epoch Pretrained Difference to RGB

RGB Grayscale Otsu Method Sobel Filter Grayscale Otsu Method Sobel Filter

ACC 99.533% 99.550% 98.817% 99.133% 0.017% −0.717% −0.400%
TRP 99.367% 99.367% 98.200% 98.767% 0.000% −1.167% −0.600%
TNR 99.700% 99.733% 99.433% 99.500% 0.033% −0.267% −0.200%
PPV 99.699% 99.732% 99.426% 99.496% 0.033% −0.273 −0.203%
NPV 99.369% 99.369% 98.222% 98.776% 0.000% −1.147% −0.593%

F1 99.533% 99.549% 98.809% 99.130% 0.017% −0.723% −0.402%

The Otsu method had the worst performance in this test as well. The Otsu method
had 17 more incorrect non-crack labels than the Sobel filter model and 35 more than the
RGB or grayscale models. The Sobel filter model, for comparison, had 37 incorrect non-
crack labels. The Sobel filter and Otsu method models showed a comparable number of
incorrect crack labels. This suggests that the models may have struggled to label the same
non-crack images.

The grayscale model outperformed the RGB control in all metrics by less than 0.1%
(see Table 5). The remaining IP models performed worse than the RGB control. The
worst-performing model was the Otsu method, with an accuracy of 98.817% and an F1
score of 98.809%. The Otsu method model recall/TPR was 1.17% lower than the RGB
model. The NPV or precision for the non-cracks also performed poorly, with a 1.15%
reduction compared to RGB. Overall, the results were still very good, with all model
metrics above 98%.

4.3. Comparison of the Epochs

A comparison between the 20-epoch models and 10-epoch models was performed to
determine if the DL compensated for the single-channel images.

The confusion matrices for difference (see Figure 14) showed improvement or dete-
rioration between the models based on their training times. An improvement depicts an
increase in the correct predictions (black squares) and a reduction in the incorrect predic-
tions (white squares). It should be noted that changes are cancelled out across the true
la-bels (rows). Overall, the largest improvement was achieved in the grayscale model. This
model correctly labelled 11 more cracks. The non-crack improvement was identical for
both the grayscale and RGB models. The Sobel filter model increased its crack labelling by
seven images in the 20-epoch model. The RGB model increased the correct crack image
labels by four in the 20-epoch model. This suggests that the one-channel images using
three-channel weights converged slower.

Surprisingly, the Otsu method model’s incorrect crack-image labelling increased by
five. This indicated that the Otsu method images might have more noise, leading to early
overfitting. This could also be due to the binarized images exaggerating the brightness
changes and making non-crack images with details, such as colour or ripples, appear as
cracks. The Sobel filter method showed a decrease in correct non-crack labels, which could
be due to the filter creating outlines of image features that possibly appear like cracks.
These changes were minor, but the Otsu and Sobel models’ performances deteriorated with
further training.

Sustainability 2022, 14, 8117 20 of 25

Sustainability 2022, 14, x FOR PEER REVIEW 21 of 27

98.809%. The Otsu method model recall/TPR was 1.17% lower than the RGB model. The
NPV or precision for the non-cracks also performed poorly, with a 1.15% reduction com-
pared to RGB. Overall, the results were still very good, with all model metrics above 98%.

4.3. Comparison of the Epochs
A comparison between the 20-epoch models and 10-epoch models was performed to

determine if the DL compensated for the single-channel images.
The confusion matrices for difference (see Figure 14) showed improvement or dete-

rioration between the models based on their training times. An improvement depicts an
increase in the correct predictions (black squares) and a reduction in the incorrect predic-
tions (white squares). It should be noted that changes are cancelled out across the true la-
bels (rows). Overall, the largest improvement was achieved in the grayscale model. This
model correctly labelled 11 more cracks. The non-crack improvement was identical for
both the grayscale and RGB models. The Sobel filter model increased its crack labelling
by seven images in the 20-epoch model. The RGB model increased the correct crack image
labels by four in the 20-epoch model. This suggests that the one-channel images using
three-channel weights converged slower.

Figure 14. Confusion matrices showing the differences from the 10-epoch models to the 20-epoch
models.

Surprisingly, the Otsu method model’s incorrect crack-image labelling increased by
five. This indicated that the Otsu method images might have more noise, leading to early
overfitting. This could also be due to the binarized images exaggerating the brightness
changes and making non-crack images with details, such as colour or ripples, appear as
cracks. The Sobel filter method showed a decrease in correct non-crack labels, which could
be due to the filter creating outlines of image features that possibly appear like cracks.
These changes were minor, but the Otsu and Sobel models’ performances deteriorated
with further training.

The metrics in Table 6 depict the relative improvement between the 10-epoch and 20-
epoch models. It further shows the comparative improvement between the IP models.

Figure 14. Confusion matrices showing the differences from the 10-epoch models to the 20-
epoch models.

The metrics in Table 6 depict the relative improvement between the 10-epoch and
20-epoch models. It further shows the comparative improvement between the IP models.
Overall, the grayscale model results showed the most improvement. Contrastingly, the
Otsu method and Sobel filter changed in different ways. The Otsu method reduced the
NPV and TPR, while the TNR and PPV increased. This showed that the threshold CNN
models removed crack features as the recall decreased. The increase in performance of
detecting non-cracks led to an increase in precision. While the Sobel filter model showed
the opposite effect, it reduced TNR and PPV, while the NPV and TPR increased. This
indicated that the edge detection process may have added features in non-crack images,
and the CNN model could not differentiate between the cracks. Overall, the models only
marginally increased or decreased by any metric. The changes from 10 epochs to 20 epochs
are all within ± 0.4%, confirming that convergence is approximately 10 epochs.

Table 6. Model metrics changes from 10 epochs to 20 epochs.

Metric
Difference from 10 to 20 Epochs Increase Compared to RGB

RGB Grayscale Otsu Method Sobel Filter Grayscale Otsu Method Sobel Filter

ACC 0.100% 0.217% −0.33% 0.067% 0.117% −0.133% −0.033%
TRP 0.133% 0.367% −0.167% 0.233% 0.233% −0.300% 0.100%
TNR 0.067% 0.067% 0.100% −0.100% 0.000% 0.033% −0.167%
PPV 0.067% 0.068% 0.099% −0.099% 0.001% 0.032% −0.167%
NPV 0.132% 0.362% −0.160% 0.227% 0.230% −0.293% 0.094%

F1 0.100% 0.218% −0.035% 0.068% 0.118% −0.135% −0.032%

The cracks on the images are shown in the Figure 15a–m. Figure 15a represents the
input and output images of the cracks on the concrete structures, whereas Figure 15d,g,j
represent the crack input images used to obtain the output of Figure 15f,i,l, respectively,
while Figure 15b,e,h,k are labelled images. The input and output images for corrosion are
presented in Figure 15a–l, where the left panel corresponds to input, and the right panel
corresponds to the output images.

Sustainability 2022, 14, 8117 21 of 25

Sustainability 2022, 14, x FOR PEER REVIEW 22 of 27

Overall, the grayscale model results showed the most improvement. Contrastingly, the
Otsu method and Sobel filter changed in different ways. The Otsu method reduced the
NPV and TPR, while the TNR and PPV increased. This showed that the threshold CNN
models removed crack features as the recall decreased. The increase in performance of
detecting non-cracks led to an increase in precision. While the Sobel filter model showed
the opposite effect, it reduced TNR and PPV, while the NPV and TPR increased. This in-
dicated that the edge detection process may have added features in non-crack images, and
the CNN model could not differentiate between the cracks. Overall, the models only mar-
ginally increased or decreased by any metric. The changes from 10 epochs to 20 epochs
are all within ± 0.4%, confirming that convergence is approximately 10 epochs.

Table 6. Model metrics changes from 10 epochs to 20 epochs.

Metric
Difference from 10 to 20 Epochs Increase Compared to RGB

RGB Grayscale Otsu Method Sobel Filter Grayscale Otsu Method Sobel Filter
ACC 0.100% 0.217% −0.33% 0.067% 0.117% −0.133% −0.033%
TRP 0.133% 0.367% −0.167% 0.233% 0.233% −0.300% 0.100%
TNR 0.067% 0.067% 0.100% −0.100% 0.000% 0.033% −0.167%
PPV 0.067% 0.068% 0.099% −0.099% 0.001% 0.032% −0.167%
NPV 0.132% 0.362% −0.160% 0.227% 0.230% −0.293% 0.094%

F1 0.100% 0.218% −0.035% 0.068% 0.118% −0.135% −0.032%

The cracks on the images are shown in the Figure 15a–m. Figure 15a represents the
input and output images of the cracks on the concrete structures, whereas Figure 15d,g,j
represent the crack input images used to obtain the output of Figure 15f,i,l, respectively,
while Figure 15b,e,h,k are labelled images. The input and output images for corrosion are
presented in Figure 15a–l, where the left panel corresponds to input, and the right panel
corresponds to the output images.

Sustainability 2022, 14, x FOR PEER REVIEW 23 of 27

(m)

Figure 15. (a–m): Crack images and associated segmentation in the dataset.

The total crack pixels were classified into significant and weak pixels based on pixel
width. Despite other structures in the images, the crack prediction provided a high score
for the area where positive classes were present. The cracks with a pixel depth of 0 to 5
were categorized as significant/deep cracks, while those above 5 were classified as weak
cracks or object features (see Figure 15). Moreover, a data augmentation approach based
on random image cropping and patching was used for the proposed CNN architecture
for label generation and crack detection during training. The frequency of crack pixels was
predicted, and bounding boxes were located using data distribution and spatial location.

5. Discussion
The RGB models were expected to outperform all other models as the pretrained

weights were only available as three channels (RGB). The processed images had only one
channel (brightness). All models performed to a very high accuracy (>98%) and F1 score
(>98%). There was a marginal change in performance because of increasing the training

Figure 15. (a–m): Crack images and associated segmentation in the dataset.

Sustainability 2022, 14, 8117 22 of 25

The total crack pixels were classified into significant and weak pixels based on pixel
width. Despite other structures in the images, the crack prediction provided a high score
for the area where positive classes were present. The cracks with a pixel depth of 0 to 5
were categorized as significant/deep cracks, while those above 5 were classified as weak
cracks or object features (see Figure 15). Moreover, a data augmentation approach based
on random image cropping and patching was used for the proposed CNN architecture for
label generation and crack detection during training. The frequency of crack pixels was
predicted, and bounding boxes were located using data distribution and spatial location.

5. Discussion

The RGB models were expected to outperform all other models as the pretrained
weights were only available as three channels (RGB). The processed images had only one
channel (brightness). All models performed to a very high accuracy (>98%) and F1 score
(>98%). There was a marginal change in performance because of increasing the training
from 10 to 20 epochs (within ±0.4%). Previously published pretrained models had similar
results. Dung and Anh (2019) [36] achieved an accuracy and F1 score of 99.9%. Özgenela
and Sorguç (2018) used a similar dataset (RGB), and the same number of epochs achieved
an accuracy of 99.9% and an F1 score of 100%. These were marginally better than the
current study, which achieved 99.4% for both accuracy and F1 score.

The pretrained model results outperformed CNN models that were trained from
scratch. CNN models trained from scratch, such as those of [43], only achieved an accuracy
of around 90%. This was expected, as pretrained models have weights generated from
millions of images, while models trained from scratch have only thousands. Surprisingly
the grayscale CNN models produced the same results as the RGB models. The 20-epoch
grayscale model was nearly identical. This suggested that the models do not identify cracks
based on colour features. The grayscale results were hard to compare due to the lack of
studies on the grayscale CNNs used for crack detection.

For comparison, Bui et al. (2016) [12] compared the performance of RGB (80.8%) and
grayscale (82.2%) CNN models for general object classification by training their models
from scratch. Similarly, Xie and Richmond (2018) [11] showed that grayscale was 0.5% less
accurate than training a model from scratch using ImageNet for general images. These
two pretrained models were then used to evaluate test images. The models showed
that the grayscale model was faster and outperformed the classification model’s accuracy
(RGB: 74.98%, grayscale: 77.06%). However, the study used a different CNN architecture
(Incep-tionV3). Further, the RGB images used were pseudo-colour from grayscale images,
reducing the performance.

Overall, there is a lack of literature on the effect of IP on DL crack detection. The IP
methods of automatic crack detection use many techniques, such as thresholding and edge
detection, to help the algorithms detect the cracks within the image. The current techniques
using DL have focused on more data. The alternate theory is that preprocessing the images
could reduce unnecessary information and enhance relevant features [12]. The literature
using IP in CNNs compared the grayscale image to RGB but did not use crack images.
Bui et al. (2016) [12] used a random image dataset, and Xie and Richmond (2018) [11] used
a diseased lung image dataset. Both found that the grayscale technique increased the speed
and performance of DL models.

The Otsu method and Sobel filter models performed comparatively poorly at identify-
ing the cracks. These models also performed worse than the control at identifying non-crack
images. The further training of these models showed surprising changes. The Otsu method
increased the detection of true negative images and decreased the true positive images.
The Sobel filter, conversely, showed an increased detection of true positive images and
decreased true negatives. This suggests that CNN models created with binarized im-ages
detect fewer true positives in crack detection. The results for the Sobel filter model suggest
that true negatives are harder to identify when using edge detection. Both the Otsu method
and Sobel filter models outperformed the other models. This implies that binarization and

Sustainability 2022, 14, 8117 23 of 25

edge detection may remove relevant features and information used in CNN crack classifi-
cation. The grayscale and RGB models produced similar results, suggesting that colour is
not critical in crack detection. The model was created using pretrained weights; further
investigation for comparing models “trained from scratch” could confirm the results.

6. Conclusions

The study investigated the effects of preprocessing images on the performance of
DL crack detection using a dataset of 40,000 images. The results depicted that using a
pretrained model with RGB weights and grayscale images does not affect the performance
of a CNN model for detecting cracks in the concrete structure. The other IP methods
(thresholding and edge detection) reduced the performance. The grayscale was found to
be promising in reducing the noise of the image without removing relevant features. The
study used the Keras Python package and pretrained VGG16 to develop the CNN. The
original image dataset was converted using the SciKit Image Python package into four sets
to compare: RGB (control), luminance (grayscale), Otsu method (thresholding), and Sobel
filter (edge detection).

The grayscale models (F1 score for 10 epochs: 99.331%, 20 epochs: 99.549%) demon-
strated a similar performance to the RGB models (F1 score for 10 epochs: 99.432%, 20 epochs:
99.533%). This suggests the features used in DL to identify cracks do not rely on colour.
The edge detection models and thresholding models performed worse. The edge detection
models showed that the model became better at detecting cracks (+7 images) and worse at
detecting non-cracks (−3 images) with more training. Conversely, the thresholding models
showed that the model became better at detecting non-cracks (+3 images) and worse at
detecting cracks (−5 images) with more training. The models performed very well with
accuracies and F1 scores (all above 98%).

This study demonstrated that colour is not a relevant feature in DL crack detection.
This was promising, as colour images are larger, and decreasing image data size could
increase processing speed and decrease the data size needed for storage. These results
may be misleading due to the RGB weights in the pretrained model. Nevertheless, this
demonstrates that grayscale images can improve performance. However, further studies
should investigate these results using fully trained and segmented models. The testing,
results, and analysis were performed on a pretrained model. The weights for the pretrained
models are only available in three-channel (RGB). This was performed due to a lack of
time and the greater knowledge needed to execute. Further research should either train the
models from scratch on their respective images or obtain one-channel (grayscale) pretrained
weights. Further research could be carried out on the effects of IP FCN pixel segmentation
to increase pixel accuracy. In the future, thresholds of 106 and 101 could be evaluated to
investigate the effect of threshold in crack detection. Moreover, other pretrained models,
such as VGC11, VGC19, and AlexNet, could be investigated to compare their performance.

Author Contributions: Conceptualization, V.P.G. and H.S.M.; methodology, V.P.G. and Z.G.; software,
V.P.G.; validation, V.P.G., H.S.M. and Z.G.; formal analysis, V.P.G.; investigation, H.S.M.; resources,
V.P.G.; data curation, V.P.G.; writing—original draft preparation, H.S.M.; writing—review and
editing, V.P.G., Z.G., H.S.M. and F.U.; visualization, V.P.G. and H.S.M.; supervision, Z.G.; project
administration, Z.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Codes are available and will be provided upon reasonable request to
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Sustainability 2022, 14, 8117 24 of 25

References
1. Kim, I.-H.; Jeon, H.; Baetk, S.-C.; Hong, W.-H.; Jung, H.-J. Application of crack identification techniques for an aging concrete

bridge inspection using an unmanned aerial vehicle. Sensors 2018, 18, 1881. [CrossRef] [PubMed]
2. Munawar, H.S.; Aggarwal, R.; Qadir, Z.; Khan, S.; Kouzani, A.; Malhmud, M. A gabor filter-based protocol for automated

image-based building detection. Buildings 2021, 11, 302. [CrossRef]
3. Valença, J.; Puente, I.; Júlio, E.; González-Jorge, H.; Alrias-Sánchez, P. Assessment of cracks on concrete bridges using image

processing supported by laser scanning survey. Constr. Build. Mater. 2017, 146, 668–678. [CrossRef]
4. Munawar, H.S.; Khan, S.I.; Qadir, Z.; Kiani, Y.S.; Kouzani, A.Z.; Mahmud, M.A.P. Insights into the Mobility Pattern of Australians

during COVID-19. Sustainability 2021, 13, 9611. [CrossRef]
5. Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798.

[CrossRef]
6. Munawar, H.S.; Khan, S.; Qadir, Z.; Kouzani, A.; Mahmud, M. Insight into the impact of COVID-19 on Australian transportation

sector: An economic and community-based perspective. Sustainability 2021, 13, 1276. [CrossRef]
7. Hsieh, Y.-A.; Tsai, Y.J. Machine learning for crack detection: Review and model performance comparison. J. Comput. Civ. Eng.

2020, 34, 04020038. [CrossRef]
8. Khan, S.I.; Qadir, Z.; Munawar, H.S.; Nayak, S.R.; Budati, A.K.; Verma, K.; Prakash, D. UAVs path planning architecture for

effective medical emergency response in future networks. Phys. Commun. 2021, 47, 101337. [CrossRef]
9. Dorafshan, S.; Thomas, R.J.; Maguire, M. Benchmarking image processing algorithms for unmanned aerial system-assisted crack

detection in concrete structures. Infrastructures 2019, 4, 19. [CrossRef]
10. Liaquat, M.U.; Munawar, H.S.; Rahman, A.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Sound localization for ad-hoc microphone

arrays. Energies 2021, 14, 3446. [CrossRef]
11. Xie, Y.; Richmond, D. Pre-training on grayscale imagenet improves medical image classification. In Proceedings of the European

Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018.
12. Bui, H.M.; Lech, M.; Cheng, E.; Neville, K.; Burnett, I.S. Using Grayscale Images for Object Recognition with Convolutional-Recursive

Neural Network; IEEE: Piscataway, NJ, USA, 2016.
13. Shahriar, M.T.; Li, H. A Study of Image Pre-processing for Faster Object Recognition. arXiv 2020, arXiv:Preprint/2011.06928.
14. Pranno, A.; Greco, F.; Lonetti, P.; Luciano, R.; De Maio, U. An improved fracture approach to investigate the degradation of

vibration characteristics for reinforced concrete beams under progressive damage. Int. J. Fatigue 2022, 163, 107032. [CrossRef]
15. De Maio, U.; Greco, F.; Leonetti, L.; Blasi, P.N.; Pranno, A. A cohesive fracture model for predicting crack spacing and crack width

in reinforced concrete structures. Eng. Fail. Anal. 2022, 139, 106452. [CrossRef]
16. Wang, G.; Peter, W.T.; Yuan, M. Automatic internal crack detection from a sequence of infrared images with a triple-threshold

Canny edge detector. Meas. Sci. Technol. 2018, 29, 025403. [CrossRef]
17. Kim, H.; Ahn, E.; Cho, S.; Shin, M.; Sim, S.-H. Comparative analysis of image binarization methods for crack identification in

concrete structures. Cem. Concr. Res. 2017, 99, 53–61. [CrossRef]
18. Oliveira, H.; Correia, P.L. CrackIT An image processing toolbox for crack detection and characterization. In Proceedings of the

2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 798–802.
19. Akram, J.; Munawar, H.S.; Kouzani, A.Z.; Mahmud, M.A.P. Using Adaptive Sensors for Optimised Target Coverage in Wireless

Sensor Networks. Sensors 2022, 22, 1083. [CrossRef]
20. Akram, J.; Tahir, A.; Munawar, H.S.; Akram, A.; Kouzani, A.Z.; Mahmud, M.A.P. Cloud-and Fog-Integrated Smart Grid Model for

Efficient Resource Utilisation. Sensors 2021, 21, 7846. [CrossRef]
21. Qadir, Z.; Munir, A.; Ashfaq, T.; Munawar, H.S.; Khan, M.A.; Le, K. A prototype of an energy-efficient MAGLEV train: A step

towards cleaner train transport. Clean. Eng. Technol. 2021, 4, 100217. [CrossRef]
22. Poynton, C. Frequently asked questions about color. Retrieved June 1997, 19, 2004.
23. Dorafshan, S.; Maguire, M.; Chang, M. Comparing automated image-based crack detection techniques in the spatial and frequency

domains. In Proceedings of the 26th ASNT Research Symposium, Jacksonville, FL, USA, 13–16 March 2017.
24. Nigam, R.; Singh, S.K. Crack Detection in a Beam Using Wavelet Transform and Photographic Measurements. Structures 2020, 25,

436–447. [CrossRef]
25. Kumar, N. Gradient Based Techniques for the Avoidance of Oversegmentation. In Proceedings of the BEATS 2010, Jalandhar,

India, 7–9 June 2010.
26. Tahir, A.; Munawar, H.S.; Akram, J.; Adil, M.; Ali, S.; Kouzani, A.Z.; Mahmud, M.A.P. Automatic Target Detection from Satellite

Imagery Using Machine Learning. Sensors 2022, 22, 1147. [CrossRef] [PubMed]
27. Alipour, M.; Harris, D.K.; Miller, G.R. Robust pixel-level crack detection using deep fully convolutional neural networks. J.

Comput. Civ. Eng. 2019, 33, 04019040. [CrossRef]
28. Shaukat, M.A.; Shaukat, H.; Qadir, Z.; Munawar, H.; Kouzani, A.; Mahmud, M. Cluster analysis and model comparison using

smart meter data. Sensors 2021, 21, 3157. [CrossRef] [PubMed]
29. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
30. Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-based crack detection methods: A review.

Infrastructures 2021, 6, 115. [CrossRef]

http://doi.org/10.3390/s18061881
http://www.ncbi.nlm.nih.gov/pubmed/29890652
http://doi.org/10.3390/buildings11070302
http://doi.org/10.1016/j.conbuildmat.2017.04.096
http://doi.org/10.3390/su13179611
http://doi.org/10.1016/j.aej.2017.01.020
http://doi.org/10.3390/su13031276
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000918
http://doi.org/10.1016/j.phycom.2021.101337
http://doi.org/10.3390/infrastructures4020019
http://doi.org/10.3390/en14123446
http://doi.org/10.1016/j.ijfatigue.2022.107032
http://doi.org/10.1016/j.engfailanal.2022.106452
http://doi.org/10.1088/1361-6501/aa9857
http://doi.org/10.1016/j.cemconres.2017.04.018
http://doi.org/10.3390/s22031083
http://doi.org/10.3390/s21237846
http://doi.org/10.1016/j.clet.2021.100217
http://doi.org/10.1016/j.istruc.2020.03.010
http://doi.org/10.3390/s22031147
http://www.ncbi.nlm.nih.gov/pubmed/35161892
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000854
http://doi.org/10.3390/s21093157
http://www.ncbi.nlm.nih.gov/pubmed/34063197
http://doi.org/10.1186/s12864-019-6413-7
http://doi.org/10.3390/infrastructures6080115

Sustainability 2022, 14, 8117 25 of 25

31. Munawar, H.S.; Hammad, A.W.; Waller, S.T. Disaster Region Coverage Using Drones: Maximum Area Coverage and Minimum
Resource Utilisation. Drones 2022, 6, 96. [CrossRef]

32. Munawar, H.S.; Mojtahedi, M.; Hammad, A.W.; Kouzani, A.; Mahmud, M.P. Disruptive technologies as a solution for disaster
risk management: A review. Sci. Total Environ. 2022, 806, 151351. [CrossRef]

33. Yang, J.; Wang, W.; Lin, G.; Li, Q.; Sun, Y.; Sun, Y. Infrared thermal imaging-based crack detection using deep learning. IEEE
Access 2019, 7, 182060–182077. [CrossRef]

34. Luo, Q.; Ge, B.; Tian, Q. A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM. Constr.
Build. Mater. 2019, 204, 244–254. [CrossRef]

35. Özgenel, Ç.F.; Sorguç, A.G. Performance comparison of pretrained convolutional neural networks on crack detection in buildings.
In Proceedings of the International Symposium on Automation and Robotics in Construction, Berlin, Germany, 20–25 July 2018.

36. Dung, C.V. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52–58.
[CrossRef]

37. Moosavi, R.; Grunwald, M.; Redmer, B. Crack detection in reinforced concrete. NDT E Int. 2020, 109, 102190. [CrossRef]
38. Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. DeepCrack: Learning Hierarchical Convolutional Features for Crack

Detection. IEEE Trans Image Process 2018, 28, 1498–1512. [CrossRef] [PubMed]
39. Chen, F.-C.; Jahanshahi, M.R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve

Bayes data fusion. IEEE Trans. Ind. Electron. 2017, 65, 4392–4400. [CrossRef]
40. Liu, Z.; Cao, Y.; Wang, Y.; Wang, W. Computer vision-based concrete crack detection using U-net fully convolutional networks.

Autom. Constr. 2019, 104, 129–139. [CrossRef]
41. Fang, F.; Li, L.; Gu, Y.; Zhu, H.; Lim, J.-H. A novel hybrid approach for crack detection. Pattern Recognit. 2020, 107, 107474.

[CrossRef]
42. Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated pixel-level pavement crack

detection on 3D asphalt surfaces using a deep-learning network. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 805–819. [CrossRef]
43. Pauly, L.; Peel, H.; Luo, S.; Hogg, D.; Fuentes, R. Deeper networks for pavement crack detection. In Proceedings of the 34th

ISARC, Taipei, Taiwan, 28 June–1 July 2017.
44. Rimkus, A.; Podviezko, A.; Gribniak, V. Processing digital images for crack localization in reinforced concrete members. Procedia

Eng. 2015, 122, 239–243. [CrossRef]
45. Fan, Z.; Wu, Y.; Lu, J.; Li, W. Automatic pavement crack detection based on structured prediction with the convolutional neural

network. arXiv 2018, arXiv:Preprint/1802.02208.
46. Lins, R.G.; Givigi, S.N. Automatic crack detection and measurement based on image analysis. IEEE Trans. Instrum. Meas. 2016, 65,

583–590. [CrossRef]
47. Munawar, H.S.; Hammad, A.W.; Waller, S.T. Remote Sensing Methods for Flood Prediction: A Review. Sensors 2022, 22, 960.

[CrossRef]
48. Özgenel, Ç.F. Concrete crack images for classification. Mendeley Data 2018, 1.
49. Munawar, H.S.; Hammad, A.; Waller, S.; Thaheem, M.; Shrestha, A. An integrated approach for post-disaster flood management

via the use of cutting-edge technologies and UAVs: A review. Sustainability 2021, 13, 7925. [CrossRef]
50. Talab, A.M.A.; Huang, Z.; Xi, F.; HaiMing, L. Detection crack in image using Otsu method and multiple filtering in image

processing techniques. Optik 2016, 127, 1030–1033. [CrossRef]
51. Munawar, H.S.; Awan, A.A.; Khalid, U.; Maqsood, A. Revolutionizing Telemedicine by Instilling H. 265. Int. J. Image Graph. Signal

Processing 2017, 9, 20–27. [CrossRef]
52. Munawar, H.S.; Maqsood, A.; Mustansar, Z. Isotropic surround suppression and Hough transform based target recognition from

aerial images. Int. J. Adv. Appl. Sci. 2017, 4, 37–42. [CrossRef]
53. Akram, J.; Javed, A.; Khan, S.; Akram, A.; Munawar, H.S.; Ahmad, W. Swarm intelligence based localization in wireless sensor

networks. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, New York, NY, USA, 22–26 March 2021;
pp. 1906–1914.

54. Ke, L.; Liu, Z.; Yu, H. Characterization of a Patch Antenna Sensor’s Resonant Frequency Response in Identifying the Notch-Shaped
Cracks on Metal Structure. Sensors 2018, 19, 110. [CrossRef]

55. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
56. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:Preprint/1409.1556.
57. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International

Conference on Multimedia, Brisbane, Australia, 26–30 October 2015.
58. Fawcett, T. ROC graphs: Notes and practical considerations for researchers. Mach. Learn. 2004, 31, 1–38.

http://doi.org/10.3390/drones6040096
http://doi.org/10.1016/j.scitotenv.2021.151351
http://doi.org/10.1109/ACCESS.2019.2958264
http://doi.org/10.1016/j.conbuildmat.2019.01.150
http://doi.org/10.1016/j.autcon.2018.11.028
http://doi.org/10.1016/j.ndteint.2019.102190
http://doi.org/10.1109/TIP.2018.2878966
http://www.ncbi.nlm.nih.gov/pubmed/30387731
http://doi.org/10.1109/TIE.2017.2764844
http://doi.org/10.1016/j.autcon.2019.04.005
http://doi.org/10.1016/j.patcog.2020.107474
http://doi.org/10.1111/mice.12297
http://doi.org/10.1016/j.proeng.2015.10.031
http://doi.org/10.1109/TIM.2015.2509278
http://doi.org/10.3390/s22030960
http://doi.org/10.3390/su13147925
http://doi.org/10.1016/j.ijleo.2015.09.147
http://doi.org/10.5815/ijigsp.2017.05.03
http://doi.org/10.21833/ijaas.2017.08.006
http://doi.org/10.3390/s19010110

	Introduction
	Background Literature
	Literature Retrieval
	Image Processing Methods
	Grayscaling and Thresholding
	Edge Detection

	Traditional Machine Learning (ML) Methods
	Deep Learning-Convolutional Neural Network (CNN)
	Evaluating Classification

	Methodology
	Dataset Collection
	Image Processing
	Control (RGB)
	Grayscale (Luminance)
	Edge Detection (Sobel Filter)
	Thresholding/Binarization (Otsu Method)

	The Proposed CNN Model
	Model Development
	Model Analysis

	Results
	10-Epoch Training
	20-Epoch Training
	Comparison of the Epochs

	Discussion
	Conclusions
	References

